
A new algebraic approach to

the graph isomorphism and clique problems

Roman Galay

As it follows from Gödel's incompleteness theorems, any consistent formal system of axioms

and rules of inference should imply a true unprovable statement. Actually this fundamental

principle can be efficiently applicable in Computational Mathematics and Complexity Theory

concerning the computational complexity of problems from the class NP, particularly and

especially the NP-complete ones. While there is a wide set of algorithms for these problems

that we call heuristic, the correctness or/and complexity of each concrete algorithm (or the

probability of its correct and polynomial-time work) on a class of instances is often too difficult

to determine, although we may also assume the existence of a variety of algorithms for NP-

complete problems that are both correct and polynomial-time on all the instances from a given

class (where the given problem remains NP-complete), but whose correctness or/and

polynomial-time complexity on the class is impossible to prove as an example for Gödel's

theorems. However, supposedly such algorithms should possess a certain complicatedness of

processing the input data and treat it in a certain algebraically “entangled” manner. The same

algorithmic analysis in fact concerns all the other significant problems and subclasses of NP,

such as the graph isomorphism problem and its associated complexity class GI.

The following short article offers a couple of algebraically entangled polynomial-time

algorithms for the graph isomorphism and clique problems whose correctness is yet to be

determined either empirically or through attempting to find proofs.

An heuristic polynomial-time algorithm

for the graph isomorphism problem.

For a real-valued matrix B, by Sp(B) let’s denote the set of values its entries are equal to, and by

MSp(B) the multi-set of those values (including the multiplicity of each value). We’ll call those

set and multi-set the entry spectrum and the entry multi-spectrum of B correspondingly.

Given two simple undirected graphs G1 and G2 with n vertices whose adjacency matrices are

A1 and A2 correspondingly, we’re going to build two sequences of real-valued matrices A1
(i)

 and

A2
(i)

 by the following recursive scheme:

A1
(0)

= A1, A2
(0)

= A2

Beginning with i = 1, at the step i of our recursive process, first of all we determine whether

MSp(A1
(i)

) = MSp(A2
(i)).

If it’s not so then G1 and G2 are definitely non-isomorphic. If, otherwise, the equality holds then

we create a random |Sp(A1
(i)

)|-vector y and in both matrices A1
(i)

 and A2
(i)

 we replace each entry

whose value is the j-th element of Sp(A1
(i)

) by yj . After that, we choose a random polynomial

p(t) of degree n-1 and calculate A1
(i+1)

= p(A1
(i)

) and A2
(i+1)

= p(A2
(i)

).

We stop the whole process when either the entry multi-spectrums of the two current matrices

are different or the cardinality of their common entry spectrum doesn’t increase any more from

one step to another, i.e. |Sp(A1
(k)

)| = |Sp(A1
(k−1)

)| (accordingly, the overall number k of

performed steps can’t exceed n2).

We hence declare the initial graphs’ non-isomorphism in the former case, and their

isomorphism in the latter one.

When the process is stopped, with the overall number of steps equal to k and the final entry

spectrum {α1, … , αm}, there should exist symmetric 0,1-matrices H1
(1)

, … , H1
(m)

, H2
(1)

, … , H2
(m)

such that

A1
(k)

= ∑ αuH1
(u)

m

u=1

, A2
(k)

= ∑ αuH2
(u)

m

u=1

,

We can consider, for u = 1,..,m, H1
(u)

 and H2
(u)

 as the adjacency matrices of some graphs G1
(u)

and G2
(u)

. In case if the initial graphs G1 and G2 are really isomorphic, those two graphs should

be isomorphic as well. Moreover, due to the entry spectrum’s non-growing at the end of the

above-described process, for any pair v, w ∈ {1, … , m}, v ≠ w, G1
(v)

 and G1
(w)

 should possess no

common edges and G2
(v)

 and G2
(w)

 should too; also there should exist a sequence of coefficients

d1
(v,w)

, … , dm
(v,w)

 such that H1
(v)

H1
(w)

+ H1
(w)

H1
(v)

= ∑ du
(v,w)

H1
(u)m

u=1 and H2
(v)

H2
(w)

+

H2
(w)

H2
(v)

= ∑ du
(v,w)

H2
(u)m

u=1 (the latter condition also concerns the case v = w). Verifying these

additional relations is the proposed algorithm’s final action when declaring the isomorphism of

G1 and G2. Thus we get a pair of identical commutative algebras that are two linear spaces

 with the bases H1
(1)

, … , H1
(m)

 and H2
(1)

, … , H2
(m)

 whose elements are X = ∑ xuH1
(u)m

u=1 and X =

∑ xuH2
(u)m

u=1 correspondingly and whose algebra product is defined as X ∗ Y = XY + YX.

The above-formulated algorithm can be naturally adjusted for digraphs with absolutely the

same computational circuit (while, though strange, generating commutative algebras at the

very end as well). Moreover, it can be generalized for an arbitrary field (instead of ℝ) with all

the computations performed over that field. In case if the chosen field is of characteristic 2,

we’ll receive Lie algebras.

Another type of generalization this algorithm might be subjected to is as follows. Given an n×n-

matrix B, let’s define a product Br11n×nBr21n×n … Brs−11n×nBrs (where 1n×n is an n×n-matrix

all whose entries equal unity and r1, … , rs are non-negative integers unexceeding n-1) as its

meta-power of meta-degree (r1, r2, … , rs) and a linear combination of a set of its meta-powers

with coefficients taken from a chosen field as a meta-polynomial in B over the field. If an n×n-

matrix can be turned into another one via permuting its rows and columns by a permutation π

(i.e. if we have a pair of isomorphic matrices) then an arbitrary meta-polynomial computed in

both of them should give us a pair of isomorphic matrices as well (with the same transitional

permutation π). Hence the idea of replacing, in the proposed algorithmic approach, random

polynomials p(t) of degree n-1 by random meta-polynomials may look yet perspective, even

though it’s still difficult to figure out how the meta-polynomials’ sets of utilized meta-degrees

could be restricted in such a case. Nevertheless, the principle of stopping the recursive process

upon getting either different entry multi-spectrums of the two current matrices or their

common entry spectrum’s cardinality ceasing to grow from one step to another remains intact

(while the matrices A1
(i)

 and A2
(i)

 generically cease to be symmetric for i > 0 even in the case of

undirected initial graphs). The final splittings of the two matrices A1
(k)

 and A2
(k)

 (where k is the

overall number of performed steps) apparently will have nearly the same structure as in the

case of random polynomials p(t), but with the only additional condition of H1
(u)

1n×n and

1n×nH1
(u)

 belonging to the first final algebra and H2
(u)

1n×n and 1n×nH2
(u)

 to the second one for

u = 1,…,m. As, obviously, such a final algebra doesn’t depend on the chosen random

polynomials or, generally, meta-polynomials within the algorithmic circuit (as well as the

random substitution vectors we use for entry spectrums’ replacements), we’ll call it the

splitting algebra of a graph that is a system of its invariants. And accordingly we can formulate

the conjecture that the splitting algebra is a complete system of graph invariants.

A polynomial-time heuristic approach

to the clique problem

The general types of techniques and notions that we applied when dealing with the graph

isomorphism problem could also be applicable in resolving the much more important problems

of determining a graph’s clique number and finding its maximum clique, i.e. for the clique

problem which is well-known to be NP-complete, unlike the graph isomorphism one.

Given a simple undirected graph G with n vertices whose adjacency matrix is A, we’re going to

build a sequence of real-valued n×n-matrices X(q) = X(q)(G) (whose columns we’ll consider as

the coordinate-vectors of n points in ℝn , while the j-th point we’ll associate with the vertex j of

G) by the following recursive scheme:

X(0) = In

Beginning with q = 1, at the step q of our recursive process, we define for j =1,…,n

(*) xj
(q+1)

= xj
(q)

+ g ∑
εajk

𝐝s(x
j
(q)

,x
k
(q)

)
(xk

(q)
k∈{1,…,n}\{j} − xj

(q)
)

where xj
(q)

 is the j-th column of X(q), h, s, ε are the proposed algorithm’s parameters (h, s, ε >

0), and for two n-vectors y, z d(y,z) denotes the Euclidean distance between them in ℝn.

The above recursive relation is, in fact, a computational circuit for numerically solving the

autonomous system of differential equations

ẋj(t) = g ∑
ajk

𝐝s (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t))

and the chief idea standing behind it is the conjecture that after a certain period of time since

the beginning of the initial point system’s contraction under the influence of the introduced

“gravitational forces” between pairs of points connected, as vertices, by G’s edges the

smallest distance will always appear between a pair of vertices belonging to a maximum

clique of G.

A special interest this conjecture presents for the case of regular and semi-regular graphs,

particularly for the graph generated by a CNF so that its vertex set is the CNF’s set of literals and

a pair of literals isn’t to be connected by an edge if and only if either both of them belong to

one disjunctive clause or they’re the opposite powers of one variable (this graph’s clique

number equals the CNF’s number of disjunctive clauses if and only if the CNF is satisfiable and is

smaller otherwise, and the graph becomes close to regular upon bounding by constants the

CNF’s quantity of literals in a disjunctive clause and the number of times a variable can occur in

literals, while it’s regular when the two numbers are just constants, i.e. same for all the clauses

and all the variables correspondingly). It’s actually known that the clique problem is NP-

complete for regular graphs, even when restricted to the case of graphs complimentary to cubic

planar ones.

Hence such an algorithm is supposed to perform a certain polynomial (in n) number of steps (*)

(considered as the algorithm’s functional parameter), determine the pair of vertices (u,v) of the

smallest distance, and construct the graph GNG(u,v) received from G as the graph induced by the

set NG(u, v) of common neighbors of u and v in G. After that the whole process is to be

repeated for GNG(u,v) etc. until we get either an empty graph or a graph with one vertex.

An additional idea for enhancing the above approach to the clique problem may be introducing

“repelling forces” (aka “anti-gravitational”) between pairs of points that aren’t connected, as

vertices, in G. In such a case we’ll receive the equation

ẋj(t) = g ∑
ajk

𝐝s (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t)) −

− g1 ∑
1 − ajk

𝐝s1 (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t))

with the corresponding computational circuit for numerical solving

(**) xj
(q+1)

= xj
(q)

+ g ∑
εajk

𝐝s(x
j
(q)

,x
k
(q)

)
(xk

(q)
k∈{1,…,n}\{j} − xj

(q)
) −

− g1 ∑
ε(1 − ajk)

𝐝s1(xj

(q)
, xk

(q)
)

(xk
(q)

k∈{1,…,n}\{j}

− xj
(q)

)

Let’s call g and g1 the gravitation and anti-gravitation coefficients correspondingly.

Besides, we can notice that the matrices X(q)(G) are, of course, invariant under any of G’s

automorphisms and, given two graphs G1 and G2, we accordingly may also use X(q)(G1) and

X(q)(G2) for determining if they’re isomorphic (via comparing MSp(X(q)(G1)) and

MSp(X(q)(G2)) and eventually obtaining a pair of final algebras upon their entry spectrums’

ceasing to grow), but, nevertheless, in such a case we’re actually supposed to figure out

whether it’s not a partial case of the initial graph’s adjacency matrix’s modification via a series

of meta-polynomial and entry spectrum replacement transformations.

The proposed algorithm for the clique problem had been tested (via computer modeling) on

graphs received (as described above) from random CNF samples with several hundred Boolean

variables whose maximal number of literals in a clause and maximal number of a variable’s

occurrence was 3 and showed correctness and polynomial-time performance in finding, in case

of the CNF’s satisfiability, a satisfying Boolean vector.

And, at last, it would be worth noting that any kind of approach to the clique problem can be

further enhanced with a randomization parameter via embedding the given graph G with n

vertices whose clique number we need to determine into the graph received from G through

bipartitely gluing it with a random graph G1 with n1 vertices whose clique number we know, --

while we define the bipartite gluing of two graphs G = (V, E), G1 = (V1, E1) for disjoint V, V1

as the graph G ⊘ G1 = (V ∪ V1, E ∪ E1 ∪ KV,V1
) where KV,V1

 is the complete bipartite graph on

the parts V, V1 . The clique number of G ⊘ G1 obviously equals the sum of the clique numbers

of G and G1 and this gluing is (k + n1)-regular when G is k-regular, G1 is k1-regular and n +

k1 = n1 + k. Hence, in case if our algorithm works out on a certain sufficiently large fraction of

q-regular graphs with m vertices for a certain set of values of the ratio q:m (containing NP-

complete cases), we can also conjecture that such a random gluing may be quite capable of

resolving, via the proposed “gravitational” algorithm, the most hard cases of instances with a

sufficiently high (for being a polynomial-time randomized computational circuit) probability of

success. However, the general direction of research regarding the above-stated gravitation

contraction model may, of course, be rather related to attempting to understand the behavior

of its differential equation’s solution and even trying, on the basis of such understanding, to

reduce the algorithm’s polynomial-time complexity through modifying its vertex selection

criterion for to take, at each global step, not just one pair, but a much bigger set of vertices as

supposedly belonging to a maximum clique.

References:

* Aho, Alfred V.; Hopcroft, John; Ullman, Jeffrey D. (1974), The Design and Analysis of

Computer Algorithms, Reading, MA: Addison-Wesley.

* Arvind, Vikraman; Köbler, Johannes (2000), "Graph isomorphism is low for ZPP(NP) and

other lowness results.", Proceedings of the 17th Annual Symposium on Theoretical Aspects of

Computer Science, Lecture Notes in Computer Science, 1770, Springer-Verlag, pp. 431–442,

doi:10.1007/3-540-46541-3_36, ISBN 3-540-67141-2, MR 1781752.

* Arvind, Vikraman; Kurur, Piyush P. (2006), "Graph isomorphism is in SPP", Information and

Computation, 204 (5): 835–852, doi:10.1016/j.ic.2006.02.002, MR 2226371.

* Babai, László (1980), "On the complexity of canonical labeling of strongly regular graphs",

SIAM Journal on Computing, 9 (1): 212–216, doi:10.1137/0209018, MR 0557839.

* Babai, László; Codenotti, Paolo (2008), "Isomorphism of hypergraphs of low rank in

moderately exponential time" (PDF), Proceedings of the 49th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2008), IEEE Computer Society, pp. 667–676,

doi:10.1109/FOCS.2008.80, ISBN 978-0-7695-3436-7.

* Babai, László; Grigoryev, D. Yu.; Mount, David M. (1982), "Isomorphism of graphs with

bounded eigenvalue multiplicity", Proceedings of the 14th Annual ACM Symposium on Theory

of Computing, pp. 310–324, doi:10.1145/800070.802206, ISBN 0-89791-070-2.

* Babai, László; Kantor, William; Luks, Eugene (1983), "Computational complexity and the

classification of finite simple groups", Proceedings of the 24th Annual Symposium on

Foundations of Computer Science (FOCS), pp. 162–171, doi:10.1109/SFCS.1983.10.

* Babai, László; Luks, Eugene M. (1983), "Canonical labeling of graphs", Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing (STOC '83), pp. 171–183,

doi:10.1145/800061.808746, ISBN 0-89791-099-0.

* Babai, László (2015), Graph Isomorphism in Quasipolynomial Time, arXiv:1512.03547,

Bibcode:2015arXiv151203547B * Baird, H. S.; Cho, Y. E. (1975), "An artwork design

verification system", Proceedings of the 12th Design Automation Conference (DAC '75),

Piscataway, NJ, USA: IEEE Press, pp. 414–420.

* Blum, Manuel; Kannan, Sampath (1995), "Designing programs that check their work", Journal

of the ACM, 42 (1): 269–291, doi:10.1145/200836.200880.

 * Bodlaender, Hans (1990), "Polynomial algorithms for graph isomorphism and chromatic index

on partial k-trees", Journal of Algorithms, 11 (4): 631–643, doi:10.1016/0196-6774(90)90013-5,

MR 1079454. * Booth, Kellogg S.; Colbourn, C. J. (1977), Problems polynomially equivalent to

graph isomorphism, Technical Report, CS-77-04, Computer Science Department, University of

Waterloo.

* Booth, Kellogg S.; Lueker, George S. (1979), "A linear time algorithm for deciding interval

graph isomorphism", Journal of the ACM, 26 (2): 183–195, doi:10.1145/322123.322125, MR

0528025.

* Boucher, C.; Loker, D. (2006), Graph isomorphism completeness for perfect graphs and

subclasses of perfect graphs (PDF), Technical Report, CS-2006-32, Computer Science

Department, University of Waterloo.

* Abello, J.; Pardalos, P. M.; Resende, M. G. C. (1999), "On maximum clique problems in very

large graphs" (PDF), in Abello, J.; Vitter, J., External Memory Algorithms, DIMACS Series on

Discrete Mathematics and Theoretical Computer Science, 50, American Mathematical Society,

pp. 119–130, ISBN 0-8218-1184-3.

* Alon, N.; Boppana, R. (1987), "The monotone circuit complexity of boolean functions",

Combinatorica, 7 (1): 1–22, doi:10.1007/BF02579196. * Alon, N.; Krivelevich, M.; Sudakov, B.

(1998), "Finding a large hidden clique in a random graph", Random Structures & Algorithms, 13

(3–4): 457–466, doi:10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-

W.

* Alon, N.; Yuster, R.; Zwick, U. (1994), "Finding and counting given length cycles",

Proceedings of the 2nd European Symposium on Algorithms, Utrecht, The Netherlands, pp.

354–364.

* Amano, Kazuyuki; Maruoka, Akira (2005), "A superpolynomial lower bound for a circuit

computing the clique function with at most (1/6)log log N negation gates", SIAM Journal on

Computing, 35 (1): 201–216, doi:10.1137/S0097539701396959, MR 2178806.

 * Arora, Sanjeev; Lund, Carsten; Motwani, Rajeev; Sudan, Madhu; Szegedy, Mario (1998),

"Proof verification and the hardness of approximation problems", Journal of the ACM, 45 (3):

501–555, doi:10.1145/278298.278306, ECCC TR98-008. Originally presented at the 1992

Symposium on Foundations of Computer Science, doi:10.1109/SFCS.1992.267823.

* Arora, S.; Safra, S. (1998), "Probabilistic checking of proofs: A new characterization of NP",

Journal of the ACM, 45 (1): 70–122, doi:10.1145/273865.273901. Originally presented at the

1992 Symposium on Foundations of Computer Science, doi:10.1109/SFCS.1992.267824.

* Balas, E.; Yu, C. S. (1986), "Finding a maximum clique in an arbitrary graph", SIAM Journal

on Computing, 15 (4): 1054–1068, doi:10.1137/0215075.

* Barrow, H.; Burstall, R. (1976), "Subgraph isomorphism, matching relational structures and

maximal cliques", Information Processing Letters, 4 (4): 83–84, doi:10.1016/0020-

0190(76)90049-1.

* Battiti, R.; Protasi, M. (2001), "Reactive local search for the maximum clique problem",

Algorithmica, 29 (4): 610–637, doi:10.1007/s004530010074. * Bollobás, Béla (1976),

"Complete subgraphs are elusive", Journal of Combinatorial Theory, Series B, 21 (1): 1–7,

doi:10.1016/0095-8956(76)90021-6, ISSN 0095-8956.

* Boppana, R.; Halldórsson, M. M. (1992), "Approximating maximum independent sets by

excluding subgraphs", BIT Numerical Mathematics, 32 (2): 180–196, doi:10.1007/BF01994876.

 * Bron, C.; Kerbosch, J. (1973), "Algorithm 457: finding all cliques of an undirected graph",

Communications of the ACM, 16 (9): 575–577, doi:10.1145/362342.362367.

* Carraghan, R.; Pardalos, P. M. (1990), "An exact algorithm for the maximum clique problem",

Operations Research Letters, 9 (6): 375–382, doi:10.1016/0167-6377(90)90057-C.

* Cazals, F.; Karande, C. (2008), "A note on the problem of reporting maximal cliques" (PDF),

Theoretical Computer Science, 407 (1): 564–568, doi:10.1016/j.tcs.2008.0

