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Abstract

In previous contributions I have presented a unified theory of particles
and field, in the Geometry of General Relativity, which accounts for all
the known force fields, as well as the properties of elementary particles,
without the need to invoke additional dimension or special physical phe-
nomenon. In this paper the theory is fully detailed, and its focus is on
models of systems of elementary particles interacting with the field. The
equations are established for continuous systems and solutions, as well as
methods to solve the usual cases are exposed in the model of 2 particles.
It is then possible to build a clear model of stable systems, such as nuclei
and atoms. Discontinuous processes involve discontinuities in the field and
I show that they can be represented by particles-like objects, the bosons.
Their interaction with particles is formalized in a rigorous but simple way.
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In a previous paper I have proposed a solution to the “Great Unification
Theory” problem, that is a representation of particles and fields encompassing
the gravitational field, the EM field, the strong and weak interactions, in the
framework of the Geometry of General Relativity. It involves a new vision of the
usual “axioms” of Quantum Mechanics, which are no more than mathematical
consequences of the properties of models commonly used in Physics, and so
the proposed theory, meanwhile it benefits from concepts such as the “gauge
field” introduced in Modern Physics, is more in line with the usual, and well
proven Physics as it has been learnt and taught. There is no extra dimension,
no special particle, there is only one Physics, and the scale has the meaning well
understood by scientists : it matters only when some aspects can be neglected
for a good reason. It is also determinist and embraces clearly a realist vision of
the physical world : there are only 3 objects : the Universe (the container) with
its geometry, material body composed of particles, and a force field. All have
clear properties, as they are usually understood and accepted in the various
theories.

The unified field theory has been built, not from abstract Mathematics, but
starting from the properties of the objects and the facts as they result from
experiments. The known force fields appear as successive layers, in experiments
which dig more deeply in physical reality. At first comes the most obvious : the
motion of material bodies, governed by the laws of Mechanics, and the Newton’s
gravitation theory. It has been revolutionize by Relativity, which, starting from
the necessity to adjust the Galilean Geometry of the Universe to account for
the properties of the EM field, lead to General Relativity and the Einstein’s
theory of gravitation. It was one of the greatest steps in Theoretical Physics,
but it stayed more or less enshrined as it has been expressed at the beginning
of the XX° century, with an old and inadequate mathematical formalism, and
many simplistic adjustments with Newtonian Mechanics (such as the relativist
momentum and the recurring “inertial frames”). Actually what stands firmly
is the new representation of the Geometry of the Universe, as it comes out of
General Relativity, and the need to review the couple inertia / gravitational
charge. It is possible to give a consistent and more manageable representation
of Mechanics in the framework of General Relativity by using the tools offered
by Mathematics in the last decennium, essentially fiber bundles and Clifford
algebras. This leads to the representation by spinors, introduced in a totally
abstract way by Dirac with an equally totally different perspective. In a unified
theory of field we must make a choice between inertia and the gravitational
field, and this is naturally the first which has to go, as it is actually useless.
With it the Einstein’s Theory of gravitation must be revised. This is all the
more necessary that it is not checked by the astronomical observations, which
lead to the invention of “dark matter”. Actually a consistent theory of gravi-
tation is easily incorporated with spinors and gauge field theories, which is the
natural framework when using fiber bundles, and in this framework Einstein’s
theory appears only as a special case, based on assumptions which are not phys-
ically justified (and on which Einstein himself was dubious). The EM field can
be easily represented with spinors and gauge field, accounting for its known



properties.

The next, and ultimate, step was to account for the nuclear interactions.
Of course the starting point is the Standard Model. It implements Relativ-
ity, but only in its Special version, and so misses gravitation but also fails to
account fully for the motion of material bodies. It incorporates spinors and
gauge theories, albeit in an inconsistent manner. Its great innovation is the idea
of representations using groups, which is the logical support of gauge theories.
The challenge is then to incorporate the groups SU(2), SU(3) associated to the
strong and weak forces, in a unified gauge representation. The known elemen-
tary particles constitute a bizarre zoo, with numerous symmetries reflected in
their behavior under the action of the different fields. Rather than trying to
explain these symmetries from a mathematical model, they can be used to set
up the constraints which must be met by the unified group. Moreover one of
these symmetries is chirality, which is very specific to Clifford algebras. From
there it is logical to look for a representation based on Clifford algebras. It
requires some new mathematical results (about real and complex algebras, and
the exponential notably), but eventually it provides the unified representation.

It is summed up in 2 propositions :

Proposition 1 The state of elementary particles are represented at each point
by a vector 1, belonging to the complex Clifford algebra Cl(C,4), endowed with
a real structure. It is measured with respect to a gauge, located at each point,
given by an element of the unitary group U C ClL(C,4), acting on ¢ by a left
action 9.

Proposition 2 The field (that is the gravitational field, the EM field, the weak
and strong interactions) is represented by a principal connection on the principal

bundle Py.

These propositions are well in line with the usual concepts of Modern Physics.
The newest part if the choice of the complex Clifford algebra. The great ad-
vantage of this representation is that the only barrier between the usual forces
(EM, gravitation) and the others is the scope of the field : all the theory and the
results hold when one drops the components of the field which are not involved.
The equations look the same to account for the behavior of elementary particles
or star systems. A Clifford algebra can be seen as the demultiplication of an
orthogonal frame, and the mathematical representation reflects the successive
layers of the force field. The introduction of the complex part is grounded in
the specificity of the Universe, with its time vector. In particular it gives a
consistent and interesting interpretation of the difference between matter and
antimatter : it is linked to the choice of the signature (1,3) or (3,1) of the metric
(both are acceptable but are conventional).

The main purpose of this paper is to use the unified theory to formulate
models which account for systems of particles and field, in particular for the
stability of systems such as nuclei and atoms. I have dedicated a great effort to
provide computable equations and explicit methods to solve the usual problems.



To do this it is necessary at first to present, in the most rigorous way, the
assumptions and the mathematical framework. This is done in the first part,
which encompasses the presentation of the geometry, the particles and the field.
It addresses also the lagrangian, which leads to a simple expression with the
charges of elementary particles, whose format is given. The content, for the
most part, has already be given in previous papers, but it seemed necessary to
renew the presentation for a good understanding of the following.

If there were two Physics, it would be the Physics which deal with continuous
processes and the Physics which deal with discontinuous processes, because they
involve different assumptions and mathematical tools. Particles Physics has ac-
customed us to a picture where elementary particles are exploding, annihilated,
created or combined, exist in a vacuum which is full of virtual particles and can
behave as a wave or a field. But the real world exists out of colliders or black
holes, and the key fact, as can be checked by everybody, is that matter is extra-
ordinarily resilient. The first law of Chemistry is that elements are conserved
along the most violent reactions. Nuclei are insensitive to all usual processes.
The electronic shells can combine with each others but, overall, they keep their
basic properties and are composed of the same electrons moving around nuclei.
If we have quite good models for chemical reactions, the available models for
nuclei are poor, and based mainly on phenomenological laws. For all its pretense
to be the foundation of a theory of everything, QTF and the Standard Model
have little to tell about the existence and properties of the most ordinary of
physical objects : matter.

The basic fact is that there is no totally discontinuous process, only transition
between different continuous processes. And these transitions are usually of
interest for the physicist.

First we study the evolution of a system of particles interacting with the field
in the context of continuous processes. The physical assumptions are simple :
there is no collision, no creation or annihilation of particles, and are expressed in
clear mathematical properties. Then the usual method is the implementation of
the Principle of Least Action. It is general, well known, but its implementation
with fiber bundles require new mathematical results which I have presented
in my book (“Advanced Mathematics for Theoretical Physics") and recalled
here. Then by the method of variational derivatives it is possible to sum up the
conditions of equilibrium in 4 quite simple equations, encompassing the metric.
The challenge is then to provide operational solutions. The key is the additional
assumption that the field propagates along Killing curves, that is which preserve
the metric. This physical assumption is justified in the first part. Then it is
possible to express explicit PDE for the field and the metric. And the way to
find solutions is illustrated in the case of 2 particles, which shows that such a
system is actually instable.

Using these results it is then possible to study stable systems, systems of par-
ticles and field interacting which are stable and behave as a single object. This
is obviously the case of nuclei and atoms, but can be extended to stars systems.
The conditions for the stability are linked to precise geometric arrangement,
and are summed up in an equation. Then the system behave as a single parti-



cle, with a precise charge and trajectory. These equations should be useful for
nuclei.

The last part deals with discontinuous processes. Their main feature is the
apparition of discontinuities in the field, which take the form of bosons. Their
representation is given, as well as their interaction with particles.

A comprehensive Annex presents the key mathematical objects and tools
which are used. It can be completed by my book on Mathematics (the references
are given by Maths.x), as well as my book “Theoretical Physics" (the references
are given by Th.Physics x).



Part I
GEOMETRY, PARTICLES AND
FIELD

1 Geometry

The first object of Physics is the Universe, seen as the container in which exist
everything. Its properties are described and represented in a Theory of Geom-
etry !, which addresses 3 points : how to locate an event ? how to measure
lengths and durations ? how to measure the motion (translation and rotation)
of material bodies 7

It is related to the properties of material bodies, which are the first and main
objects through which phenomenon are described :

- a material body occupies a definite location at each time, so they have a
motion of translation, from one point to another

- material bodies show a spatial arrangement, they can be rotated, and have
a rotational motion.

They have other properties which reveal themselves in their interaction with
the force field.

Geometry requires the introduction of another object of Physics : the ob-
server, who proceeds to the experiments and measures. His main property is
that he has “free will” : he can choose the experiment, its location in space and
time, as well as the standards used to make his measures.

Geometry by itself is local : its representations are linked to an observer,
and how the measures done vary from one observer to another, located at the
same point or at a proximity which enables to compare the measures done.
Cosmology is another topic, it pretends to give a representation of the whole
Universe, and raises fundamental issues, and first the definition of the observer.
It is not treated here.

1.1 Manifold structure and metric
1.1.1 Location of an event

A “point” in the Universe M is an event. For a given observer its location
requires 4 parameters, 3 for the spatial location and one for the time location.
Any procedure which enables to locate an event with 4 parameters is acceptable,
it defines a chart, that is a map : ¢ : R* — M specific to the observer. The
only condition is that, if 2 charts ¢, @9 are used, there is a mathematical rule
which gives the coordinates (£§) as function of (£%) for the same event. This is
precisely the definition of a structure of manifold :

1 Cosmology is another topic. Its purpose is to give a representation of the whole Universe,
and raises fundamental issues, and first the definition of the observer. It is not addressed here.

10



Proposition 3 The Universe can be represented by a 4 dimensional manifold
M, and any observer has a chart.

For a given observer we will consider only a limited area €2, which is math-
ematically relatively compact.

As a consequence for each observer there is a function f, : 2 — R such that
fo (m) = €Y is the time at which happens an event located at m. We assume
that the chart is differentiable, as well as f, and that f, (m) # 0. Then f, defines
a foliation of Q in 3 dimensional hypersurfaces Q3 (t) = {m € Q: f, (m) =t}
which represent the “present” of the observer and his physical space.

The basic property of a material object is that it occupies a definite location
at each time. So their trajectory is represented on M by a path : ¢ : R — M
which we assume to be differentiable, called a world line. There is a unique (up
to the choice of an origin) parameter 7, called the proper time of the body, such
that g—z is the tangent to the trajectory on M. This holds also for the observers,
and it is assumed that the observers measure their location on their curve by
their proper time ¢, specific to each observer.

1.1.2 Metric

To any manifold is associated a tangent bundle which, locally, is defined by small
displacements. The coordinates £ define vector fields 0¢s and the coordinates
can themselves be defined through the flow of these vector fields : the point m
along the axis 3 at the “distance” &7 is m = Do, (55, O) from the origin O of
the coordinates, but £ does not imply any measure of length. For this a metric,
acting on the tangent bundle, is necessary.

The Principle of Causality tells that 2 events A, B can be not related, A can
be the cause of B (A < B) or B be the cause of A (B < A) which gives a, non
total, order relation between events, and the most important fact is that this
relation does not depend on the observer. This can be represented by the value
of f, (c¢(7)) on any path ¢(7) on M. There is an orientation : one goes towards
the future if f, (¢ (7)) is increasing, of equivalently if f, (¢ (7)) % > 0. More
generally the tangent space at any point m is divided in 3 hypercones of apex
m, which distinguishes the vectors oriented towards the future, or the past, or
along curves between events which are not related. and this distinction does
not depend on the observer. These regions are not path connected.

This leads to :

Proposition 4 There is on M a scalar 2 form g, defined at each point and
which does not depend on the observer.

The metric is the physical part of the Geometry. It acts on a 4 dimensional
manifold and is not definite positive. Because it defines disconnected regions its
signature must be (3,1) or (1, 3).

There is an euclidean metric on the space Q3 (6) of each observer, it must be
consistent with g, (it is induced by g on the hypersurfaces) and we will denote it

11



gs. Because spatial distances are measured by positive numbers we will choose
(3,1) in the following, but we will see the implications of a different choice.

On a manifold endowed with a metric of signature (3,1) the tangent space
T, M at any point is divided in several regions according to the value of g (m) (V, V) :

null vectors g (m) (V,V) =0

future oriented vectors g (m) (V,V) <0

past oriented vectors g (m) (V,V) > 0

the last two sets are disconnected (Maths.2.3.3).

To define a null, future oriented vector one proceeds by continuity : a null
vector V = V%+v is said to be future oriented if there is a sequence V;, = V. +v,,
such that g(m) (Vy,V,) < 0,V0 — V%0, — v. The last continuity being
measured in 77,25 (t) with the euclidean metric gs.

Spatial distance are measured in units L which are different from the units
of time. It implies the existence of a universal constant ¢ such that £° = ct. At
this step nothing more is assumed on the physical meaning of c.

Practically any chart is built from a spatial chart z = @3 (517 £2, 53) of Q3 (0)
then ¢, (ct,z) = m.

By taking €g (m) = tgradf, (m) there is, for each observer, a unique vector
field e, future oriented and with length (g9, £0) = —1 = g (m) (g0 (M) , €0 (M)) .
It is necessarily orthogonal, for g, to the hypersurfaces 3 (¢), and conversely
these hypersurfaces are spatial : Yu,v € TQs (¢) : g (u,v) > 0,9 (g0,u) = 0.

1.1.3 Velocity of material bodies

We assume that the clocks of all observers “run” at the same rate. Indeed the

definition of the second is given in reference to a physical process, without any

specification of the observer. For an object or an observer the four dimensional

Velocidty (or velocity in short) with respect to the proper time 7 is the derivative
_ dg

V = % which is a vector of TM. It does not depend on the choice of a chart.

The proposition that the clocks run at the same rate is equivalent to :

Proposition 5 For any observer or material object the square (V,V) of its
velocity V = Z—g for the metric is equal to —c?

Let us consider an observer who follows a material body in his chart. It will
be given by :

q(t) = o (ct,x (1)) with z (t) € Q3 (¢)

The derivative with respect to t gives the velocity of the body with respect
to the time of the observer :

V, = % = ceg+ U where ¥ = ‘;—f is the spatial speed of the body.

Vo € TytyM is located and measured at the location of the body.

The velocity of the body, with respect to its proper time is : V = dq

—dr-
From V = 2—3:%% and (V,V) = —c? we get :

2
dt [l

e (1)

12



2 — —

where [[v]|” = g5 (¢ (¢)) (v, 7')

V, = VW can be seen as the relative velocity of the body with respect
1=

to the observer.

1.1.4 The tetrad

There are orthonormal bases for the metric, called tetrads, at each point. For
the observer who defines the chart of M, that we will call the standard observer,
the vector €g (m) is imposed (it is in the direction of his velocity), and we assume
that he chooses an orthonormal spatial basis (g; (m))?zl at each point, the fact
that the basis is orthonormal can be checked locally. The choice of the chart
and the tetrad is arbitrary, under these conditions.

Another observer, located at the same point m, is represented by another
tetrad, whose vector €y (m) is future oriented but usually distinct from eo (m).

A tetrad is expressed in the basis of the chart : €; (m) = Zi:o P2 (m) 08,

For the standard observer the matrix [P (m)]; has necessarily the form

1 0 .
{ 0 [Qls ] with 9&y = cot.

The scalar product on TM can be computed from the components of the
tetrad. By definition :
-1 -1
9ap (M) = (0€a, 0Ea) = 275 miy [P'],, [P} with [P'] = [P] ™, [Q'] = [Q]
The induced metric on the cotangent bundle is denoted with upper indexes
0" = Y0y 9700 © OFs and its matrix is [g]  : g2 (m) = Y00 [P)7 [P]]

9] = [PI] [P) < [g] = [P [n] [P] (2)
with
-1 0 0 0
_ 0 1 0 O
b 0 010 I35 }
0 0 0 1

In the standard chart of the observer :

ol =P 1P = | [gg]}z[ol ol ]
™ =0t = | o = [ grer |

and [g3] is definite positive.

g3 depends on the coordinates in the chart, including the time t.

The metric defines a volume form on M. Its expression in any chart is, by
definition :

wy(m) =cgAeyr Aea Aez = /|det [g d{o AdEY A dE2 A dE3

lg] = [P]" [n] [P] = det[g] = — (det P’ > = /|det [g]] = det [P']
wy = +/|det [g]|de° A deP A dE® A dEP (3)

and it induces a volume form on each hypersurface Q3 (¢) :

= /|det [g3][dg" A d€? A dEP

13



1.1.5 Rotation

All material bodies, up to the molecular level, have a definite spatial organiza-
tion, such that an observer can measure their “arrangement” with respect to an
orthonormal basis in the hypersurfaces 3 (¢) . We assume that this property is
shared by all material bodies, including elementary particles. It is represented
as follows :

Proposition 6 To any material body is attached, at its location, a tetrad (e; (T))?:O

such that e (1) is in the direction of its velocity j—g.

This assumption acknowledges that the physical universe has “a relief” : this
is not just a juxtaposition of points. In particular even if an elementary particle
is represented as a point, it can have a rotational motion.

The spatial arrangement of a material body with respect to an observer is
measured as a rotation of (e; (7'))5’:1 with respect to (g; (t))?:1 . It must be at
the same location. If the observer and the body share the same world line then
T = t,ep (T) = go (t) but this is not necessarily so. A rotation is measured in
the 4 dimensional vector space tangent to the location of the body, it preserves
the tetrads, it is represented by an element s of the orthogonal group SO (3,1).

If one can measure a rotation, there is also a rotational motion, and it is

measured by the derivative dsd(tt) or, more efficiently, by s~! - 2 which sums up

to measure the instantaneous rotational motion w with respeg‘é to the previous
arrangement. The quantity s~ - % belongs to the Lie algebra of the group of
rotations, and does not depend on the observer. But SO (3,1) and the spin
group Spin (3,1) have the same Lie algebra, and this has a physical meaning
: a rotation with axis r and rotational speed % has the same measure as a
rotation with axis —r and rotational speed f%. In Euclidean Geometry it is
usually said that the 2 instantaneous rotational motions cannot be distinguished
(there is no universal way to distinguish r from —r) but this is no longer true
in Relativity : the velocities are necessarily future oriented. Moreover it is clear
that going from one rotational motion to the other would be physically felt. As
a consequence the right group for measuring rotations in Relativity is the spin
group Spin (3,1), which is equivalent to the product SO (3,1) x {+1;—1}.

Using the matricial expressions of the elements of the Spin group it is then
easy to compute the well known formulas in a change of observers (Th.Physics
3.2.3). They hold : to go from one tetrad of an observer to the tetrad of another
observer, located at the same point, for the components of vectors expressed in
the tetrads. No assumption of “inertial motion” or the speed of light is necessary.
As expected the formulas involve the spatial speed @'. The Spin group belongs
to the Clifford algebra CI(3,1) which leads to introduce Clifford bundles, and
gives a simpler way to make all these computations.

The unified theory is based on the existence of a copy of the Clifford Algebra
C1(C,4) at each point, in which the states 1 of particles are represented. There
is a hermitian product in CI(C,4) and a unitary group U which is a subset
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of C1(C,4) and gives the gauge for the measure of 1. The copy of U at each
point defines a principal bundle Py and the field is represented by a principal
connection on Py.

So there is a Clifford bundle Pe (Q2, Cl(C,4), ), and a principal bundle Py,
subbundle of Pg.

We introduce now these fiber bundles.

1.2 The fiber bundle Py

From the orthonormal bases (g; (m))?:0 we have a 4 dimensional vector space
F (m) = Span (g; (m))?:o endowed with a scalar product with signature (3, 1)
and a Clifford Algebra CI(m) ~ Cl(3,1) located at m with orthonormal basis
Foz =Ejy e Ejp

i) The tetrads at each point define on  a vector bundle of orthonormal bases
for the metric. Using the functor between the categories of vector bundles and
Clifford bundles, we have a Clifford bundle Po; = P (Q,CI (R, 3,1),m), that is
at each point a copy of the Clifford bundle CI(R,3,1).

An orthonormal basis of Cl(R,3,1) at m is the ordered product of vectors
of a tetrad. It will be convenient to use the basis :

Z = a+ vgeg + V1€1 + VoEo + U3E3 + W1 - €1 + WaEQ - €9 + W3EQ - €3 + T E3
o+ To€1 €3+ T382 €1

+xgE1 - €2 - €3+ X160 - E3 - E2 + XToEp €1 €3 +T3Eg - Ex €1 +bEg €1 €9 €3

and to represent a vector by the notation :

Z = la,vo,v,w,r,xg, z,b] in Cl (R, 3,1) with the 4 scalars a, vy, g, b and the
4 vectors v, w,r,z € R3.

Transposition, graded involution and scalar product are extended from the
Clifford algebra to the Clifford bundle, pointwise.

(a,vo,v,w, 1, Tg, T, b)t = (a,vo,v, —w, —1, —xg, —T, b)

The adjoint map is the Clifford morphism : Ad, : C1(R,3,1) — CI(R,3,1) =
AdyZ = g-Z - g defined for any invertible element g € Cl (R, 3,1).

Adg.go = Adg o Ady; Ady = Id

Ady (X Y) =Ad,X - Ad,Y

The Spin group Spin (3,1) is the subset of CI(R,3,1) whose elements can
be written as the product g = u; - ... - ug, of an even number of vectors of norm
(ug, ur) = 1. The adjoint map preserves the scalar product if g belongs to the
orthogonal group, equal to the product R x Spin (3,1). Thus Vg € Spin (3,1) :
9'g=1

ii) By restriction of Pg; to the Spin group we have a principal bundle
P (2, Spin (3,1),7). It can be equivalently defined by the standard gauge
p(m) equal at 1 € CI(R,3,1) located at m and associated to the gauge of
the standard observer and his tetrad on one hand, and the right action p :
Pg x Spin (3,1) — Pg defined by the product point wise p (m) = p (m) - o on
the other hand. p € X (Pg) is a section of Pg defined by p (m) = 1 at each
point.
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From the standard observer one defines any other observer, located at the
same point, by ¢ € Spin(3,1) and another tetrad (&; (m))?:O deduced from
(e (m)){_, by the action of o : & (m) = 3_7_, [Ad,]! g; (m) .

This is equivalent to define another observer by the gauge p (m) = p(p (m), ) €
P with the right action.

iii) All geometric measures, such as the motion, are done in Pg; at a point,
with respect to some tetrad associated to an observer. The measures are
equivariant : we have the relation of equivalence :

(p(m), Z (m)) ~ (p (p(m), ) , Ad,, Z (m)..

The measures are done in the associated vector bundle Pg [Cl (R, 3,1), Ad].

—_—

In a change of gauge : pc — (pe) = p (Pa, > *)

the basis Fiy =€, - ... - g5, = Fo =€), + ... - €5, = Ad, Fy
Z(m) = (pG (m) >Z) ~ (p (pGa%_l) 7Ad/fZ)

1.3 The unitary group U
1.3.1 The Clifford algebra CI(C,4)

CI(C, 4) is the Clifford algebra on C* endowed with the bilinear symmetric form
(2,2') =Y 292"

The basis (Fa);il of C1(C,4) is the product of vectors of an orthonormal
basis of C* so, formally, it is the same as the basis of C1 (R, 3, 1) with complex
components. A vector of Cl(C,4) is represented with the notation :

Z = (a,vp,v,w,r,x0,z,b) with the 4 complex scalars a,vg, zg,b and the 4
vectors v, w, r,x € C3.

The product is in CI(C,4) :

(a,vo,v,w,r, 20, x,b) - (a’, vy, v, w7 xp, 2, ) = (A, Vo, V,W, R, X0, X, B)

A = ad + vov) + v —wtw' — 7’ — zize — 2ty + bV

Vo = av) + voa’ — v'w’ + whv' — rtzx’ — xlr’ 4+ zob — bz

V =av' + a'v+ vow' — vjw + xfyr + xor’ + bz — bz’ + 5 (v)r' + 5 (r)v —
j @) e+ () w

W = aw' + d'w + vov' — vjv + b'r + br' + zjz — xzozx’ — j (W) 2’ + 5 (w)r' +
j(r)w +j ()

R =ar' 4+ d'r —zjv — zgv" + Vw + bw' + vjx + vor’ — j (v)v' + j (w)w +
j(r)r' +j(@)a’

Xo = axfy + a'zo + vob — bvj —vlr’ — rv’ + wla’ — zlw’

X =az' +d'z+bv—w — zjw+ zow' + vor’ + vir + 5 (v)w' —j(w)v' +
J )2+ (@)

B =al + a'b+ vozy — vjwo + vz’ — ztv’ —w

t

t,r/ _ rtw’

Notation 7 In the expression above j is the operator : j : C3 — L(C,3) =

0 —Z3 zZ2
j(z)= 23 0 -z
—Z9 Z1 0
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It has many algebraic properties and is very convenient (See Th.Physics,
Annex).

1.3.2 Real structure on CI(C,4)

There is a Clifford morphism C : CI(3,1) — CI(C,4) :

jZ 1,273 : C(Ej) =&

C (60) = iEo

Cl1(3,1) is a real form of CI(C,4) : C1(C,4) = C (Ci(3,1)) @ iC(Cl(3,1))

VZ € CL(C,4),Z =ReZ +ilm Z with Re Z = C (Z,),Im Z = C (Zs)

The basis (F, )Llf , of C1(C,4) is the product of vectors of an orthonormal
basis of CI (R, 3,1) but a vector Re Z or Im Z can have real or pure imaginary
components in the basis of CI(C,4) :

C(C1(3,1)) = {(a,ivg,v,iw,r, o, i2,1b) , a, vo,v,w, 1, T, z,b € R} C Cl(C,4)

and the complex conjugate of a vector of Cl(C,4) is :

CC(ReZ+iImZ)=ReZ —ilmZ

CC (a,vg,v,w, 1, To,x,b) = (@,— vo), (v), —(w), (r), mo),—(aj),—(b)) (4)

The complex conjugate of a map f € L(ClL(C,4);Cl(C,4)) is CC (f) such
that CC (f)(Z) = CC (f (CC(Z))). The map is real if CC (f) =f.

CC (Ady) = Adccg)

The adjoint map is real if g is real.

1.3.3 Hermitian scalar product

There is a scalar product on C1 (C,4) , bilinear, symmetric, complex valued form
denoted (Z, Z2") ¢y (c 4y -

On CI(C,4) one defines the hermitian scalar product :

(2,2')y =(CC(2),Z") cycn

<(a7 Vo, U, W, T, T, T, b) ) (ala ’U(/), rUla wla Tla I()? IJ? b/)>H (5)
= (@)’ = WoJop + ) v/ = (@) v/ + (1) 7’ + (wo)ap, — (@) ' = O (6)
The Clifford morphisms on C!(C,4) which preserves the hermitian product

are necessarily of the form Ad, where g is the product of an even number of
vectors of Re Cl (C,4). The unitary group of CI(C,4) is then defined as :

U={geCl(C,4):CC(¢")-g=1} (7

and the Clifford morphisms which preserve the hermitian scalar product are
Ad, with u e Cx U (C1(C,4)).
Because o € Spin (3,1) = o¢'-0=1,C(0) €U
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1.3.4 Lie algebra

i) The group U is a 16 dimensional real Lie group with real Lie algebra : T'U =
{T €CI(C,4): CC(T") +T =0}
ii) In the usual orthonormal basis of CI(C,4) :
WU = {(iA,VO,iV,iVV, R, X0,iX,B), AV, X0, BER, VW, R, X € R3}
T1U has a basis : kg = (4 F, where (, = ¢ or 1 so that in this basis :

ZeTU:Z= Za 1 2%a, 2% €R ®)
— (A, Vo, V.W, R, Xo, X, B), A, Vo, X0, B € R,V,W,R, X € R?

The real basis of T1U is :

(ma)iﬁzl =1,€0,1€1,%€9,1€3,1€0 - €1, €0 - €2,1€0 * €3,E3 - €2,E1 - €3,E2 £1,E1 " €9
83,i€0 * €3 -EQ,iEO cE1 " E3,i€0 +€2:€1,E0 €1 €2 €3.

In the real basis k, the coordinates of CC (Z?) for Z € T{U are just —z°.

iii) The basis (k) is orthonormal for the hermitian product, with (kg, 5,) ,; =
(Fg, Fy) ; = 1y with the matrix [] of the scalar product on CI(3,1).

Then :

16 16 16
<Z Xalia,zyaﬁla> = ZnaaXaYa (9)
a=1 a=1 H a=1

iv) We have a useful identity :VX,Y,Z € T'U : (X, [Z,Y]), = (X, Z],Y)
Proof. Let X, Y cThU

VZ € T1U : (Adcqu-zX) Adcxp A [Z, X]

(Adexprz X, Adexp 2Y )y = (X,Y)y

By taking the derivative with respect to 7 :

<Adexp‘rZ [Z, X] 7Adexp TZY>H + <Adexp‘rZX7 AdexpTZ [Z, Y]>H =0

<[ZvX] ’Y>H + <X7 [ZvYDH =0m

1.3.5 Chart on U

i) The property CC (u') - u = 1 implies relations between the coordinates of u
u = (a,v9,v,w,T, 70, ,b) ,a,v, 9, b € C,v,w,r,z € C3
expressed in the usual basis of C1(C,4) :
Im(avo+b:1:0+v w+z'r) =0
m (azg + bvg + v'r + w) =0
m (ab + voxg + vix + wir) =0
m (zgv + bw + ar + voz) + j (Rev)Imv — j (Rew)Imw + j (Rer)Imr —
(Re z)Imz =0
Re (
Re (
Re (-

av + vow — zor —bzr + j(x)w —j(v)r) =0
vov +aw —br —zox +j(r)w —j(w)z) =0
bv+x0w—v0r+ax+3(v) w—j(x)r)=0
a(a) —vo(vo) + v'(v) — wh(w) + ri(r) + zo(x0) — ' (x) )—b(b)=< >H_1
U is not a vector space but a real manifold embedded in C(C,4). There

are several charts on U.
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ii) Tts Lie algebra provides a chart of the manifold :

VoeR:ueclU=ePuclU

The center of U is U (1) which is a normal subgroup.

T,U (1) = (i4,0,0,0,0,0,0,0)

Uy = U/U (1) is a Lie group, thereis a unique A € R:u € U : u = e,y €
U/U (1)

Its Lie algebra is :

Uy = (0,Vp,iV,iW, R, X,iX, B)

It has a real and imaginary part :

(0, Vo,iV,iW, R, Xo,iX, B) = (0,0,0,iW, R, Xo,1X,0)®(0, 5,V 0,0,0,0, B)

(0,0,0,iW, R, Xo,1X,0) is the real part of 71Uy, this is a real Lie algebra

T, = (0,0,0,0, R,0,0,0) is the Lie algebra of C (Spin (3)) = (cos 11r,0,0,0, 52222 R 0,0, 0)

expT, = exp(0,0,0,0,R,0,0,0) = cosp, + % (T,) with y? = R'R =
e L

(0,0,0,iW, R,0,0,0) is the Lie algebra of the Real part of Spin (C,4)

exp T,y = exp (0,0,0,iW,0,0,0,0) = cosh u,+ 3222 (T,,) with p2, = WW =
Tw- Ty

Re Spin (C,4) = {(a,0,0,iw,r,0,0,ib)} = {expT, - exp Ty, }

a = cosh pu,, cos i,

sinh 44, sin py ;
w= STN (cosur — =k (R)) w

7 = cosh fi, LZ:""R

b= 7sinjlw;4w sir;:h, (WtR)

(0,0,0,i{W, R,0,0,0) @ (0,0,0,0,0, Xg,iX,0) is the real part of T1Up

T, =(0,0,0,0,0, Xo,:X,0), T, - T, = (—Xg +XtX,0,0,0,0,0,0,0)

expT, = cosh u, + %Tw with Mi = —Xg + X*X = and one can check
that (exp Tz)t cexpTy, =1

T, = (0,V,iV,0,0,0,0,B),T, - T, = (V& — V'V + B2,0,0,0,0,0,0,0) €
Cl(3,1),

exp T, = cosh iy + 54T, = ((cosh p,, TLVy, 2087V, 0,0,0,0, S2bite 1)

— (cosh 11, 0,0,0,0,0,0,0)+iC ([0 sty s ., 0,0, —%BD
with p2 =T, T, =VE — V'V + B?

Then the elements of the group read :

U= {eiAg,A eR,g = (a,vp,v,w,r, x0,2,b),a,v9,x0,b € C,v,w,r,x € (C3}
= CC(g")-g=1

Thus we have the chart of U :

16

oo ThU = U 2 @, <Zz%a> = . (A, Vo, V,W, R, X0, X, B) (10)
a=1

—u=cYexpT, -expTy - exp Ty - exp Ty (11)

where 2% € R
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iii) The elements of the unitary group U are necessarily the product of an
even number of vectors of Span (51')?:07 so they can be expressed as homoge-
neous elements, and then Z~! = Z'/(Z, Z) with the bilinear scalar product on
Cl(C,4).

Z7Y=27t/(Z,Z) = (a,vo,v, —w, —1, —x0, —2,b) | {(Z, Z)

and they are unitary if :

Z7'=CC(ZHY=2'){2,2) < CC(Z)=2Z/{Z,Z)

cc (aa Vo, V, W, T, To, T, b) = ((a)v - UO)’ (U s _(w)v (T)7 (:L'O ) —(iC), _(b)> =
(a,vo,v,w,r,x9,2,b) [ (Z, Z)

We have the relations :

(a) = a/(Z,Z);(v) =v/(Z,Z);(r) = )
(vo) = —vo/(Z,Z) ; (w) = —w/(Z,Z); (x) = —x/(Z, Z) ; (b) = =b/ (Z, Z)
The condition : (a) =a/(Z,Z) < a

Rea=ReaRe(Z,Z) +Imalm(Z, Z)

Ima=Realm(Z,Z) —ImaRe(Z, Z)

Rea(l1—Re(Z,Z)) —Imalm(Z,Z) =0

Realm(Z,Z) —Ima(Re(Z,Z)+1) =0

The condition for a # 0 is

1-Re(Z,Z) —Im(Z 2)
Im(Z,7) —(Re(ZZ)+1)

and similarly for v, r, zo o

The condition : (b) = —b/(Z,Z) & b= —(b)(Z,Z) reads :

Reb+iImb= — (Reb—iImbd) (Re(Z,Z) +ilm (Z, Z))

Reb=—RebRe(Z,Z) —ImbIm (Z, Z)

Imb=—RebIm(Z,Z) + ImbRe (Z, Z)

Reb(1+Re(Z,Z)) +ImbIm(Z,Z) =0

RebIm(Z,Z) + Imb(—Re(Z,Z) +1) =0

The condition for b # 0 is

14+ Re(Z,Z) Im(Z, Z)
Im (Z, Z) —Re(Z,Z2)+1

and similarly for v, w,

So we have necessarily (Z, Z) = ¢'?,¢ € R.

Writing a = p,e’®* then we have the relation :

(@) =/ (2,2) & a=(a) (2,2)

pa€ite = paei(®=ta)

ba = ¢ — ¢a

$a = 50+ k7

We can write :

a=exi%p,

and similarly :

b=—b)(Z,2Z) & pyei® = —pyei(®=%)

oo = ¢ — ¢p + km

Py = 50+ kT

or, with a, vg, o, b, ¢ € R,v,w,r,xz € R3

det = (Re(Z,2))*+(m (Z,2))*~1=0

det =1-(Re(Z,2))° - (Im(Z,2))° =0

20



(2,Z) =€ (a® + v'v — v} —w'w + r'r + 2§ — 2’z — b?)

= ei®

= a? +vlv — o3 —w'w +rir + 23 — 2tz — b2 =1

The elements of the group U are then of the form :

Z= e’f‘ﬁ{a + v1€1 + Vaga + UsE3 + 1362 + ToE1E3 + T3E2E1 + ToE1E2E3 )

+e'?e* 3 {vgeg + w8081 +Wa0Es +W3E0ES +T1E0E3E2 +TaE0E1E3 +T3E0E2ET +
660616263}

U
7 = e3i® (a, voehr s v, wekws p xo,xeikw%,beikb%) (12)
a’aU07x0ab7¢ € R,’U,’LU,’I",Q? € RS
a? +vlv — v —wtw +rir+ 22 —2tr -2 =1
1.3.6 The left action ¥
The group U acts on the Clifford algebra C1(C,4) by the left action :
9:U x CL(C,4) =9 (u) (Z) = e Ad, Z (13)

where A is the unique A€ R:u € U :u=e-~,vec U/U(1).
This action preserves the hermitian scalar product, U is a unitary group and
(C1(C,4),9) a unitary representation of U.

1.4 The fiber bundles F¢ P

i) Using the functor between the category of real Clifford bundles E (Q, Cl (R, 3,1),7)
and complex Clifford bundles E (Q, Cl(C,4), ) the Clifford bundle Pg; defines
a complex Clifford bundle Pg (22, Cl(C,4), ) where the vector space C* is en-
dowed with its usual bilinear form : (g;,¢;) = d;;.

The morphism C : C1(3,1) — CI1(C,4) is extended pointwise to a morphism
Po; — Po and Py is a real form of P (Q,C1(C,4),7).

VZ € Po(Q,CL(C,4),7),Z = Re Z +iIm Z with Re Z = C (Z;),Im Z =
C(Z2)

Po = Poy @ iPcy (14)

Its real structure is consistent with the specific status of the time vector eg.
Spatial vectors map to real vectors and time vectors to imaginary vectors :

J=123:C(g; (m)) =¢; (m)

C (eg (m)) = igg (M)

A change of observer in Pg; is given by a map Ad, with o € Spin (3,1)
which is a morphism, it has for image C'(Ad,) = Adc(,y = Ad, that is a
real map, which is extended to the Clifford bundles, and the distinction real
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/ imaginary stays the same : it does not depend on the observer. Moreover
C (Spin(3,1)) C U and the hermitian scalar product is preserved.

The graded involution, transposition and complex conjugation can be ex-
tended point wise on Pg, as well as the hermitian scalar product.

ii) By restriction of Po to the elements of U (C1(C,4)) we have the fiber
bundle Py = {Z € Po : CC (Z') - Z =1} . By taking p, (m) =1 € « (m) ™" (1)
with the natural right action p, : Py x U — Py :: py (m) = py (m) - u we have
a principal fiber bundle Py (Q,U, 7).

pu (m) represents the gauge used by an observer, for physical measures done
on the state of a particle.

1.5 Tangent bundles

i) For any Lie group G € C1(3,1) the left invariant vector fields are Z (1)
exp 71 with T' € T1G. The tangent space at g € G to the manifold G is T,G =
{g T,T € TlG}

The tangent bundle T'G is a group, isomorphic to the group product : TG =~
G x (TlG +)

(9, %) x (', r") = (99", + )

(9,) x (1,0) = (g, k)

(gv ) (971 *H)

ii) A vector of the tangent bundle T'Pg; reads :

Up = nea VmOma + 3,1 ZiFa (M)

where Oma = Op_,, (M, Z) 0, 7' (p) Oma = 0,

The vertical bundle V Po; = ker 7’ is isomorphic to C1(3,1)

A vector field Y € X (T Pc;) is projectable if 7’ (p) (Y (p)) = y (7 (p)) is a
vector field on T'M. The condition is that the component v, depends only on
m.

iii) The fundamental vector fields on T'Pg are defined, for any fixed x in
T, Spin (3,1), by :

¢:TiSpin (3,1) = VP : (k) (p(p,0)) = o (P, 0) L1 (k)

=p(p,0) K=p-K -

In a change of gauge p (m) — (p) (m) = p(pa (M), ¢ (m)) they change as :
o, (9, 2) (C () (9)) = € (Adsy-15) (p (p, )

A vector of the tangent bundle T Pg can be written :

W = Vg + ¢ (k) (p) where V,,,, does not depend on the trivialization :
7T/G (pG) (Vmg) =vy € T, M

iv) Similarly :

The tangent bundle TU is a real group, isomorphic to the semi direct group
product : TU ~ U g4 (ThU,+)

A vector of the tangent bundle TPx at p = pp, (m, Z) reads :

Up = DaeaV mamw +2ier ZuFa (m)

where Om,, = ¢’p,,, (M, Z) aga, "(p) Ome = 0y

The vertical bundle V Po = ker 7’ is isomorphic to CI(C,4)
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The fundamental vector fields on TPy are defined, for any fixed k in T U,
by :

Cu: TWU = V Pyt Gu (K) (pu (Pus 0)) = p'/u.g (Pus0) L;l (k) =pu(m)-r (15)

A vector of the tangent bundle T Py can be written :

Y =Yg + Cu (k) (Pu) (16)
where V;,,4 does not depend on the trivialization : 7, (py) (Yimg) =y € T M

1.6 About the change of the observer and gauge

It is useful to review some subtle definitions about the observer and the gauge.

1) A standard observer is a construct based on :

i) A chart, that is a map : ¢, : R* — Q o m = cp(ct,{l,gz,f?’) usually
built from the choice of a spatial domain Q3 (0), a spatial chart of this do-
main z = @q (£',£2,£%) then m = ¢, (ct,z). This chart provides a holonomic
basis (0¢g) 5=0.3 at each point : the vectors are local translations along the
coordinates. The observer has no choice for 9y, = cOt.

ii) The metric defines a time vector field 9 on  through o (m) = 2gradf, (m).
The 3 dimensional hypersurfaces 23 (¢) are diffeomorphic by the flow of the vec-
tor €.

iii) The choice, by the observer, of a spatial orthonormal basis (5i)i:1;2;3
at each point m € €2, which, completed by &g, gives the tetrad (g;),_, 5. The
tetrads are not necessarily diffeomorphic by the flow of ¢ : the spatial basis can
change arbitrarily with time. Their vectors can be measured in the holonomic

basis (0€g)5_¢ 3 by P{* and we have necessarily [P] = [ L 0 } with
- 0 [Qlgys

0¢y = cOt. And conversely the components of the metric are defined by [g] =

[P']" [] [P'], which is summed up in the euclidean metric [g3] = Q1 [Q"].

iv) The tetrad defines automatically the vectors (Fa)(lf;l of a basis of C1 (C, 4)
at each point, and so the Clifford bundle Pc (M,C1(C,4),7), from which Py
is deduced by reduction.

v) The motion (spatial speed and instantaneous rotation) of a material body
are measured by the observer in his spatial tetrad, and from there in CI(C,4).

vi) It is assumed that, by physical experiments, which go further than the
measure of the motion, the observer can measure the state 1 of a particle, that
is the components of a vector in Po (M, Cl(C,4), 7). The standard gauge p,
is naturally the gauge coming from the tetrad.

vii) Using this mathematical framework to each property of a physical object
is then assigned, in a model, a variable whose values are the measures of the
property.

2. So what a change of gauge or a change of observer does mean ?

i) For the same observer a change of tetrad is restricted : he has no choice
for the vector £g9. The change of tetrad is then given by an element of Spin (3).
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However it is assumed that he can proceed to measures, in U, which go beyond
the measures of rotation and translation, he is then not limited to Spin (3).

ii) For another observer the whole construct above should be done. In par-
ticular the area Q is usually not the same : €23 (0) must be orthogonal to the
vector €. In Relativity the definition of a system is observer dependent. So it
is assumed that, in a change of observer, the comparison can be done on the
intersection w of the areas, if they are large enough.

iii) The change of chart is represented by a transition map : there is a
diffeomorphism f : ;! (w) — ¢,,' (w) which gives the coordinates 7 of the same
point for the new observer, with respect to the coordinates £ of the standard
observer. The components of tensors, representing physical quantities, change

A
according to the usual rules, with the jacobian J = g%} and its inverse K.

However the assumptions above impose some constraints to the change of
chart. We have necessarily :

~ -1 0 -1 0
[g]:{ 0 Eg]:l 0 @t@]

Whoever the observer, expressed in his chart : goo (m) = =1, = 1,2,3 :
goa (M) = gao (m) =0

This is the consequence of the fact that the observer cannot choose its time
vector. However, in the picture above the euclidean metric g3 depends on ¢, in
accordance with the fact, commonly assumed, that the “Universe is expanding”.

So a change of standard chart is actually subject to some conditions, that we
can express by looking at the formulas for the matrix of the metric. A change
of chart is expressed through the jacobian, and with

o { Ky [K7] }
K] =] =
[K0]3><1 [k'}3><3 .
K)  [Ky { -1 0 ] [ K [K°] ]
(K" (&) 0 [gs] (Kol [K]
T (K8)2 t (Kol (93] [Ko]  —K§ [-tKO] + [Ko" [gs] [¥] _ [ -1 0 }
—K§ [K°]" + [k]' [gs] [K0]  — [K°]" [K°] + [k]" [g5] [K] 0 g

The change of standard chart is then subject to the conditions :

- (K8)2 + [Ko]' [gs] [Ko] = —1 < (9o, o) = 0

— K [K°] + [Ko)' [g3] [k] = 0 & (9o, Do) = 0

These conditions are met if g¢ is preserved : we have then a simple change
of spatial basis.

iv) The new basis of Cl(C,4) at each point is deduced from the old basis by
the action of some u € U. So this is a change of gauge.

v) In any model, using the relations in a change of gauge, an observer can
compute what another observer could measure. The fact that the comparison
can be physically done is the way to prove experimentally the validity of the
construct. But of course it does not mean that the standard observer must
change his own gauge.

l9] = [K]' [9) [K] =
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3. We will usually assume that the domain €2 followed by an observer is
a fibered manifold Q (R, 7,) with a map 7, which is a surjective submersion
Vm e Q,3t € R: 7w, (m) =t. With a trivialization : ¢, : Rx Q3 (0) = Q::m =
¢, (ct,x) we have a fiber bundle Q (R, Q3 (0),7,) : the fibers 7,1 () over t are
diffeomorphic, but not identical, to Q3 (0)

If E(Q,V,7g) is a fiber bundle with  as base then Vp € E,7g(p) =
m, 7, (m) = t and 7g = 7, o Tg is a surjective submersion and we have a
fibered manifold Er (R, 7g). However the fiber 71'1_31 (t) is not diffeomorphic to
V but to Q3 (0) x V. With a trivialization

¢p: QxV = Eup=pp(m,v) =g (g (ct,z),v)

so we have a fiber bundle Er (R, 3 (0) x V,7R)

A section S over F is defined by :

S (m) =g (m,s(m))

s (m) = ¢v (o (ct, T))

A section over Eg is defined by :

S () = prr (4 (2 (8),v (1))

Physically a map v : R — V :: v (¢) gives the evolution of v, and a section of
Er gives both a trajectory and the evolution of v.

There is no canonical morphism : X (E) — X (ERg).

2 Particles

2.1 State of a particle

i) The state of a particle 1 at any point is a variable valued in the Clifford
bundle Pg. Along its trajectory g : R — M followed by an observer the state is
a variable ¢ : R — P 1 9 (t)

ii) There is the left action ¥ of the group U on CI(C,4) :

9:U — L(CL(C,4);CL(C,4)) = 9 (u) (¥) =3 (e'y) () = e Adyyp  (17)
where

wel:u=e v yecU/U() (18)

It preserves the hermitian product.

So the Clifford bundle has the U structure given by the left action 1, and
Py is the unique principal bundle such that Po has the structure of associated
bundle Py [CI(C,4),9].

At each point m an element of Py [Cl(C,4),9] is the class of equivalence

Py [CU(C,4),7] : (Pus ) ~ (pu (Pu,u), 0 (u_l) "/’)

which can be represented in a trivialization by (py, ).

iii) The fundamental assumption for the particles is the following :
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Proposition 8 Elementary particles are characterized by a vector vy € Cl(C,4)
such that 1 = (Pu,%0) ~ (pu (Pu,w) ;9 (") 1)

g is the state of the particle in the standard gauge, and it changes with it
as g — 9 (u_l) Yo

2.1.1 Antiparticles

(ClL(C,4),9) is a representation if the group U, and the fundamental states g
for the known particles are deduced from their charges under the action of the
different parts of the force field. But antiparticles do exist and are stable, and
we need to accommodate their representation in the model.

The contragredient representation (Cl (C,4), (19)) of U provides an inequiv-

alent representation of U, which is mathematically acceptable. The conjugate

(9) of the map o is defined by (9) (u) (¢) = (¢ (w)) (¥) so this is equivalent to
represent the state ¢ of a particle by its conjugate. The Lie algebra of the field,
as well as the fundamental vectors 1y have both a real and an imaginary part.
The contragredient representation sums up to swap the real and the imaginary
parts : ¢ = Imv¢ + iRev = iCC (¢p). In the process C’ replace C' and in
the Hermitian form —7 replace 1. The 2 representations are acceptable, exper-
iments show the existence of an antiparticle associated to each particle. The
CPT conservation principle says that in a “time inversion” particles transform
in anti-particles. So we can state :

Proposition 9 Antiparticles are represented in the contragredient representa-
tion (C’l (C,4) ,@) of U. In the standard representation (Cl(C,4),9) of U the

fundamental state 1§ of the antiparticle associated to g is VG = (¢o).

Or, in other words : the distinction between particles / antiparticles is equiv-
alent to the choice of a signature (3,1) or (1, 3) for the metric. In any model we
need to make the choice of a signature. It is arbitrary but we need to live with
our choice. So, whenever we deal with an antiparticle, in an equation which
involve 1 (or the charges as we will see) and the time ¢ we must simultaneously
make the change t — —t and the velocity reads V =ceg+ v — Ve =ceg — v
Which is seen usually as antiparticles “moving backward in time”, which is not
physically true, but the operation is necessary to work in a unique mathematical
model.

2.2 Geometric Motion of a particle

The first characteristic of the state of a particle is its geometric motion, which
is represented in the fiber bundle Pg;.
i) The particle travels on a world line ¢ (7) with proper time 7 and velocity

% € T'M such that <g—z, %> = —c%
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The velocity % of the particle reads for an observer in the basis of the
standard chart : V = % = Zi:o V@O, = ceg + ¥ where ¥ is the spatial
speed with respect to the observer. So V = dg _ dgdr 44

dt dr dt
2 d d 2 2
ViV) = W17 - = (4. 9) (%) = - (%)
R

=y - =

ii) It is assumed that a tetrad (e; (7‘))?:0 is attached to the particle and
measured by the observer in Pg by s (t) € Spin (3,1) :

ei (q(7)) = Adyei (g (1))

Its vector e is such that j—z = ceg :

V = %CG() = \/— <Vv, V>6() = \/— <‘/, V>Ads€()

Moreover :

<V, €0>TM = —C= — <V, V> <Ad5€0, <€Q>TM

(Adseo,€0) 1y, is the scalar product in the tetrad, so

(Adseo, €0)ppr = <Ads50750>cz(3,1)

V=W Y) = ~mrsigaey

Cl(3,1)
So the geometric state of a particle is represented, at each point of its tra-

jectory, by s € Spin (3,1), s(q(t)) € Pei(q(t)) such that :

e; = Adsé‘i 19
V=% —ce0+ T = — gt Adueo (19)

(Adsso,so)m(&l) does not depend on the metric. Notice that Adseg,eq are
both vectors in the fixed vector space R*

In a change of gauge : p (m) — P (m) = p (m) - (m) " :

s—>s=x(m)-s

(p (m) ) ei) ~ (I~) (m) 7Adx(m)ei) = (I~) (m) ’Adx(m)AdSEi) = (f) (m) ) Adgé‘i)

iii) The tetrad attached to the particle is measured in the tetrad of the
observer, and the motion is defined by derivation with respect to a fixed observer.
A continuous motion is such that the map : s : R — Spin (3,1) with respect
to the time ¢ of the observer is smooth. From the definitions above (remember
that the vectors are defined in a fixed vector space) :

Vi=0.3: e; = Ads&;
‘fie; = %Adsgi = Ad, [s‘l . %,Ei] = [ﬁ . S_I,Adsf;‘i] = [ds -s‘l,ei}

dt at
de; ds
Vi=0.3:—F=|— sl N
¢ dt [dt ’ e} “
V = V=WV Adseo = V= (V. Vieo = ~ (e Sy o
v _ < i T &
v (<Adsso,80>c”3vl))2 1 (<Ads€0,€o>cl(3,1)> €0 (Adseo,e0) i3,y e

= (1([% 57V eodyon) ) V + [ 574V
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wv_V ﬁ-sfl,v ,€0 + ﬁ.s*,v (21)
dt — ¢ \|dt cisay Lt

iv) The geometric motion is measured by s € Spin (3,1) in Pg, with respect
to the Clifford bundle Pg [C1(3,1), Ad]. The state of the particle is measured
in Py [C1(C,4),9] by u with respect to a gauge p € Py. The quantities u, s are
related.

U is a real manifold embedded in CI(C,4) with chart :

u RIS = U g, (A, Vo, V,W, R, Xo, X, B) = u = ¢io (W, R) - exp (T) -
exp (Ty,) € Cl1(C,4)

where o (W, R) = C (s) and s € Spin (3,1) is the measure of the motion. W
corresponds to a translational motion, R corresponds to a rotational motion.

o =ReSpin (C,4) = (a,0,0,iw,r,0,0,ib) = exp T, - exp Ty,

a = cosh pu,, cos i,

w = Ln;“w (cos [y — Sl (R)) w

Hor
r = cosh pu, 3242 R
'f'

p— —sinhp s (7t )

fw  fir
=R'R=-T,-T,
=WW =T, - T,

and :

wir = —ab

a? - —vww+rr=1=b+wvlw=a?+7rr—-1

[Ad,] = (20 + 2r'r — 1) I4

_'_2[ 1 i (aw — br + j (w)r)’
i(—aw+br+j(w)r) aj(r)+bj(w)+j(r)j(r)+jw)j(w)

C (AdsEo) = Adc(s)(] (EQ) = iAdSEO

<Ads507€0>cz(3,1) = (C (Adseo) ,0(80»0;(@,4) = <iAd0507i50>cz(<c,4) == <Ad050a50>01(c,4)

The computation gives :
Adyeo = (2 (cosh )LL'IU)Z + 1) go — QZCOS}W}ZwW

<Ad050350>cl(c,4) - (2 (cosh Mw)Q + 1) - QZCOSIWL%W (W, e0)

= 2 (cosh piey)* + 1

c((V) =
Cl(C,4)

The 4 dimensional velocity of the particle is then :

h u, h wa=5
V=c 60+2sm How COST P Z £;
1+2¢ cosh,uw i Hw

c cosh fty sinh fiq, 1
(Adseo,20) oy (c,a) iAdseo = cieo + 2 How (Coshuw)2+1W <

thus the spatial speed is : v = 2% < WW. The component W of u

in the chart of U depends only on the spatial speed
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The components of the velocity, expressed in the holonomic basis of a chart,
are then :

3

3 . ;
, sinh fi,, cosh Wi+s
Ve =N Vipg = cpg 4 2 Pe SR NP BT po (22)
iz 1+ 2(cosh p)” 5= Hw
By computing :
2 2
to. sinh fty, cosh piy, i + _ 2 ( sinh g, cosh gy
vt =4 ( 1—‘,—2(coshuw)2 ) uﬁ, WIW = 4c 1—}-2(coshuw)2
sinh pyy coshpy 1 || T
14+2(cosh uy)? — 2| ¢
v= |2 <
e || rw
w v
T (23)
Hw ” v ”
and for || || < 1:
ot sinh 2p, A~ %(1+2Hw+2ﬂfu_(1_2ﬂw+zﬂfu>) —9_ Huw _ ~ 2
e || = 2Fcosh2pe = T+ 20w 205 F(A—2mw+202)) — “4uZ 3 — 3Hw
27
Wl (24)
3¢

v) The arrangement of the tetrad of the particle with respect to the tetrad
of the observer is o = exp T} - exp Ty, the product of a spatial rotation (exp T €
Spin (3) is a rotation which leaves invariant the time vector) and a translation.
With the convention above, relating W, v the sign of W is fixed with respect to
the speed of the particle. The instantaneous rotational motion (spatial) is then
represented by T,.. In this representation there is no need for a “spin” number
: the values +7, and —7, represents opposite rotational motions (the usual
“spin up / spin down”). The spin number is actually necessary in an euclidean
representation, where the rotational motion is represented by a vector (the axis
of rotation) belonging to the Lie algebra SO(3).

2.3 Momentum

The existence of a fundamental state 1)y can be efficiently represented in the
formalism of jet bundles, which encompasses the case of discontinuous processes.

The first jet bundle J'Py has for elements (u,d,k% a =0...3,a = 1...16)
where d,k € T1U. For a smooth section dok = u~! - Oqu. The first jet bundle
JYPc has for elements (1, 5,9% o = 0...3,a = 1...16) where 5,9 € CI(C,4).
Because of the relation v = 1 (u)y the elements of J!Pc representing the
state of the particles can be written (9 (u) ¥o, 9 (w) ¥’ (1) (dak) ¢0) -

The existence of a fundamental state is equivalent to the existence, for each
particle, of a linear differential operator :

M :J Py — J'Po i M ((u, 6ok, a = 0...3)) = (9 (u) Yo,V (u) 9 (1) (§ak) w(o) |
25
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(u7 u Tl Sk, o= 0...3) is the generalized motion of the particle, and
(9 (u) 1o, ¥ (u) ¥ (1) (dak) o) is its generalized momentum.

2.4 The interaction field / particle

Measures ¥ of the state are done with respect to a gauge. The gauge u =1 is
associated to a state where there is no action of the field.

The evolution of the state of a particle along its trajectory can be seen in
two, complementary, ways, which correspond to physical situations.

2.4.1 Identification of a particle

The state of a particle is measured with respect to a gauge, defined by the action
9 of the group U on CI(C,4) which is associated to experiments done by the
physicist and represented by known values u (g (t)) .

The state of the particle is measured in the associated bundle Py [C1 (C,4) , 9]
represented by a section ¢ € X (Py [C1(C,4),9]) and from the couple of mea-
sures at each time {p, (¢ (t)) = pu (Pu (¢ (t)),u(q(t))),¢ (¢ (t))} the physicist
estimates, by a statistical procedure, a vector iy such that

(P (s ) D (=) ) ~ (Do) ) (q (£)) = 9 (s (q (£))) o

Or equivalently that the state of the particle is constant on a trajectory
on the associated bundle. This trajectory is projected on M by ¢(t) and the
tangent to the trajectory on Py [Cl(C,4),d] is a projectable vector Y, which
does not depend on the observer.

2.4.2 Measure of the field

The measure of the state, for a known particle, is ¥ = ¥ (u) ¢, then u can
be seen as a measure of the field. A particle is never immobile and follows a
path in M. In the absence of field its state would stay constant. The value of
the field changes with the location along the trajectory and by interacting with
the particle. So, in the measure of the field from the state of a known particle,
what is actually measured is the change of the state along the trajectory. The
state ¢ (t) € Po and its derivative with respect to ¢ is a vector Y which has 2
components :

Y =Y, +Y, where Y,,, = ¢}, (m,¥) y, 7’ (p) Y, = y is associated to the
trajectory y in M and Y, to the change du of w.

Because of the relation ¢ = o (u)1o and using the identity A (g,p) =
Ag (LA (9:p) Ry a9

Y =9 (u)¥' (1) (6T) ¢o where 6T € T'U

The vector d7 :

- depends on the trajectory of the particle : usually the field is not isotropic
and its variation depends on the direction on M

- should vary in a consistent way as §i in a change of gauge by » € Py

The simplest, and common, assumption meeting these conditions is that
there is a principal connection A € Ay (T'P; VU) on Py and ¢ (6T) (u (t)) is the
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covariant derivative Vyu of u € X (Py) along the trajectory on M, with tangent
Y.
Vyu=C (L () (% + RL ()2, Aa (m)y?)) (ula (1)

—¢ (vt B+ A4, A ) (w)
So that : .
6T =u=t 9 4 Ad, 1 A(y) e WU

Y =9 (u) 9 (1) (u— Ldu 4 Ad, A (y)) o = V1

In these 2 physical processes the field appears through 2 different mathemat-
ical objects : an element w of the unitary group located at m, and a principal
connection A on Py. The group U acts on the state ¥ through ¢%. The connec-
tion A acts on the variation of the state through the covariant derivative. v and
its derivative are linked to particles : physically they defined the momentum
of the particle. Meanwhile the field exists in the vacuum, where there is no
particle (mathematically the universe is the vacuum “almost everywhere”). So
the physical field is represented by the connection.

3 The field

The force field is the third object of Physics. Its properties are the following :

- it exists everywhere

- it interacts with material bodies according to their characteristics : its
value is changed and the state of the particles is changed

- it propagates in the vacuum : its value changes with the location, even in
the vacuum.

The existence everywhere of the field is a necessity to meet the Principle of
Locality, and avoid the idea of interaction at a distance. Material bodies "act"
on each others through the force field.

For a given observer the field does not exist in the future, but it has existed
at any point in the past. As a consequence, for a given observer, the field
propagates on the 3 dimensional hypersurfaces Q5 (t) : it propagates at the
spatial speed ¢, the universal constant introduced previously. This is the logical
consequence of the properties of the geometry and of the field.

The interaction between the field and material bodies depends on the char-
acteristics of the latter, summed in their charges. There are different types of
charges, the gravitational charges (equal to the inertial mass), the Electromag-
netic (EM) charge, the charges for the weak and strong interactions. Their value
is at the base of the distinction of different elementary particles, and conversely
of the different types of fields. Material bodies are composed of elementary
particles assembled in systems, nuclei, atoms, molecules, crystals,... whose ex-
istence and properties depend themselves of the internal interaction particles /
field.
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The representation of the force field is directly related to the representation
of the state of particles : this is a mathematical object which acts on the other
mathematical object representing the particle, and their common ground is the
group U.

3.1 Connexion
3.1.1 Definition

Proposition 10 The field is represented by a principal connection A on the
principal bundle Py.

i) The vertical space at p to the fiber bundle Py is : V,Py = kermy; (p)
and generated by the fundamental vector fields ¢ (k) (p). A connection on Py
is a projection acting on vectors of the tangent bundle T'Py and valued in the
vertical bundle V Py. This is a tensor Aen (Py; V Py) such that

A(p) TPy — VPy 2 A(p) (Vi + Cu () (9)) = Cu (5 + T (p) Vi) (p)

is a projection. The definition is geometric : it does not depend on the
trivialization, but is deﬁnedA by a vector of T1U.

The connexion form is A : TPy — TyU = A (p) (V,) = Cu (K (p) Vp) (p) .

ii) A principal connection is a connection which is invariant under the right
action : py, : pu (D, 9)" A (p) = Py (p,9) A (p). Then it is defined by a family of
maps, the potential, A € A; (Q;T1U) :

T (pu (Pusw)) = Ady-1A (m) =T (p, (m)) = A(m)

A (pu (9 ) (Vi G (5) (0 (P ) = G (1 Adyr A () Vi) (0 (P )
(26)

In a change of gauge on Py : py — (/I_)\U/) = pu (P, ) the function A
changes with an affine law : A (m) — A(m) = Ad,, (A (m) — L’%_lz(%’))
with the derivative of ¢ : M — U :: 5 (m) . But in a global change of gauge (s
does not depend on m) A (m) = Ad,. A (m) and A belongs to the representation
(A1 (Q,TlU) ,Ad) of U.

The fundamental vectors are invariant by a principal connexion.

iii) The horizontal bundle is HPy = ker A (p) and the horizontal form is
xu (p) =1d—A(p):

x# (p) (Vinu + Cu (K) (Pu)) = Vinu + Cu (8) (Pu) — Cu (£ + T (p) Vinu) (pu) =
Vinu — Cu (F (p) Vmu) (pu)

xz (p) (Y)=0if Y is vertical, that is V,,, = 0.

A vector field V € X (T'M) can be lifted by a connection as a projectable
vector field :

xu X (TM) — X(HPy) = xu (p) (V) =(V, = (('(p) V) (pu)) € HPy
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3.1.2 Covariant derivative

Proposition 11 The action of the field on an elementary particle is represented
by the covariant derivative of the connection A

i) The connection acts on wvectors of the fiber bundle TPy, the covariant
derivative acts on sections of Py :

V:X%(Py) — X(VPy @ TM*) :: VS = S*A

The covariant derivative of a section S € X (Py) along a vector field V' €
X (TM) is a fundamental vector field on TPy :

S (m) = pu (Pu (M), u(m)) — (27)
VS =A(S(m)S (m)V =¢ (ufl ! (V) + Ady—1 A (m) (V)) (S (m))
(28)

that we can write, in a continuous motion along the trajectory with tangent

V:iVyS=¢ (@Vu) (S (m)) with :

Vv :X(Py) » TWU : Vyu= (ufl cdu g Ad,- Zi:o AaVa> (m)

Vv S is invariant in a change of gauge but its expression with a map u varies
the usual way for a section in a change of gauge. R

A section of J1Py is jlu = (m,u,dsu, B = 0..3) with dgu € T1U then V is
the differential operator :

3
Vi (JlPU) — A (M;T1U) : ﬁjlu = (Z <u71 - 0pu + Adu—lAB) ® dfﬁ) (m)
3=0
(29)

ii) The covariant derivative on Py induces a covariant derivative on any
associated bundle. Because Py [Cl(C,4),9] is a vector bundle V1 can be seen
as a section of Py [Cl(C,4),9].

V(1) € L(TWU; L(CL(C,4);CL(C,4)))

o0 ¥'(1) (As (m >) VP £(CL(T,4);CL(C

1(C,4))
$ (m) = (pu () 6 (1)) ~ (pu (P () 1 () 9 (™" (1)) 4 (m))
Vi = (pu (m), S5 o(aﬁww'() A (m) (9))) V?)
) = (By (1) 9 (u(m)) o) -

For ¢ (m
Vvt = g (95 +9(1) (Ag (m) (1)) ) V2

—22 o (¥ (w) @) w0 +9' (1) (A (m) (9 (w) o) ) ) V7
¥ (u) =9 (u) ¥ ( )L! _yu (Maths.p.425)

99 (w) = 9 () 9" (1) (w™ - Ou) \ \
9 (1) Ag (9 (u) = 9 (u) R,1Az = 9 (w) 9 (1) L,_,uR,145 = 9 (u) & (1) Ad, 1 Ag
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Ady = L’gg_1 o R;,ll = R;,lg o L;l
Vit = S5 V7 (99 (1) (w - Ggu) + 9 (u) 9 (1) Ady1 Ag ) g

= S5 VIO ()9 (1) (u - gu+ Ady1 Ag)
Then the covariant derivative of a section ¢ of P along a vector field V' €
X(TM)is:

Vit = o9 (u) 9’ (1) (ﬁvu) o (30)

The action of the field is, as usual in Mechanics, represented by an action on
the momentum. We have seen that the momentum of the particle can be repre-
sented by 9 = (¥ (u) vo, 9 (u) ¥ (1) (6ak) o) € J' Pc. The covariant derivative
can be seen as a differential operator between jet bundles, which enables to
extend the operations to discontinuous processes.

The tangent V to the trajectory is fixed by u, in any motion :

a 3 jipa _ o sinh gty cosh gy, 3 Wits 5o .
Ve = ZjZOV P = cPg + 271%(608}1%)2 ijl ™" Pg* where W is the

component of u in the chart of U.
and for the particle :
Vy : J'Po — J'Pe i Vy (9 (u) Yo, 9 (w) 9 (1) (Jak) o)

= (9 ()09 () 9" (1) (Vvitu) vo)

3.2 The strength of the field

The value of the field is measured by its action on particles, which is expressed
through the potential A. To be consistent we assume that A represents the value
of the field, and that it is continuous. Then to model the propagation of the

field we need a derivative. The connection form A € Ay (TPy;ThU) is a tensor
on the tangent bundle to the manifold Py, valued in the fixed vector space T7U.
The most general procedure to define the derivative of a tensor is by the Lie
derivative.

3.2.1 Definition

i) The Lie derivative is defined for a vector field Y € X (TU) . Along the integral
curve Py (s,p,) we take around a given point p, € Py the pull back of A
from @y (7,py) to pu : (Py (1,.)" A (pu) = A (@y (7,pu)) © Py, (T, pu) which is

N

expressed in the holonomic basis at p,, and we can compute : Ag (7) A (py) =
L@y () Ap) - Apa)
Equivalently we can pull back A from Oy (—7,pu) t0 Dy

((PY (_T7 ))* A (pu) = A ((I)Y (_’7—7 pu)) o (I>/Yp (_Ta pu)
and compute : ~ R

Ap(r)A(p) =2 (Apa) — @y (—7,)" A(p))
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o~

The quantities Ag (1) A (pu), AL (7) A (p,) are maps : R — T1U. And
d
dr

lim,_,oAg (T)%(]%L) = ((DY (T, ))*E(pit) |T:0+

lim o AL (7) A(py) = = (By (—7,.))" A (pu) lr=0-
are the right and left derivatives. If they exist and are equal one says that

-~
N

A (py) is Lie differentiable along the vector field Y and the Lie derivative is
defined as : R

Ly Ap) = & (@y (1,)" Apu) =0

£yAu € Ay (TPy;T1U) is defined by a difference, and changes with the
adjoint map in a change of gauge (the affine map becomes a linear one) and can
be seen as a one form on TPy valued in the adjoint bundle Py [T1U, Ad).

ii) The Lie derivative and the exterior differential are related : £y A =

We want to compute the derivative along a vector field on T'M (a change of

gauge in the computation of the derivative has no interest here), so we take the
horizontalisation of Y, using the horizontal form : x € Ay (Py; HPy) :

Ly A =d (ixonAd) + i) (dA)

x (Y) is horizontal : iX(y)z?l =0

iy (Y) (d:ﬁi) = X*d?l Y) = Veyz is the exterior covariant derivative of the
connection (see Annex) along Y.

Ve:l = Q) is the curvature form of the connection. This is a 2 form on TPy,
valued in T1U.

LynA=0(Y) R

£Ais a 2 form on TPy, valued in TyU and £4 0 (Y) =Q(Y)

iii) To keep the relation with vectors on TM we use a section on Py. The

standard gauge p, (m) is a section : p, : M — Py and we can pull back the
curvature from Py to M

Pl (Q) : TM = U v (Q) () = Q (pu (m) p, (m) (9)
p;, (ﬁ) = —F where F is the strength of the field. So F is related to the

curvature ﬁ, which is commonly used in the Theory of Fields. This is, up to
the sign, the same quantity but evaluated in the standard gauge, which makes
sense because there is no need to involve a change of gauge in the computation
of the derivative. In a change of gauge F changes as Ad, -1, there is no longer
an affine map, so it can be seen as a 2 form on T'M valued in the adjoint bundle
Py [ThU, Ad].

For any vector field y on T M the vector p], (m) (y) is a horizontal vector,
and x (P (m)) P, (m) () = P, (m) (1)

~

pi (£4) W) = ~F W)
This holds for any vector field on T'M and we write :F = —p. (.,EA)

35



& ~F(962) = % (£ Lhoo Apde? ) (0€a) & Fup = —pi (£25) (98)
F € Ay (M;T1U) and its components are expressed in the holonomic basis
of TM and the basis k, = (, F, of T U :

F=_p* (M) € Ao (M; T1U)
F(m) =3 (o py=0.5 Doar Fogdl® NdEP ® kq (31)
o5 = 0 A — A% + [ Ao, Ag]

The scalar component a = 1 is a scalar 2 form : }"éﬁ = 8af\1[13 — 9p AL, as
expected for the EM field.

3.2.2 Matricial representation of the strength

i) For any scalar valued 2 form F on M it is convenient to write F = F,. + F,,
with

Fr = Faod€® NdE? + Fizd€' A d&> + Ford€® A de?

Fuw = foldfo N dfl + fogdfo N d§2 + .7:036150 A df?’

and we will denote the 1 x 3 row matrices :

(Fl=1[ Fs2 Fis For |i[Ful=[ For For Fos | (32)

FAK =~ (1] Kl + [Ful [K,]) d€° A dg? 1 d€? A de?
ii) Any 2-form can also be written in matrix form :
0 For Foz Fos
[]_-aﬂ]gig.,.g _|Fwo 0 Fia Fu _ [ 0 , _[}—w]lxs
=03 | Fao Fau 0 T = (Fulswr 7 ([FDsxs
Fao Fz1 Fzz 0 ], .,

7] = —[7]

iii) The split in the two parts F,., F,, does not change in a change of spatial
basis (the vectors (aga)izl), that is for a given observer, but changes for another
observer who has not the same vector time ¢g. In a change of chart :

[F] — {.ﬂ with [.7?} = [K]' [F] [K] where [K] is the inverse of the jacobian

K] =17, 1] = [35]

: tmgiig}

Fo] = A (7) det i)+ 1] (415 ([K°])

[P = = 1703 050Dy 1]+ (7] (150 (8] = (o) [K°))
7.7 = 7ol [ (97 v 5 () ]

—j (Ko [k [K]g [*] — [Ko] [K°]
If the vector gq is preserved,

X
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X

1 0

K =

=[5, ]

7] = (7] (197 det (4

(7] = (Pl 1K) 8]

iv) The strength of the field is valued in the Lie algebra. And we will denote
similarly :

I I

(Frlioxs = [F17 7= o o
gy A
[ Fh A Ay
[ﬁu]mxg, = [}"{ﬂa_ =
At A A
[ﬂmxﬁ:[gﬁ]:[ﬁ’ Fu ] (33)

3.2.3 Chern-Weil Theorem

The definition of the strength of the connection is a bit complicated and one
can guess that there are some identities. The Chern-Weil theorem tells that
it must meet some conditions, which actually depends only on the principal
bundle. This theorem is purely mathematical, no assumption is done about the
connection (Maths.2118). For a 2 form on M it reads :

- for any Lie group G on a field K = R,C

- for any principal bundle P (M, G, ) and its adjoint bundle P [T G, Ad]

- for any principal connection with strength F on P

- for any symmetric n linear map L € L™ (T1G; K) invariant by G

the map : R

L(F): (T\M)* — K : L(F) (X1, ..., Xa,)

= 31 Locaten L (F (Xo): Xo@) - F (Xon1): Xo(2m)))

belongs to Ay, (T'M; K), it is such that dL (F) = 0 and for any 2 principal
connections with strength F7, 5 there is some form A € Ag,, (T'M; K) such that
L(F, — F) = dx.

For the 4 dimensional manifold M and the principal bundle Py the only
case of interest is n = 2. A symmetric, bilinear map L € £ (T1G; K) can be
expressed as a 2 form : Ly (X,Y) = Za;b Lop XY with Lgy, = Lp,. This is a
scalar product which is preserved by the adjoint map :

Vg e U: Ly (AdyX, AdyY) = Ly (X,Y) & [X]' [Ady]' [L] [Ad,] [Y] = [X]' [L] [V] &
[Ad,)" [L] [Ady] = [L]

[Ad,)" [L] [Ady) = [L] < [n] [Adg—:] [n] [L] [Ady] = [L]

in] (L] [Ad,) = [Ad,) [n) L]

The strength reads Fop and, with notations as above, a straightforward
computation gives :

L (.7:) = —% (<f01,.7:32> + <.7:02,f13> + <f03,.7:21>) dEO AN dfl A d£2 AN df?’

=150 [Ful (L] (7], d€0 A der A dE? A de®
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= =5 Xpo1 T [Full (LI [F,];, d® A dE? A dg? A de?
—37r (17,)' (L)) de° A dg? A dg? A dg®

L(F)is a 4 form, as well as A € Ay (TM;K). So L(F, — F) = d\ = 0.
The quantity L (F) does not depend on the connection, only on the map L and

the existence of the principal bundle Py. The hermitian scalar product on 71U
is preserved by the adjoint map, thus :

Theorem 12 (F,F), = 1Tr ([fw]t ] [[.7-",]]) does not depend on the connec-
tion.

This is a purely mathematical result, but nonetheless this condition should
be met, at any point, in any physical system.

3.3 The propagation of the field

One of the properties which define the field is that it propagates in the vacuum :
its value changes from one point to another in the vacuum, that is without any
interaction with particles : it is assumed that the field interacts with itself. This
self interaction should follow the Principle of Conservation of Energy, which is
modelled through a lagrangian and the implementation of the Principle of Least
Action. But this does not tell all the story. The phenomenon of propagation of
the field raises several issues.

3.3.1 The field propagates on Killing curves

The speed of light

One of the strongest results of Physics is that “light propagates at constant
spatial speed ¢”. We have introduced previously the universal constant c in the
representation of the Geometry, without any reference to a physical experiment
or to the field. But this result is a logical consequence of the properties of the
force field and of the observer : for any observer his hypersurfaces Qs (t) are
the border between the past region, where the field has already acted and its
value is fixed, and the future, where it has not yet acted and has not a value, so
the field changes as the motion of the hypersurfaces Q3 () with respect to the
time, that is at the speed c. And this holds whoever is the observer. But there
is more to it.

It is useful to come back on the experiments which “measure the speed of
light”. Their principle is that a small variation of the field (a signal) occurs at
some point, it is detected at different points with some delay, from which one
can compute an apparent spatial speed. The conclusion comes from the facts :

i) the signal can be acknowledged : it can be attenuated, or distorted (by
the Doppler effect for instance), but it is recognizable.

ii) the signal follows different curves in the 4 dimensional manifold, whose
spatial length can be computed.

ili) there is a constant relation between the spatial length of the curve and

the time delay, even when the observers are in motion : the velocity V = g—z
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of the propagation of the signal on the curve is such that the Lorentz scalar
product is null : (V,V) =0.

More generally for any observer the location of a material body is done
through a signal coming from the body, which is necessarily the propagation
of the interaction of the field with the body (there is no action at a distance,
even an acknowledgment). The fact that we can locate precisely an object, that
is, in the 3 dimensional space, the direction of the incoming signal, means that
the change in the value of the field due to its interaction with a material body
propagates along a curve in the 4 dimensional manifold which is unique and has
a tangent such that (V, V) = 0. Which raises the existence of “preferred” curves
for the propagation of the field.

For the EM field these features are a consequence of the wave equation
and the Maxwell’s laws, which can be established by the implementation of
the Principle of Least Action in Special Relativity. The extension to General
Relativity is a difficult problem, and it does not seem that the answer could
come from the Principle of Least Action alone.

The First Principle of Optics says that “light propagates in straight lines”.
In General Relativity it is usually assumed that light propagates along geodes-
ics, that is curves such that the covariant derivative of its tangent, using the
connection of the gravitational field, is null. This is a natural choice when the
connection is defined uniquely on the tangent bundle, and seen as the generaliza-
tion of the idea that “light propagates along curves of shortest length”, but this
last feature holds only if the connection is special (the Levy-Civita connection).

In a Unified Theory of Field there is no reason to privilege the gravitational
field. The connection is itself defined over the fiber bundle Py, the covariant
derivative acts on sections S € X (Py), there is no obvious candidate for such a
section and, moreover, the variables involved with the field are forms.

In all the cases above the general idea is that a tensor (representing the
signal) is transported along some special family of curve. This mathematical
concept is well known and not limited to geodesics. Tensors fields can be trans-
ported by diffeomorphisms, there is a bijective correspondence between diffeo-
morphisms and vector fields on a manifold : a tensor on T'M can be transported
along the integral curve of any vector field, using its flow (see Annex). The is-
sue is then to figure what are these curves. We have seen from the Chern-Weil
theorem that the scalar product (F,F), does not depend on the connection,
but on the existence of the principal bundle Py itself. It is built from the metric
: whatever the system of interacting fields and particles, the value of (F,F) 4
depends only on the metric. Diffeomorphisms which preserve the metric on a
manifold are isometries, and the associated vector fields are Killing vector fields,
which constitute a Lie algebra of dimension at most ten on a 4 dimensional man-
ifold : they represent the symmetries of the metric, which is the physical part
of the Geometry of the universe. The integral curves of Killing vector fields are
Killing curves, there are infinitely many Killing curves going through a given
point. Killing vector fields have a constant length and, locally, there is always a
Killing curve, not necessarily unique, joining two points, with a tangent of fixed
> 0 length. Isometries can be extended to morphisms on the tangent bundle,
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as well as the fiber bundle Py (see Annex).
For these reasons we state :

Proposition 13 The field propagates along Killing curves.

This is a general assumption and we will see later how it can be implemented.
An important point to understand the physical meaning of this property : the
propagation on a Killing curve between the points A, B does not fix the value
of the field at B, it tells only that there is a relation between the value of the
field at A and the value of the field at B. This is the meaning of a signal.

Killing vectors fields and Killing curves
Killing vector fields V' are characterized by the condition, with respect to the
metric g :
Lyg=0e0a,8=0.3:32_ V(0,95 +[g) [0.V]" + 9] [0sV]" =0
We have a set of 16 linear PDE. A Killing vector field is defined by its value
and of at least 6 partial derivatives at a point.
For a standard observer, we have necessarily

o] = { -1 0 }
g 0 [93]3><3
The equations read :

8()V0 =0
a,8=1,2,3:
s OV = 23:1 98,V
Voaogaﬁ + Z’y:l V73,yga5 + g,B'yaaVA/ + gavaﬁvv =0

(34)

Null future oriented Killing vectors
Killing curves associated to the propagation of the field must be future ori-
ented, their tangent must have a null length : (V;V) =0« 22,5:1 GapVevh =

(VO)2 , and the component along ¢q is equal to c :
V=ceg+v
v (g, (ct,x)) € Ty Q3 () : (v,v)5 = ¢?

They do not constitute any longer a vector space but an embedded manifold,
with specific properties.

(35)

The equations read :

g11 (V1)2 + goo (V2)2 + gs3 (V3)2 +2g32V3V2 +2913VIV3 4+ 295, VIV? = ¢
91180‘/1 + g2180V2 + g1380V3 =0

92100V + g2200V? + 93200V = 0

91300V + g3200V? + 93300V = 0

cdog11+ V101911 + V20911 + V303911 4291101V 4292101 V2429130, V3 = 0
cDoga2+V 101922+ V202920 + V305920 + 2921 02V + 292005V 2 429320, V3 = 0
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cOogss+V 101933+ V202933 + V3039334201305V " +203205V > +293305V> = 0

cBogsz + V'01g32 + V202932 + V303932 + 93202V + g3203V> + 139,V +
92103V + g2205V2 4 g330,V? = 0

cOog13 + V181913 + V23gg13 + V3(93913 + 91381V1 + 91333V3 + g11<93V1 +
93201V? + g2103V? + g330, V3 = 0

cDog21 + V101921 + V202021 + V303921 + 92101V + 92102V 2 + g110:V +
92201 V2 + 3201 V3 + g130:V3 = 0

We can use the equation (V,V) = 0 to express V3 with respect to V1, V2,
we are left with 6 equations for 6 partial derivatives and these Killing vector
fields are defined by a point O and the tangent v (O) at this point.

The field propagates towards the future, so we require from the Killing vec-
tors V' that they are future oriented. V = cey + v is future oriented if v is the
limit of a sequence of vectors g3 (m) (v, v,) < ¢. With a given v, both vectors
V = ceg+v or V' = cep—v are null and future oriented. If V = ceg+wv is a Killing
vector field then V'’ = cep—uv is a Killing vector field if the metric does not depend
on t as one can check on the equations. But, if g (v (0),v (0O)) = ¢? there are
Killing vector fields V, V' such that V (O) = cgo+v (O) and V' (O) = ceg—v (0),
which are different.

The flow of a vector field is defined by the differential equation %@V (1,m) |r=0 =
V (®y (6,m)) and it defines uniquely an oriented integral curve going through
m. So there is unique null, future oriented Killing curve going through m with a
given tangent at m. If the metric does not depend on ¢, both V = cgq+v, V' =
ceg — v are Killing vector fields, but their flow are different.

Similarly the vector v is usually not a Killing vector field for the metric on

Qs (1)

Notation 14 The set of null, future oriented Killing vectors fields X (K)

The first 4 equations read [g] 9oV and 9V = 0 : the components of V' in the
standard chart do not depend on ¢t :

B=0.3:V(p,(ct,x)) =V (p,(c(t+0),z)) (36
Y

)
]—;et V =ceotv € :{(K)am = %o (Ctax) - Q(T) = oy (Tvm) = $o (T(T)v (T))
Telr=0 =V (@v (0,m)) = ¢, (T(1) ,y (7)) 1" (0) + ¢ (T'(0) ,y (0))y' (0) =
ceo (¢ (0)) + v (q(6))
ceo (q(0)) = o (T'(7),y (1)) T" (0) = €0 (¢ (0)) T (0) = T" () = ¢

YV e X(K): @y (0,90 (ct, ) = po (c(t+0),y(0,2)) (37)

®y is a diffeomorphism from Q3 (¢) to Q3 (¢t + 0)
The commutator of the vector fields V € X (K), &g is null :
a 3 3
[V.eo]” = Zﬁ:o (Vﬁaﬁgg - Eﬁaﬂva) == ZB:O 05V = =0V =0
then (Maths.1386):
V7,0 : By (T, Pee, (0,m)) = e, (0, Py (T,m))
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(I)csg* (V) = V; CI)V* (Eo) =€ (38)
The time vector g is preserved by the push forward by V.

If there is always, locally, a Killing curve joining 2 points, this is no longer
true for null Killing curves.

Given a point O = ¢, (ct,x), for any v (O) such that g (v (0),v (0)) = ¢?
there is a Killing vector field V' = ceg + v with integral curve : ¢ (7) = <I>v (r,0)
and q (1) = o (c(t+7),y (7)), £ = v (y(7)),8=1,2,3: vﬁ( (1)) = v7 (y(0)).

(V.V)=0=—c+g3(a(7)) (v (y (7)), v (y (7)) = —c*+g5 (0) (v(0) ,v(0))

The curves originating from O generate a cone, with apex O and axis
wo (¢ (t + T) ,JJ) P, (T O)

For a fixed 6 the cone intersects Q3 (¢t 4+ 0) on a 2 dimensional submanifold
S(0,0) of Qs (t + 0) similar to a sphere with center ¢, (¢ (t + 6),x) and radius
. For any point ¢ (0) of S (O, 0) there is a unique null Killing curve joining O
to g (6) . Conversely the points of S (O, #) are the only ones of Q3 (£ + 6) which
can be joined to O by a Killing curve.

For a given vector field

YV € X(K) : Dy (0,0, (ct,x)) = 0o (c(t+0),y(0,2)) € S(po(c(t+0),z),ch)
(39)
We can have an idea of S (O, 6) in Special Relativity, with a frame based in
A: the propagation curves are straight lines with a fixed vector V = ceg + v :
( ) = cteg
—>
O(t+0)=c(t+0)eg
O(t)q(0) = (cgo+v)b
—l
Aq (0) = cteg + (cgo +v) 0
O@t+0)q(0)=—c(t+0)eg+ cteg + (cep +v) 0 = v0
S (0, 0) is the sphere centered in O (¢t 4 0) with radius ¢f, the spatial vector
v is orthogonal to the sphere.

3.3.2 Discontinuities

The propagation is naturally represented through a derivative and, because the
connection is a tensor, this is a Lie derivative. In the computation above, when

T—0 R R
Q\(I)Y (7—7 ))* A (pu) - Aﬁpu) —0

A(p) = (®y (=7,.)" A(pu) — 0
because the field is assumed to be continuous but_

ArA(p.) =2 ((@y (1) A(p)) = A(pa)) . ALA Py

—1 (,?1 (pa) — (®y (—7,))" A (pu))

can have limits which are not equal.
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Physically it could happen. The interaction between a continuous field and
a particle represented by a point raises an issue 2. To be rigorous we should
introduce an “in” and an “out” field which do not have necessarily the same
value. The discontinuity can be smeared out over some area, but one cannot
exclude the possibility that it propagates itself. In Classic Electromagnetism
the solution is the introduction of similar but distinct, continuous, variables to
account for the perturbation of a medium, assumed to be smeared out at a large
scale. But we cannot avoid the problem in Particle Physics.

This is at the origin of bosons, which will be studied with discontinuous
processes.

The expression of F involves the partial derivatives of the function Ag
To study in full rigor the discontinuities the right formalism is the jet for-
malism. An element of the first jet extension J'Ay (TM;TyU) reads j'A =

(m,Ag,Agwa =1.16,a,8 = 0..3) where ZZ:O 21116:1 \%adfa ® kg are 4 in-

dependent one form (Maths.6.2). If j*A is the prolongation of a section then
Ae = dpAc.

The strength can then be seen as a differential operator :

F:J'A (TM;ThU) — Ay (TM;THU) =

F(1'4) = Ciappmns Tads (At — A5+ [Aa Ag] ) de® nde? @ s,
This is a 2 form valued in TYU : F (m) = 321, 51-0.3 Z(llil fgﬁdﬁa/\dﬁﬁ®/~ca
and 5‘(1}1% — 85121“ is replaced by Agﬁ — A

« Ba*
In the following we will use, to alleviate the notations, the expression with
partial derivatives, but we will specify when it is specifically required that it is

SO.

We will come back to these issues in the following.

4 Energy

4.1 Principles

The concept of Energy is fundamental in Physics. To each physical object is
assigned a scalar, representing the energy that the object exchanges with other
objects in a system. According to the principle of locality this quantity is
computed at each point of M : particles exchange energy through the field or
in collisions. What is measured is the flow of energy which is exchanged. The
process can be continuous or discontinuous, so the quantity representing the
flow of energy involves a variation, not necessarily continuous, of the variables
and its mathematical framework is jets.

The system is composed of elementary particles and the field, observed dur-
ing the period [0, o] by the standard observer, over an area @ C M. Each object

2 Actually even if the particle had some volume we still would have the issue of the border.
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of the system is represented by variables denoted collectively z, belonging to fiber
bundles E. A change of the object is then represented by a section of the jet
prolongation of E. Here, because only the first derivatives are involved, it is a
section j'z = (m, 2%, 2}, = 0...3,i = 1..n) of E. To each object of a system is
assigned a real scalar function L (j 12) , the scalar lagrangian, representing the
energy exchanged by the object at each point of Q2. The lagrangian is then the
product of L (jlz) by a volume form.

In General Relativity the metric is a variable, it is measured by the observer
through the vectors P/ of the tetrad, which are themselves variables.

The energy depends on the observer, but the equilibrium should hold for
any observer. Meanwhile the scalar lagrangians depend on the observer, their
product with the form should be invariant, either in a change of gauge, or
in a change of chart, defining another observer. This gives strong constraints
for the formulation of the lagrangians. It can be proven (see Th.Physics 6.1)
that the scalar lagrangian must involve only the variables 1, V1, F, PL, V. In
particular :

- the potential should appear explicitly only through the covariant derivative
and the strength

- the velocity of the particle must be expressed in the coordinates of a chart
(and not in a tetrad), and its derivative should not be present

- the derivative of P, or equivalently the derivatives 0,g,s of the metric
should not appear.

Moreover are tensors the partial derivatives of the scalar lagrangian L, for
particles and Lg for the field :

oL oL i oL
St g P © 08, pe’ © 06a, G35 F" © 08, 5 de”

with the components &%, F'* of the dual of the vector space CI(C,4).

This construct has a physical meaning if the scalar lagrangians represent the
flow of energy which is really exchanged : there is no place for potential energy,
or even kinetic energy, and even less for “energy at rest”. The variables must
represent the change in the states of the objects : for particles it will be the
covariant derivative, and for the field the strength.

4.2 Lagrangian for the particles
4.2.1 Scalar Lagrangian

The hermitian scalar product is defined on Py [C1(C,4),9]. Along the trajec-
tory of a particle :

(0 (1), (b (M) = @), ¢ (M) g = (I (u(7) %0,V (u(7) Vo) g =
(Yo,%0) y = Ct

the state changes as the covariant derivative

= Vv (1), ¢ (1) g = (Vb (1), (7)) g + (0 (7)), Vvep (7)) =0

and (1, Vy o) € iR.

A section of J' Py is jlu = (m,u, u™t - Spu, = O..S) with dgu € TYU

For any motion we have a map :
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VX (JP) = A (MGTD) Vit = (S0 (07 daut Ady1 Aa) @ dg®) (m)
The tangent V to the trajectory is fixed by u, in any motion :

a 3 ipa _ o sinh gty cosh gy, 3 With Ha .
Ve =3 VIPY = clg + 2 e > je1 T Pf where W is the

component of u in the chart of U.
So we have :

3
@leu = (Z (u‘l <0+ Adu—lAQ) Ve (u)) (m) (40)
a=0
and we state :

Proposition 15 The lagrangian for the elementary particles is :

Ly () = 3 0, Vv = 5 (00,9 () (Tvsl) o) ()

The lagrangian depends only on the covariant derivative, as it is required to
respect the equivariance. It does not depend on the choice of gauge or observer.

4.2.2 Charges

The map : ¥ (1) : THU — L(CI(C,4);CI(C,4)) = ¥ (1) (6r) (vo) = dklepg +
[0k, 0] with 0k = 310 6keF, € VU € CI(C, 4)

Denoting :

ok = {(ZTA, 11\/07 7;’11‘/7 ’LTw, TR, TXO s iTx, TB) s TA, 11\/07 TXO, TB S R, Tv, Tw, TR, TX S Rg}
in the usual orthonormal basis of Cl(C,4), that is dx = 2(116:1 T%, in the real
basis of T1U

Yo = (a, v, v, w,r, Tg,x,b) with complex components in the usual orthonor-
mal basis of CI(C,4)

(g, 0 (1) (55) (Vo)) reads

7 (1o, (1) (08) (o)) i = QaTa + Qv Ty, + QVTv + Qi Tw + QRTr +
Qx,Tx, +Q%Tx + QpTs

with the charges

Qi = (0, v0) y = (@a—(wo)vo+{(v) v—{w) w+{r) r+{zo)ao— () = — (B)b

Qv, = 4Im (viw + bxg)

Qv = 4Re (vow — bz + j (r)v)

Qw = 4Re (—vov + zoz + j (r) w)

Qr=4(—j(Rev)Imv+j(Rew)Imw — j (Rer)Imr + j (Rex) Imz)

Qx, = 4Im (bvy + ztw)

Qx =4Re(bv — xzow + j (x)r)

Qp = 41m (voxg + vix)

The charges are real scalars. The variation of the energy of a particle is then
a real linear function of k. We have a formulation which is a simple extension
of the common formulation of classic Theory of Fields.

Antiparticles are represented in the contragredient representation (C’l (C,4) ,@) .

The fundamental state 1§ of the antiparticle associated to g is 1§ = (o) and
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we can check with the relations above that the charges take the opposite value
Q° = —Q. And no fermion is its own antiparticle.

We can give a simple expression to the lagrangian. By construct L, does
not depend on the choice of a gauge. @leu = 21116:1 Tkq € ThU where
the quantities T are the components of a vector of the adjoint representation
Py [ThU, Ad] and in a change of gauge x, changes as Ad, 1.

Let Q = Yol | Qg with Q% = (Qa, —Qvy. Qv, —Qw, Qr, Qx,, —Qx. —Qp)
Kq the vectors of the basis of T1U in the adjoint representation Py [T1U, Ad] thus
Q € Py [ThU, Ad] .

Charges of elementary particles (the index a = 1,2,3 is for each gen-
eration of particle)
Electrons :

o = (a®,v§ + v§e, v + w°, 0,0, v§, (v°, a®)

Qe = ((v5) = (v8°)"+(v™)" v 42 (v°) 1%, 0,0,4 (v 0° + vGv®) , 45 (v°) v,

4a® 08¢, —4afv®¢, —4 (vg%g + (U“e)75 ve))

Neutrinos :

o = (a”,vf + w§", v* + iv”,0,0,vf, ", a”)

Qu = ((v5) = (v§")*+(W™)" ()42 (") v”,0,0,4 (v§"v" + vfv™) , 45 (v) v,

da’v§¥, —4a¥ v, —4 (vg”vo” + (v‘“’)t v”))

with (v§)” = (v§")* + () (V™) +2 (") v = 0

Quarks u (the index c is for the color red, blue, green):

o = (@™, vy + wd™, v*™ 4+ w*, 0,irc, ixf, 0, a")

Qu = (= (08) = (vg")*+ (™) ™ +(0") 0" +(r) 1o (5)* , —da"a§, 45 (") r°,

—4 (v3"v" — viv*™) 47 (v*) V™™, da¥ V", —4a v, dufz§)

Quarks d (the index c is for the color red, blue, green)::

Py = (ad, vd + ivdd, v 4 50?0, irc, 125, 0, ad)

Qa=(— (vg)z—(vgd)z—l—(vad)t v“d—|—(vd)t vd—l—(rc)t rc—(x8)2 , —4adzs, 45 (vd) re,

—4 (v(‘)’dvd — vgv”d) 47 (Ud) v 4adpdd —dalv®? dvdz)

The charges can be expressed by taking as unit the EM charge of the electron
Qa = (¥o,%0) y = —1 with a universal constant.

Then :
(QT) g = (02 Qo ul Tha) | = Yuy maa@T" = L,

<Q, §yj1u>H is a real scalar which does not depend on the gauge.

And the scalar lagrangian reads for the particles :

Ly (j'u) = (Q.Vvj'u) = <Q, (i (w - dau+ Ady1 Ao ) v (u)) >

a=0 H

(42)
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4.2.3 Lagrangian

For a given particle the section jlu is a map :
R— J'W = jlu(t) = (¢(t),u(t),u™t - du(t),B =0.3)
the lagrangian is :

3

/ L (7 0) e = / : <Q, (Z (- ot Ady1 A (a (1)) V° <u>> >

a=0 H

(43)
The tangent V' to the trajectory is defined in the tetrad through the relations

3 s
V = ceo + 2% i1 ‘;V ¢j where Wi = W is the component

of w (t) in the chart of U

Ve — opo +231nhuw cosh iy, Zi ;
1+ 2( cosh,uw Haw

So the lagrangian depends on the value A, (¢ (£)) of the potential and of the
tetrad P;* at its location ¢ (t).

4.3 Lagrangian for the field

The field propagates in the vacuum, by interacting with itself and the exchange
of energy in the process involves the potential and its derivative F. The volume
form is wy given by the metric.

4.3.1 Scalar product for r forms on TM

On any n dimensional real manifold endowed with a non degenerate metric
g there is a scalar product, denoted G, for scalar r-forms A\ € A, (M;R)
(Maths.19.1.2). G, is a bilinear symmetric form, which does not depend on

a chart, is non degenerate and definite positive if g is Riemannian.
{ay...a,}

Gr (A1) = Cfaran (1.8} Aararipr.pr det [971] g 75"

G, defines an isomorphism between r and n — r forms. The Hodge dual *A
of a r form A is a n — r form such that :

Vi € Ay (M) 1 xA A = G, (A, 1) @y,

where w,, is the volume form deduced from the metric. The Hodge dual has
the property, on M, that : * x \, = (—l)r2 Ar

For 2 forms on M : YA,y € Ao (M;R) : sAA = Ga (A, 1) wy

The Hodge dual *F of a scalar 2-form F € As (M,R) is a 2 form whose
expression, with the Lorentz metric, is simple when a specific ordering is used.
Writing F = F,. + F,, with :

Fr = Faad€® N d&* + Frad€t N dE® + FordE? A dg?

Fuw = Ford€® N d€" + Foad€® A dE? + Fozd€® A dg?

then : xF = xF,. + xFy,
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xFp = — (FOUES N dE? + FO2E N d€® + FO3dE? A dEr) /|det g
*Fu = — (F32dE0 N der 4+ F3de A dg? + F2dE0 A dg®) /| det g
Fob = Zipzo ga/\gﬁu}‘/\u
(44)
The components of the parts are exchanged and the indices are raised with
the metric g .Notice that the Hodge dual is a 2 form : even if the notation uses
raised indexes, they refer to the basis dé* A d€P.
The computation of 75 is then easier with the previous notations (Th.Physics
2.4) , in the standard chart :

[+ Fr) = [Fullgal ™ V/det gs; [+Fu] = = [F1] 9] //det g3 (45)

The scalar product of 2 scalar forms can then be expressed equivalently as :

1 3

(BFul ] + R (K] ) = 30 FOKa =5 > F* K

1
V/|det g| {aB} 2 aB=0
(46)
The same computation can be done for each component of f(‘jﬁ so the pre-

vious formulas holds for [ 35} = [ Fr Fu ] .

Gy (F,K)=—

4.3.2 Scalar product for the strength of the connection

We have to combine a scalar product of 2 forms and a scalar product in the Lie
algebra T1U.

For the latter, one can use the Killing form, which is invariant by the adjoint
map, but is degenerate (it is null in the center). So we will use the hermitian
product on CI(C,4), which is preserved by the adjoint map when g € U.

;—h: Yoty Yta im0 Fogds® N dEP @ kg where ko = (o Fy with 2y € R

en :
16 3 @ Ica 16 3 o
(F,K) = <za:1 32 )0 Foade® A d€P @ ko, 00 0 gy Kl gde® A deP @ m,>

16 3 @ dEX : :
= ab=1 <Z{a,5}:o Fapde™ NP, 371, gy—0 KopdE™ A d§ﬁ> (Ko )
=3 <Z?a,ﬁ}:o Fagde® NdE®, Y10 gy—0 Kapde® A d£B>TM Maa
(F ) = 500 flaaGa (F K®) = £0% o sy oKL

= = s Lt aa (el ()’ + (o) (K]

= o T (1K 0] (] + (Kl 0] 7))

Which can be expressed equivalently :
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16 acf fra 16 w08 T
1) = 520 e iy oKy = 3500 1 B0 PP K

(FK) = == (1) I el + (K] ] [+7,))

The lagrangian involves only F, as requested by the equivariance.

(47)

4.3.3 Lagrangian for the field
The scalar lagrangian for the field is then Ly = (F,F) and with the volume
form : wy = /|det g|d&® A dET A dE? A dE3 we state :

Proposition 16 The action for the field is :
Jo (FFy @ = — Jo Tr (I I ] + [Pl ] [+7,]) de0Adg? AdgAdg?

The action does not depend on the gauge or the observer, so we can take
the metric for the standard observer with :

ol =P P = | )

[9]5
which gives the action :
fQ <.7:, f> Wy =
— Jor (17,1 17 [95] (et Q) + [Fu]' [n] [Ful [gs] " (det @')) dé® Adg? A
de? A de?

det Q = 1/+/det g3;det Q' = v/det g3

/QU‘_»]:)?M: (48)

- /Q Tr ([ﬂ]t [n] 7] lgs] (V/det gg)fl + [Ful' 0] [Fu) [gs]) ™ V/det gg) de® A det A dg? A dg?
(49)

All these formulas hold when F is expressed with the 1st jet extension of A.

4.4 The issue of the metric

The metric changes with the location. We need to represent this process.

4.4.1 Einstein’s Theory of gravitation

It is a distinct part of his General Relativity (see Th.Physics 5.5). It is based
on 3 physical assumptions.

i) Starting from the fact that the inertial mass is equal to the gravitational
charge (as it is verified with a great accuracy) Einstein stated that actually the
gravitational forces were just inertial forces felt by material body moving in a
curved space time. But then we have to explain why material bodies do not
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move on straight lines, curved space or not. So the first assumption is that
material bodies travel on geodesics.

ii) The most general definition of geodesics, in any metric set, is lines which
have the shortest length. The general definition on manifolds endowed with a
linear connection is curves such that the covariant derivative of their tangent
y is null : V,y = 0. It happens that, on manifolds endowed with a metric,
there is a unique linear connection which is both symmetric and preserves the
scalar product, called the Lévi-Civita connection, and with this connection one
can prove that geodesics are indeed the curves of shortest length. The second
assumption is then that the geodesics are defined with this connection. It can
be computed from the metric only.

iii) To explain the variation of the metric Einstein postulated an equation
based on the scalar curvature R, which can be computed from the Lévy-Civita
connection. Because in this theory there is no genuine gravitational field and its
energy is not defined, the action for the metric is the Hilbert action f Rwy.to
which actions for the particles and the EM field can be added in a way similar
as above. Then the Einstein’s equation can be derived in a more classic way
using the Principle of Least Action.

This theory is consistent and beautiful. It is based entirely on the metric,
but leads to very complicated computations (only one solution is known, for a
special case). It is the basis of all Cosmological models, and of many models
in Astrophysics, but there are unexplained facts, which lead to the introduc-
tion of “dark matter”. Actually the choice of the Lévi-Civitta connection is
controversial, and Einstein himself has explored more general connections (non
symmetric, with torsion).

This theory can be expressed in the more general framework of gauge the-
ories, in which it is a special case. The covariant derivative of a connection is
symmetric if its Riemann curvature is null (Maths.2083), then F = 0.

Even if this is not essential in the theory, it is assumed that “light propagates
on geodesics”.

4.4.2 The issue of the metric in a unified Theory of Fields

In a unified theory of fields, as it is presented here, this is the inertia which
disappears : the mass is just one charge (accompanied by the inertial moment).
The gravitational field is represented by the subalgebra :

TWg = {(0,0,0,iW, R,0,0,0),W,R € ]R?’}

and the charges are then :

Qw = 4Re (—vov + zor + J (1) w)

Qr=4(—j(Rev)Imv + j(Rew)Imw — j (Rer)Imr + j (Rex) Imx)

arranged in 3 generations for elementary particles.

The gravitational field is part in the exchange of energy, and is represented
in (F,F).

According to the Principle of Locality the metric should depend on physical
quantities at each point. In a system of particles and fields the metric is a
variable whose value depends on the particles and the field, and in particular as
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they result from the balance of energy in the system. In a system defined over
a compact area {2 we assume that the metric and the field have initial values at
the border. We can expect to compute the metric and the field as they result
from the internal processes of the system, and the initial conditions. If there
is an “external field” its value should be known and added to the one which
is computed. We do not know how to isolate a system from the gravitational
field, however, in usual circumstances and certainly for elementary particle, the
variations of the external gravitational field are very weak. But we cannot
exclude strong variations of the field, gravitational or not, close to particles,
and thus of the metric, which is a variable as the others.

The metric is measured by the observer through the tetrad (the variation
of their components in the chart), so the variables are pf . Their involvement
in the equations for a system can be seen as the price to be paid, in terms of
energy, to keep or change the metric, which can be measured through the energy
momentum tensor.

Moreover the Chern-Weil theorem, even if it is purely mathematical, provides
a condition (the quantity (F,F), does not depend on the field) which should
be met in any physical system. It depends only on the existence of the principal
bundle Py which is defined through the metric. So we can say that, at any
point, (F,F), depends on the metric only.
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Part II
SYSTEMS OF PARTICLES /
FIELD

All the systems that we will consider are composed of the field, elementary
particles, followed by an observer over a relatively compact area during the
period [0, to] .

5 Quantization
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5.1 General results

The “Axioms of Quantum Mechanics” are actually Mathematical theorems
which apply to models meeting some precise properties (Th.Physics 2).

In the picture above a state of a system, over an area (). followed by the
observer on a period [0, tg], is characterized by maps :

¥ : [0,tg] — P for each particle - we do not assume that their type is
knoyn, so they are vectorial quantities

A€ A (TPy;TLU)

F e Ay (TM,TlU)

g € ©*(TM;R)

They are valued in vector bundles, assumed to be differentiable, they belong
to infinite dimensional Fréchet spaces (Maths.7.1) with a relatively compact
support, and meet the necessary conditions for quantization. The fact that the

strength F is computed from A does not matter here : derivatives are considered
as independent variables (as in the r-jets formalism).

There are Hilbert spaces such that to each map A,g,w,}' is associated a
vector of the Hilbert spaces Ha, Hy, Hy, Hr :

T, :C([0,t0]; Pci) — Hp

Ya: A (TPy;ThU) — Ha

T]: : A2 (TM,TlU) — H]:

Y,:®*(TM;R) — H,

and the maps T, T 4, Y7, T, are linear isometries. For each variable X, and
basis (e;);.; of the vector space to which it belongs, there are unique families
(€i);er > (@i);cr of independent vectors of the associated Hilbert space H such
that :

X =Y (60T (X)) e & T(X) = Tiey (60T (X)) g

i =T (€:), (€is Bj) r = i

Fach variable can be represented as a vector, with a basis which is the image
by T~1, of a basis of the Hilbert spaces.
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Experiments provide only a finite number of data. The physicist represents
each variable by a vector valued in a finite dimensional space, whose compo-
nents can then be estimated by a statistical method, from a finite number of
observations. These simplified representations (a “specification” in Statistics)
are defined by choosing some vectors, which are image of vectors of the Hilbert
spaces by Y1, as basis. They are the usual observables of Quantum Mechanics.
To any such observable X is associated a self adjoint, compact, trace class
operator X; = Y~ ! o X; oY in the Hilbert space, such that a measure of the
observable is, if the system is in the state X :

X (X) = Lies (90K (X (X)) e

This is just the statistical estimator from a finite batch of data.

In a global change of gauge (not depending on m) the variables represent the
same state of the system. (Pc,?) is a representation of the group U, as well as
(A1 (TPy; ThU) , Ad), as a consequence (Hp, T,od0 T;l) , (HA, YTq0Ado T;ll) ,

(H 7, YroAdo T;l) are unitary Hilbert representations of the group U.
And the corresponding observables are finite dimensional irreducible unitary
representations. Actually this is at the foundation of elementary particles :
finite dimensional unitary representations are sums or products of fundamental
representations, which correspond to elementary particles.

Whenever a scalar function (such as the energy) is added to the model, the
Hilbert spaces split in subspaces corresponding to a value of the scalar.

1 is valued in a normed vector space, if the evaluation map & (t) : C ([0, o] ; Pci) —
Cl(C,4) :: £(¢t) (v) = (t) is continuous, then there is :

a Hilbert space Fp, a map Op : [0,tg] — L (Fp; Fp) such that ©p (t) is
unitary and ©p (t) (v (0)) =9 (¢),

for each ¢ an isometry ©p (t) € L (Hp, Fp) such that ©p (¢) (Tp{b\) =1 (t)

Op is an evolution operator. Moreover, by taking the projection from €2 to
the fiber bundle 2 (R, Q3 (0),7r) the trajectories are themselves fixed by the
initial conditions : ¢ (t) = mr (¥ (¢t)) = 7r (Op (t) (¥ (0))) .

We have nothing equivalent for the other variables. A section of a fiber
bundle E (2, V,n) does not provide a section of Eg ([0,%0], 23 (0) X V,7R).

All these results (others can be added as we will see) depend only on the
choice of the mathematical representation, and not of the physical state of the
system (such as an equilibrium).

5.2 Systems without creation / annihilation of particles

Let us consider a system composed of N particles of unknown types interacting
with the field, in a relatively compact area  over the time [0, ty] as above. It is
assumed that there is no creation or annihilation of particles.

We can label the N particles, the state of the total system is the same
whatever the permutation of the labels. Then the states of equilibrium are
characterized by :

i) p integers n1 < na... < np 1 1+ ng + ..np = N which define a class of
conjugacy of & (N)
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ii) p distinct vectors ) of a basis of H, which together define a Hilbert
subspace H; C H. To each of them is associated a map .

iii) the state of the particles of the system can then be represented collectively
by tensors X

either symmetric, belonging to ©®" H; @™ Hy.... ™ Hy

or antisymmetric, belonging to A"*Hj; A™ Hjy.... A" Hj

This is the basic representation of composite particles, which behave as a sin-
gle particle whose state is represented by a tensor. The tensor is decomposable
if the particles are not interacting, which is obviously not the case.

For distinct particles their collective state can be represented by a tensor in
@ H. The integer p is the number of families of particles, a vector X; of the
basis of Hjy is given by Xj, . ; = 0; ® ... ®0;, : each particle of the family
k = 1...p has the same state ¢, = Y1 (6;,).

A vector of a basis of " H;®™ H;....Q" H; is given by a tensorial product

@™ (X ) @™ (Xg,) o @™ (X,) ~ @™ (0),) @ (0),,) - @ (6,)

and corresponds to an equilibrium in which nj particles are in a state ¥, =
T! (ejk)

The integers ny are then the number of particles in the family k& and a vector
of a basis of " H; ®™2 Hj.... @™ Hj corresponds to an equilibrium in which
all particles of the same family are in the same state. The states of the particles
are quantized. The class of conjugacy is fixed but the states of the system
are represented by non decomposable tensors, linear combination of quantized
states.

If the particles are all of the same type then the quantized states correspond
to an equilibrium in which ny particles are in the same state 1. The class of
conjugacy is not fixed, but in a continuous process it does not change.

The choice between symmetric / antisymmetric tensors depends on addi-
tional symmetries. Notably the action of the Spin group Spin (3) : particles are
symmetric if their state does not change in the reverse orientation, in a global
change of gauge. This is not the case for elementary particles (their spin is 1/2),
so their systems are represented by antisymmetric tensors. If all the particles of
the system are identical then the quantized states correspond to distinct values
of the 9, = T-! (Hj ) .

6 Principles of conservation of Energy

6.1 Local equilibrium

The conservation of energy should hold at any point, for any observer. A deficit
at a point cannot be compensated by an excess at another point or in the future.
For the standard observer the flow of energy is measured at a point m through
Q3 (t) in a displacement 6§y = c0t : (D purricies Lp + L) ws (m) X cot

and the sum of the flows should be null along the axis 9¢y :

(LF (jlz) + ZParticles LP (]12)) w3 (m)
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= iafo (LF (jlz) + ZParticles Lp (]lz)) Wy (m) =0

This formulation is independent on the observer.

Denoting L (m) = Lr (712) + X partictes Lp (3'2) the condition is equivalent
to ig¢, Loy = 0 which implies L = 0 at equilibrium.

So we have :

( Z <Q7§vj1U>H + (F, ]-">> lm =0 (50)

Particles

It gives equations which can be implemented in any process, including col-
lisions. There is no totally discontinuous processes, and actually we have a
transition between continuous processes, and the equation can be understood
as an equality between the “in” and “out” states. Which gives a special interest
to continuous processes.

In the vacuum it implies (F,F) = 0 : the field does not exchange any
energy with another object, and this results from the Principle of Conservation
of Energy itself, and holds whatever the specification of the energy for the field.
But this does not mean that the field does not “carry” energy from a point to
another, only that the energy manifests itself in an interaction with a particle.
All the theory is based on the existence and the unity of the Universe, which is
not a collection of independent points. And the variables are continuous maps.
So to get a meaningful picture we need to look at a definite domain, beyond a
point. Which leads to the Principle of Least Action.

6.2 Principle of Least Action

The state of the system is represented by the 1st jet extension of maps, with
coordinates jlz = (2%,2%). We can consider the conditions for a dynamic equi-
librium, meaning the conditions that the maps j'z, and not only the values
gtz (m),j'z (t) at each point, must meet. In this formulation we focus on the
global equilibrium over €2, it provides conditions which replace those of a lo-
cal equilibrium, except the Chern-Weil equation which is a general result, valid
whatever the field. In particular in this context the quantity (F,F) represent-
ing the energy of the field is not necessarily null in the vacuum : the field can
transport energy in the vacuum.

The variables are the state 1 of each particle, defined over [0, o], the con-
nection, represented by the function 121, and the components P of the tetrad,
representing the metric.

The total flow of energy for the system is :

l= gF (A’ P) + ZParticles ép (dj’ A’ P>

The conservation of energy is then represented the Principle of Least Action
: at equilibrium the value of the variables must be such that the total action
is stationary : any change entails either an increase or a decrease of the total
action : £p+>_ £p. The variables are sections, and finding a solution is a problem
of variational calculus, using variational derivatives, which can be extended to
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fiber bundles (Maths.7.6.1). It provides PDE for the sections, whose value is
fixed by the initial conditions at ¢ = 0.

6.3 Variational derivatives

A functional ¢ : J'E — R acting on sections j!¢ = (6Ci,(5a§i) of the 1st jet
prolongation J'E of a vector bundle E has a variational derivative g—ﬁ with
respect to a variable z at zg is there is a linear functional g—ﬁ such that :

Vo¢ € X (E) = limysey—o [€ (7120 + 51¢) — € (§20) — 2£ (6¢)| =0

% : j'E — E’ : the functional derivative, is a continuous linear map, defined
at each point of j' E, acting on sections of E, which gives a scalar : it belongs to
the dual of X (E). This is a distribution. The key point is that in £ (6¢) only the
values 6¢* (m) appear and not the §,(*. The functional derivative “linearizes”
the functional.

Not all functionals have a variational derivative. For integrals we have
the linear functionals, acting on smooth sections with compact support dz €

Xeoo (E):
5 tOL(jlz(t)) dt — go Z?:o <gle _ 4 aLi)eidt

5z — sz Jo

3= Jo L (772 (m)) w4 (m)

= Jo S (3% (LV/1detgl) = Yho g5 (Lv/1detyl) ) edg

where €’ is the dual of a holonomic basis of E and d¢ = dé® Ad&r A dE2 A dE3

Notice that these expressions hold for any section of the first jet extension :
the quantities zé are not necessarily partial derivatives.

Then the states of equilibrium of the system are given by sections zy such
that, for each variable, the variational derivative % (z0) = 0. Because % are
distributions the solutions are not necessarily continuous.

The lagrangians are invariant in a change of gauge or chart. The variational
derivatives are invariant in a global change of gauge.

The lagrangian represents the energy exchanged by the object and the action
the sum of the energy exchanged during the process, so the variational derivative
represents the infinitesimal exchange of energy with respect to a change of the
variable, or equivalently the flow of energy along the process with respect to this
variable. So variational derivatives have a physical meaning, which goes beyond
their use in finding the conditions for an equilibrium.

We have seen in the quantization of a system that there are Hilbert spaces
Ha, Hy, H, associated to the variables. (Hp, Tpod oY, 1), (Ha,Tao Ado Tzl)
are unitary Hilbert representations of the group U. By definition the variational
derivatives are linear continuous maps, their kernel, corresponding to states of
equilibrium, are closed. Their associated vector space in Hu, H),, are closed,
thus Hilbert vector subspaces. If the kernel are finite dimensional the associ-
ated Hilbert subspaces have a basis composed of a finite number of vectors. To
each of this vector is associated a state of equilibrium. Then the states of the
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system are quantized. The states of the system is a linear combination of these
fundamental states, depending on the initial conditions. The “problem is well
posed”.

6.4 Energy Momentum tensor

The variables z are defined on M. If the solution Z is differentiable along a
vector field y on M, the quantities £,z (m)d7 are well defined, and give the
variation of z along y. In the neighborhood of the equilibrium the total action
of the system changes by :
0L, = % (7'2) (£,Z (m) 67) or equivalently : 55[: = % (7'2) (£,z (m))
Variational derivatives can be composed. Because the Lie derivative is linear
with respect to v, % is a scalar one form on 7M. This is the variational Lie

derivative of ¢ with respect to z and y :

Y4
£yl, = 52

It gives the resistance to a change of the variable z in the direction given by

y. In Mechanics the momenta are the conjugate variables p; = g—_L. Similarly
45

(4'2) (£,2(m)) € Ay (TM;R) (51)

the quantities £¢, can be seen as the variables conjugate to z. If 55% = 0 for
some vector field y, the associated variations give equivalent equilibriums of the
system. The sum, for all variables, . £,¢. gives the resistance of the object
to a change in the direction given by y, or equivalently the momentum of the
system. In particular there is a momentum associated to the field, given by

Lylp = % (7'2) (.,EyA) . The Lie derivative of the connection is the strength

F so the momentum of the field is £{F = f—g (j'2) (F) . We have assumed that
the field propagates along Killing vectors fields, which then represent equivalent
equilibriums of the system and £,¢p = 0 for y € X (K). The field does not
oppose a resistance in the direction of its propagation.
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Part III
CONTINUOUS PROCESSES

A continuous process, in a system of elementary particles interacting with the
field is such that :

- there is no creation or annihilation of particles : the number of particles is
constant, and they keep their characteristics ¥g

- there is no collision

Then the states and location of particles can be represented through sections
of the fiber bundle P .

Moreover we assume that the system is at equilibrium at ¢ = 0, so the con-
ditions for an equilibrium are consistent with the initial conditions. The choice
of the origin ¢ = 0 is then arbitrary, by definition the problem is well posed.
There is an evolution operator which gives the value of the variables related the
particle (their state and location) with respect to the initial conditions, at each
time.

7 The model

7.1 Representation of the state and trajectories of parti-
cles

i) For particles the evolution operator gives, for any particle of the same family,
the value of 1) (t) with respect to ¢ (0). Because they share a common v, we
can then consider, for each family of particles, a section v defined on {2 such
that the state at ¢ is ¢ (t) = ¢ (¢ (¢)) or equivalently a section u € X (Py) such
that ¢ (m) = ¥ (u(m))o. There is a vector field V € X (T'M) fixed by the
value of u at each point, the trajectories of the particles of the family are then
the integral curves of V' : ¢ (t) = ®v (¢,¢(0)).

This is actually a symmetry on Py.

For any section u =p,, (p,, (m) ,u(m)) € X (Py) and vector field V € X (T M)
we can define a vector field V € X (T Py) by following an integral curve of V' :

4(t) = Dy (£,(0) — u(t) = pu (pu (a(),u(q (1) € Py — V(u(t)) =
#u(Pv (£,q(0))) € TywyPu

V(1) =l (0 () (0 )V (0(0) +C (6(0) (0 (0)

k(8 =ut (g (8)- 5 (u () = u (g ()u(q () V =u (g ()X h— VPDsu

V is projectable on V' mp; (u(2)) V (u(t)) = V(¢ (t)) =V (mv (u(t)))

The flow of the vector field V is a map : ®v (7,.) : Py — Py defined
by the condition 2 ®v (7, u) |,= 9 = V(v (0,u)) and by construct u(t) =
Oy (t,u(0)) = u(@y (t,¢(0) = G = V(v (t,¢(0)))

i) The representation of particles is then based on the followings.

For each family k of particles :

there is a section up=p,, (p, (M), ur (m)) € X (Py) and a vector field Vj, €
X (TM), from which is deduced Vi € X (T Py).
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there is a section Qy, € X (Py [T U, Ad)) defined at any point m = ¢, (ct, z)
by Qi (m) = Qk (P, (—t,m))) and at = € Q3 (0) by Qk () = pu (Pu () , Qk)
where Q) is the vector charges of the family k if there is such a particle at x,
and Qg (z) = 0 if not.

So ug, Q) are symmetric with respect to Vi, : Vo € Q3 (0) : ug (Py, (t,2)) =

v, (t,ue (0)), Qr (v, (1,2)) = v, (01 (0))
The vector field Vi is constraint by the relation, which can be seen as a
continuity equation for a particle :

Vkﬁ (m) = cP? (m) + 25113}‘2&1’(’);}?;}3)‘5” Z;’:l V‘;j:s Pf (m) where W is the com-

ponent of ug (m) in the chart of U. Because it involves Pjﬁ it depends on the
metric.
iii) The trajectories of particles of the family are integral curves of Vj :
q(t) = Dy, (t,¢(0)) and their state is u (¢t) = ug (Py, (t,¢(0))) = Py, (¢,u(0))
3
G =50 05 (¢ () Vi (a (1))
The exchange of energy along their trajectories is : fgo L, (®v, (t,q(0))) cdt
with :
Ly (v, (t:q(0)) = (Qus oo (wi - doui+ Ady s (A5) 1)) 1@y, (2.(0)))
and for the whole family :

= Josoy (Jy" Lo (®vs (8, 2)) cdt) w5 () = fiy L (m) 4

) The metric is a variable : it is assumed that it depends on the particles
and the field. Tt is involved through +/|det g| in w4 as well as in the definition
of the scalar lagrangian for the field. It is also involved in the definition of
the trajectory of particles : V' must be expressed in the basis of a chart, but
it is related to the state of the particle. Moreover gos = ij 0 P”P/] so the
right variables should be Pj* or equivalently P!". The vectors of the tetrad are
considered as free : a change of tetrad is a change of gauge, under which the
lagrangians are invariant.

Z;f (uk., A, P) is a functional acting on sections uy, € X (Py), A € Ay (TM;T\U) ,P
Ay (TM;RY).

7.2 Principle of least action

The flow of energy for the particles is : k 14 (uk, A P)

The field is represented by the connection form A € Ay (Py; TyU) valued in

a fixed vector space. As usual we keep the standard gauge p, and then pj;A is
defined by the real function :

A: Q- TU:A(m) = Z:;:o Ziﬁzl A‘é (m)d¢P @ K,

The flow of energy for the field over 2 is given by the functional {g (A, P) =
Jo (F, F) w4 acting on sections Ae A (TM;T\U),P e Ay (TM; R4)

The balance of energy over  is then : £ = {p (A P) +3 0, o (uk, 121, P)
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The state of the system over the area 2 is defined by sections j'z : Q — J'E,
and we can consider the conditions for a dynamic equilibrium, meaning the
conditions that the maps j'z, and not only the values j'z (m) at each point,
must meet.

The implementation of the method of variational derivatives to the functional

0= Lp (A P) +3r ty (uk,A,P> for each of the variables A, P, uy, (one

o0 60 oL

for each family) gives the variational derivatives : 3035 Su and the conditions

for an equilibrium are that these distributions are null for values A, }3, uy, of the
sections :

7(617 (A P)—I—Ek 1 p(uk,A,P>) =0
= (KF (A P>+Zk ) p(uk,A,P>) =0
o (ép (A P) 3 (uk,A,PD =0

8 Variational derivatives

8.1 Variational derivatives for particles

The sections uy € X (Py) are defined through the chart given previously :
oy ThU —U: ey (2*a=1.16) =u
where 2%,a = 1...16 = {A, V, Xo, B € C ({4 R),V,W, R, X € C (Q;R?)}
u=¢eexpT, -expT,, -expTy - expT,
The tangent V' to the trajectory is defined in the tetrad through the relations

V= ceo+2m+ﬁw Z] L u 5j Where Wi =W 5 thus y (2° (m), 27 (m), 2% (m))

a _ .po sinh fiy cosh pyy
Ve =cly +2 142 (cosh f1.,)? ZJ 1 uw

8.1.1 Partial derivatives

The partial derivatives of u with respect to z are
u-l. 68772 = zaz + Adeyp(—T,)-exp(—Ts)-exp(—Tw) (exp (—T,) - % exp Tr)

+Adexp(—T1,)~exp(—T$) (exp (_Tw) : E exp Tw>+Adexp(—Tv) (exp (_TI) Bz exXp (T ))

+exp (=Ty) - % exp Ty}

Fach exponential has a simple expression :

expT = cosh pu + Sinh”T',u2 =T-T

exp T, = cos i, + ““"' Top2=-T, T,

And we get : "

Da=1l:iz=A: 2 u =i

ii) a =2,3,4,5,16 : T, = (0, V4,iV,0,0,0,0,B) ,u2 =T, - T, = V@ = VIV +
B2
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u

-1, Ou _ Opy sinh? 1, + Oty (uv—sinh sz cosh uv> Tv + sinh p,, cosh py, 9T,

9z¢ T 0z@ o 0z9 o Lo 0z
2
sinh fiq, oT,
( HUM ) Tv " Bza
iii) @ = 6,7,8: T, = (0,0,0,iW,0,0,0,0), u2, = WW =T, - T,
uil . Ou

029
A1, exp 1) (00,0, (—“w‘si“h;gw coshta ) | 4 inhitcomhite O, 0,0,0)

iv) a =9,10,11: T, = (0,0,0,0, R,0,0,0), 42 = R'R = —T, - T,
T

sin f- —COS Ly SIN f4- sin ., cos . OR
Adexp(Tu)eXp(Tz)-exp(Tw)'<2R ( f‘) ,0,0,0, — Ry Hr=0otlpSibie | - Smbweostie SR 0,0 o)

v) a=12,13,14: T, = (0,0,0,0,0, X0, X,0) , p2 =T, - T, = —X2 + X' X

-1, Ou __
u "9z T
2
Opg sinh? sinh” pg Pz —sinh pg cosh py sinh p, cosh p, 9T, _ ( sinh p, L 0T,
AdeXP(*Tv) (8,2“ L + 82“ ( n2 T + Mo 0za o T 0z9

Variational derivative with respect to u

Y t _~ 3 _ N
E’; (uk,A, P) = fﬂs(o) ( 00 <Qk7 Z,B:O (llk L. 8@uk + Adu;1 (Ag) Vkﬁ)>H Cdt) w3 (a:)
We compute first the derivative with respect to z. We drop the index k.

gﬁﬁ = de(o) ( <Q Z (aza - % ‘9‘3;5)>H Cdt) w3 (2)
with T ="' % 4 Ady- 320 (AaV?)

V depends on u, and thus on z.

o =g (w - B) + (AdU*lA(VD
dga(71'%):*u71'%’“71'%+“71'( ;21%%)
— ottt

dga (Adu—lA(V)> = dga (“71 ‘ Zi:o AV
— _y-1.0u -u—l-A(V)-u+u—1~Z3 oAa(flva w+u-l- A(V) azua

RED a=
= B A
YowcoAa G utuT AV 5 X
u+u_1-Zzzoﬁa%~u+u_1-ﬁ(‘/)-gz’i
RN R b
= ;il{[ul' at oW ] + Ady— ([A(V)’Bz“' }"an oAaddZ:> }”b

U6 (or 4 or ) _
a=1 \ 9za dta% -

St { Bt gt g2 e ([0, 8 ]+ Sl AuE) o
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(O, (8- 4)),

= (@ni {2t (A0 2]+ 50 A4 ) )
=2 (AduQ, [4w + AV), 2w 4 D0 Aut)

% = fgg(o) ( otD Z,lf:l <Adu©, {% w4 A(V), Du. . ufl} + Zi:o Aa%> nacdt) w3 (z)

se, = ~fdu ou °. . Ve
~ = Adu s | 77 A a . ! Aai “
5z /Qaz_:l< Q{dt v (V)’aza " :|Jr(;) §aa |
(52)
For 6z = 21116:1 02%kq € X (Py) : % (62)
= fQ Z}Lil <Adu@, [% TN 88; . uil} §z2% + {A ), 59;1 . uil} 5z + Zz=o AQ%VTS&“> K%y
=/, <Adu@7 (4. y=t du-ut] + [A (V),ou- ufl} + ZZ:O AaéVa> wy

The variational derivative is the distribution, acting on sections du € X (Py)
and valued in R :

%(M):/ <Adu@, [du-u_l—l—A(V),éu-u_l} +A(5V)> ws  (53)
with
ou = 22621 (;r);fl cu~ ez

a 16 v« a _ 3 sinh pty, cosh iy, 3 SW o CNE
Ve =3l G0zt = 30 (271”(008}1%)2 j=1 5o ) Py the deriva

tives are taken with P constant.

8.1.2 Variational derivative with respect to the potential of the field
The variational derivative of L, with respect to Ag is :

e = Joo (10 (3~ #58)) ) =

T=(Q, (v 4+ Ad A1) =(Qut %)+(Q (Ad, 1 A(V)))
0, (Aduflf\l(V)>>H = <Z§i1 Qurip, Ady (ZZZO ABV/B)>
(0% Qo Dty [Ady 15 (Shg A8V2 ) ko)
= 3020 VO X0 b [Adu—115 Qo <"€bv A§Hc>H = 300 VI Y00 am o [Ady 115 QuAY
2L = 8 (Tl VO L0 [Ady 15 QAL ) = Vo S8 iy [Ad T, Qs =

a
o

(VeQ, Adyy-1Kq) gy

/\

H

3Ae Jas) ( oto <V"C§,Adu7ma>H cdt) @3
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We consider a variation §A = Ei:o Ziﬁzl SAYAER @ Ky € Mieoo (TM;TIU)
defined over a compact support w C €.

3o S, VoI, (Ad L Qi = S0, ma I, [Ad - (5 530 )
%‘I; ( ) fQ3 (0) ( o Zz:o Ve <@,Adu715}1a> cdt) w3
= Joyo) (o (@ Adus (5A))) cat) w5 = fo, o) (Jo" (AduQ64(V)) cdt)
The quantity

J=Ad,Q®V € X (T\U @ TM) (54)

is the current, common to all particles of the same type. It is built from the
sections u € X (Py),Q € X (Py [T1U, Ad]) and Vi, € X (TM). This is a section
J € X (11U ® TM) which is symmetric with respect to the vector field Vy, :

bv.d = Ly, (Adu@) D Vi + AduQ @ £y Vi = 0 = J (D, (1,m)) =

Oy, (1,J (m)).
It represents the variation of energy with respect to the potential.

The variational derivative with respect to A is the distribution, acting on
sections 0A € Ay (TM;T1U) and valued in R :

3
(%p ( N / N
Op 5A) _ <Ja,5Aa> - 55
A Q az:% wot (55)
The distribution is equivariant in a global change of gauge, 5A change with
Ad and so does J.
8.1.3 Variational derivative with respect to the metric

The variational derivative with respect to P = Z
T=ut S Adyr 5 A (S5, VIP))
= Adya Ao (V)

= Ad, M0 538 (Agna) {c&o 3% (2%%) Ei}@)afa
S0 that with 6P = Zz 0o 0P ® O,
I (0P) = Adyr 02, 0 i (A8Vina) 0P
55 6P) = o (A4.Q. 502, 550 (AgVika) 6P7) w4
(44,0500, 55 2 (AgVina ) 0P ) = 10, 500 g ea [AduQ] " Vi Ag6 P,
= S i aa [Adu@} ’ (Zizo v P;") Asspf
= S e [Adu @} VA PSPy
_ 216 ZZ’Y Onan'”AG Zz ony/(sPﬁ
= S e s P ASSP = <J7,Aﬁ>szﬁ , P/5P!

Pret @ 0¢, is

2,a0=0
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The variational derivative with respect to P is the distribution which acts

on sections 0P = 3% §P%" ® 9, valued in R :

i,a=0

3 3
‘Kpp(ap) _/QO;)<JQ’A">H 3 PSP w, (56)

1,8=0

8.2 Variational derivatives for the field
8.2.1 Variational derivative with respect to the potential
The variational derivative with respect to A = ZZ:U Ziﬁzl Agma ® dg> €
A (TM;ThU) s :
& (fQ <]:’]:>w4) =
3 16
Jo oo Xals (55 () Videtgl) = Shoy o 55 () Videtgl) ) de
with dé = d&® A dEr A dg? A de?

It is more convenient to take (F,F) = 1 57,% S FOHES,
We compute successively the 2 derivatives.

i) aza (F,F)= %Z;il Mob D\ ((Ma fb/\u) ]:b L Fbn (aAa 7 ))

b
Hr T = 58 T Y, = 5 oo (= opdc+ [Ac, ] )

oA
With the structure coefficients C{jc =-C%: [AC, An} ’ = ZC el ngA Ad
a3 TN = 2 920" 5% Yot ClaAC A
=2 Zc d=1 dQMQWAdJFZnC Zc d=1 mgMg“’*AZ = Zn 0 ey CabpgAagn”Afv+
Zn 0 Zlb Cgagknga#Af]
af‘a Fban — szo Zigl ch ( ,\agWAc - g/\ngap,Ac)
53 = 55 (OnAu — 0uAdn + X150, CLAS Ad)
= Yetim1 Chabra Al + 3050y Cl A5G = 202 (5>\a121;i - Ai‘sua)
af{a (F,F) = 2 Eb 1 Mo EAH{(Z =0 Zc:l Cac (QMQWA% - QMQWA:})> ffg
+FA (12, L (D0, — 4300 ) )}
_ %2;61 Ubb{(zn . 216 o, YW ( Mg)\agn,uAc AngauAc»
n (216 ch ZM (fb)\ya)\ Ac _ Ai]:bAu(;ﬂa))}
! Zb:l oo ((Zn . Zlb cb. (fba’r]Ac _ }-bnaAc>> (216 b (j:bap,AfL B Af\]:b)‘o‘))>
= e (oo i, € fbaw> (3o i, o Frer i)
= 23320 Shey b F |:Ha7121)\:| =233 <~7:(M7 [Hmz‘\l,\} >H
= =233 o (FN [Anka]) = 253 ([FN A ka)
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with (X, [Z,Y)) ;= (X,2],Y),

53 (F F) =253 ([Ax 7] ,@H =257t [Ar, 7]

The derivative of the function (F,F) with respect to the component of a
form is a vector valued in the Lie algebra (Th.Physics 6.1.2).

The quantity

16 3
om) =23 " [As. F| ha© 060 € U@ TM (57)

a=1a,8=0

is the current associated to the field. It is defined everywhere on €.
The first part of the variational derivative is the distribution, valued in R :

JaX 2_0216_ (5% (7. 7) Videtql) ) (642) de

_2fQ a= 0<Zﬁ O[Aﬂv ]76Aa>Hw4—fQ a— O<¢a 5A >Hw4
It is equivariant in a change of gauge, as well as the current ¢ which changes
with Ad.

ii) Second part :

ez (P = 5 i Do (Gl ™) P+ 7 (3ol 7))
. b
80[?121?1 fb)\# = aaan an g)‘an# <8CAb - 87,142 + |:A<7ATI:| ) = 6ab (g ﬁga# - g)\agﬂ#)

335,43 }—fu = EEN Aa (BAAb 9 Alj\ + Zc d=1 ngAc Ad) = Oab (5AB5;wz - 5#65)@)

33;91[13 (< >) 2 Zb 1 "bb Z)\# ( ( )\Bgaﬂ - gkagﬁu) -7:b ]:bAM (6ab (6)\6(5#(1 - 6H66Aa)>)

= %naa ZM ((gwgau}‘gu _ g*“gﬁ“}-&@) + ((%B(s#a}- alp _ 5ﬂﬁ5m}-axu)))
=3 (naa ((f“[’“ = Fel) 4 (F = Fof))) = 2O = 2(F ka)

Zﬁ 0 dfﬂ 83 A“ (<‘7: ‘7:> \/M) = 222:0 (]-;‘LB (naa}-a'ga\/M)

The second part of the variational derivative is the distribution, acting on
smooth sections A and valued in R :

5A—>fﬂ im0 Yats Yo (a 552 () Videtgl) ) (943 de
=2, T e X, (6Aa> 95 (naa]-"“ﬁ"“«/|detg|)d§

The differential of *F with respect to the coordinates in M is the 3 form :
A(F) = Yoy (~1)" Sy O (Foor/[detgl) de® A .. A dEX A ..dg?
(50 045de%) A d (rF ) = 320 5 64505 (F7o7 \/[det gl ) de

= = X0 0 0A05 (FPTdet g]) d

The codifferential D is the operator acting on r + 1 form on M :

D: Ay (TM;R) = Ay (TM;R) i DApyq = #d % A,

DF® =xd* F®is a 1 form

*DF*=xxdxF*=—d*xF*is a 3 form

SAUND (+F%) = —A°AxDF = — (—=1)*xDFeNSA® = G, (D]—'“,(SA“) @

H
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S5 00480, (fwﬁ, /|det g|) e = —Gy (DJ-‘“, 5Aa) w4
S
oo 5 (s e (G5 ) Vit ) (54 de

= =2 [, ¥u%1 naaGi (DF, 5A“) @1 = -2 [, (DF,64) =,
Whenever (5{\1 has an exterior differential dSA we have :

el (D]-'a 647) = Gy (Fod (JA“))

Jo XaZi naaGi (DF,64%) @1 = [ 0% maaGa (70, (647) ) i = Jo, (F,d64) w4
because the codifferential is the adjoint of the exterior differential (Maths.2400).

The variational derivative with respect to A is then the distribution, acting
on smooth sections 04 € Ajeoo (T'M;T1U) defined over a compact support and
valued in R :

([ Fn=) ()= [ Z ({97:040), —2(F.d8)) =0 69

In the computations above :
- the expression of the first distribution holds when F is the result of a 1st

jet extension F (jljzl)
- in the second distribution we have used the external differential of F, and

the expression assumes that F is computed from the partial derivatives BaAg.
We will come back on this point below.

8.2.2 Variational derivative with respect to the metric

The metric is involved through +/|det g| with g.g = Z?:o nij(’jPéj N

ZJ o Mis b5 P and in (F,F) through *F.
The Varlatlonal derivative is :

5% (fQ <‘7:7f> W4) = 2?7(1:0 51@? (fQ <-7:,.7:> W4) €; ® d&*
st Un . F1m1) = o S o (8 (V7)) B e ) e

a5 <<f,f> \/|deltg—1> = (35 (7, 7)) VIdetgl+(F, F) 55 <\/ﬁ”)

8g>‘“ (F. F) =35 Ziﬁ 1 77bb397m (Zgn fbgn}“gn) = %Eéil Mbb (Eﬁn (BQL*“}-M”) fé")
= 5250 o (an (3g>‘ﬂ cd gcggd"ffd> Fe )

= 1500 (a7 F LY +9¢£fbxfsu>

= 3308 o (Cea 0 FRF Ly + 9 F T ) = S0y o0 Yo 97T

=2 en 9 (FreFun) g

e () = (-4 et g™ )™ (= e det ™))
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g det 7! = gl det g™! = g, det g7t
i —1/2
i <\/7|> =5 (93) ([detg ™)™ = 5 (92) VI detg]

e (1.7 ) = (S (Fociaa + (5. F) o)) VIt
%QT; = % S oM PP =300 1i0ii0na Pl 415501 P e = i (Oaa P + P0ja)

A
Ei,u:O ({jga>\u <<~7:?‘7:> \/m) %qu()
= 5 o { T 0 (L) + (F ) 5 (03} (i (Bra P+ PY6,)) /et g]
= Z?))\,u c,jn O{ch gcn («7:)\0’]:;47]> (nu ((S)\QPM Pi/\(sua))

<]: '7:> (g/\u) (nu (5)\(1PM + P/\(Sﬂa))}\/meitg
= ZA,,L e gn= o{ng (Fxes Fun) g ora Pl +gge" (Faes Fun) o Pi)\‘sua

() (520 4 (03) DraPl + 3 (930) PA0ya ) b/ Idet g
=33 tnerjin=ot2oen 9" <‘7:a6‘7:W7>H Pl + g (Facs Fan) g P

<‘7: -7:> ( (gau) Pu (gAa) Pﬁ)}nu V |detg|
= Z>\7H7 c,jn= O{Zc'r]g <facf)\77>H Pi)\ + gC’f] <f)\C7F0477>H Pi/\

+(F,F) (5 (9ar) PP+ 5 (900) PP) Y/ Idet g
= EA,u,c,jn:O {chg (FacFan) g + 9" Fans Fac) yp +(F, F) gax} i P /| det g
= 323 im0 {2 D 0 FacFsa) g + (F F) gor i /et g
= {250, 9 (FarFa) g + (F.F) gas f misP /et g]
57 (fQ (F, F) w4) fQ zaﬂ 0{ (F,F) Jap t QZA An <}—a>\}—6u> } (mz‘P{B& ®d5a) w4
25 0 i P, Zg o Sheo ik (P10 (P15 mi PP = Yoh_o [P']% 6k = [P'],,
Zﬁm:og fﬁunupz oP = Eﬁwazog M]:%gwﬂg@nwp OP = me oF’ /\gwnupﬁap,a
= 3 bineo F ek (P15 [P mis PPOPE = 320, Fii [P']) miad P = Y05, _o I[P, 6P
a0 { (P F) o + S 20 (Fors Py (miPY o)
= Yoo (F T [P 0P8 + 250 aimg (Far, F7) y [P, 6P
= 30 (Fr F) San [P, 6P + 2570 s i (Far, 1Y), [P'), 6P
= St (77000 +2 00 (For 7)) (S P 677)
Jo X2 mB 0{ Fo F) Gag + X5 m0 20 <‘7:C¥>\7‘7:5#>H} (nnPféPﬁ‘) wy =
o rmo (1 F) b + 253 (Far F1) ) (S [P, 970 ) 0

The variational derivative with respect to P® is the distribution which acts

on sections §P = Z §Pfe! ® O, valued in R :

7,a0=0
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5(; (/ (F,F) TD4> oP) / Z (]—'F a5+2z o F )(i{p’];(spia

i=0
(59)
In the vacuum the field does not interact, and thus does not exchange energy
with the particles, but, as this variational derivative shows, it “interacts” with
the metric, whose deformation carries the energy of the field.

9 Equilibrium in a continuous process
The conditions for an equilibrium are then given by the equations :
2 (eF (A,P) + 30 e (u,A, P,q; (0))) ~0
i (0r (A P) + %0, tr (w A, Pg; (0))) =0
2 (tr (A P) + 5, b0 (w4 Pg; (0))) =0

9.1 Conditions for the state of the particles
The variable u; appears only on the variational derivative

o (54) — [0 <AduQ7 [% Tl A(V), bu- u_l} +A (6V)>H |y cdt

The conditions for an equilibrium, with a given value of the field, are then,
for a section representing a family of particles :

_ . TR S T TN St B W L _
a=1.16: <Adqu,{{ o W + AWV, 9%, u, | +A . H|m =0
(60)

16 N N — 3 Ny ovV®
S a=1.16: 0%, (O [Vvoun, 32w + Ad, 1 0o Aa G ) =0
Which implies in a continuous motion :

(@t ]y = 0= (Q0%, Lo [ut - 42wt 22])
(@2 ([Adu AW St ] o Ads T At )

dup,  _ s [ dVy
A H4 A= = 1
(e fron G e (), -0 @
@ 3 sinh g, cosh prq,
where % = Z] 14t (QW E] 1 1w )P]a (the tetrad of the ob-

server is constant), which can be seen as the equation of motion.
For the antiparticles Q — —@Q, t — —t : the equation is the same, but
Vi=ceo+ Ui — V¢ =ceg — k. The spatial trajectory is opposite.

For a bonded particle W = 0 the condition reads : <Qk, [Vvkuk, T Uy 1] >H lm =

0. More generally, if the spatial speed ¥ is such that ¢>> || 7|
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(Q [Vvpmes 32w ] + Ady s 220 A G ) = (Qu, [Vveun, 52 -]

then the condltlons are met for geodesics : Vy,u, = 0 = '£XH(Vk)uk' .
We retrieve the assumption of Einstein’s Theory of gravitation (but here the
connection involves all the fields).

9.2 Conditions for the field

9.2.1 Codifferential

Whenever F is differentiable we have the identity (equilibrium or not) :
VA € Ayooo (TM:T1U) - <D}", 5A> - <]—", d5A>

so, if §A is any closed form : <DF, 5A> = 0 and we can state that :

DF =0 (62)

DF=0=%xd+xF<d*xF=0
Which gives the equations :

3
a=1.16,a=0.3:3 9 (]—"“O‘ﬂ\/|detg|) —0 (63)
B=0

The Hodge dual of F* is a closed form for all components a = 1...16. By the
Poincaré’s lemna there is a, non unique, one form K € Ay (TM;T,U) such that

+F = dK & F = «dK (64)

9.2.2 Potential

Accounting for the previous result, the condition reads :

V6A € Ao (TM;TYU) - /Z

a=0

<¢“+2Jk,6A > wy =0 (65)

k=1

9.3 Condition for the metric

The condition is : .
vap = zf =0 (5Pﬂ8§5 R € Xeoo (R*QTM) :

= Jo oo (I As) zf'ﬁ,opi/(spﬁm

6P(fQ ]:fw‘l) (6P) fQ aﬁ o(ff> a5+2z,\ o< ads ﬂ/\>H) (E

Jo ZB,O <J A, > (Zﬁa,o P“(spa)w
+ Jo Xase o(<f F)bap + 23 50 (Far, FA) )(zj‘;o [quapia) @i =0
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Let us define : Z?,a:() Pé’AZéP{’ = §Ag
VB: fo Yho (I8 Aa) (S0 ase PYOPY) wa = Jo X (J7,045) @

With the previous equation :
fQ Z:;:O <J’87 5Aﬁ>H Wy == fQ Zi:o <¢B= 5AB>H Wy = — fQ (ZZ:O 21116':1 77aa¢aﬁ5A%) Wy
= fQ (22:0 Ziﬁzl naa(f)aﬂ Zia:() PE/AZ(SPZQ) W4

=—Jo (EZﬁ:O b Maap™P AL (Z?:o Pé’&Pf)) wy

=—Ja (225:0 <¢6’ A“> (Z?ZO [P/]E 53&)) i

The condition reads :
0P € Yo (TM @)

5 3 i
Ja Zoev=o ( (F.F) bap + 250 (Farns F) g = (6%, Aa) ) (S0 [P 0P ) 4 =
0
or equivalently that the distribution, acting on sections § X = Ei 5=0 5X§‘d§5 ®
0o € Xeooo (RITM) :

Jo22 a/ﬁ 0 < (F,F)bap+23 00 (Faxs FP) = <¢5,A(¥>H) (5X§) ws =0

o(m) =250 59 [Aﬁ,}'aﬁrnaéaagaeTlU@TM.

o at ] ),

(1) 35k [ ), 2] )
(P ),

—253_ 0<.7-'5 [A AAD —23%_ 0<[A AA] ]-"[”>H

2550 (Fan )y =(0% Aa) = 23030 (Fars PPN = ([Aes An] . 7YY

=250 ([d4] |, + e A7) ~([Aadu] 7) =230 ([dd] L 7)

The distribution reads :

H

VX € Xeoo (01TM) : /Z (]—']—‘) a[3+2z<[dA] fm> )(5)(;)@4:0
afB=0 A=0

(66)
and the condition at equilibrium is satisfied if :

Vo, B =0..3: Z <]—‘]—' a5+223:<[cm] fﬁA>H>=o (67)

af=0 A=0

Computing, for all values of o, 3, the quantity : Z? = z)\ 0 <{ } - ,.7:6)‘>
H

with the notation :
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O PP O P )t I G PO 2 P P

]:32 ]:13 ]:21 ]16><3 [fw] — [ }‘01 ]:02 ]:03 ]16><3

[]E
>:§:mﬁyr 8 Fap = ey ([Folp o 1771, ) + (Ful, o [7°0,,)

Vp,q=1,2,3:
aa] e,) = ([ea] 1#e,)

( (
<[dATL 7\[qu>H - <[dAw]q ’ [fw]p>

(FoF) = 3305 (Fap, FO) = ;Zaﬂ<[d}1]aﬁ,fa6>+; s { [Aas Ag| 720

: (zzg 1 (<[d;1w] )+ ([0 7)) ) S (e [209])
< > < dATL7[fT}q>H+12a (Aaso)

(F,F) = 22 <[dA ] 17 >H —223_1<[d,21r}q,[fr]q>
(F.F) = L FEF - LF P+

We can eépress these equations by involving the metric. Using :
faﬁ — Z)\,U,:O ga)\gﬂy]:)\#

«Fp = — (FOUAES N dE? + FO2dE! N d€® + FO3de? A der) /| det g|
*Fop = — (}'32d§0 Adgl + F13dE0 A de? + FHAE0 A dg?) \/[det g]

[*7:] [Ful[gs] " Vdet gg = — [F*] /det g3
[xFu] = = [F+] g ]/\/detg — [Fr]vdet gs
Lﬁ”}]_: — [Ful lgs]

o~
— — [ —
. N
3 3



H ’ H
ad) ) 1A D), fdetgn = = ([ada] ) b (1700,
) bl1#)ol) = - ([a2] bl o)) ety
aA]' il (7] [gs

) =25 ([ah] = (™)) =25 ([aA] () detan), )
Fr = (o] ) i (Rl ™), =25 ([0d],) 0@, /et

) =21 ([ad] B ) = =2 ([04] W17 ] ) et

we get :

-1

[2.]" 1 (Pl lgs) ™" = Lol ™ 1l ] [0
[aA] 1] (7 l95) = — [os] 7 (7]’ [n] [ 4] detgs

(F.F) = 2T ([dAw} ] (7. [9311) — 2T ([d&]t il (7] [gSJ) / det gs
(68)

10 Solution of the equations

10.1 Equations
i) The state of the particles is defined by the potential :

o—=1.16: <Adu@k,{[‘% ! +A(Vk),g%: '“ﬂ +A (37‘@)}>H|m —

ii) The metric is defined by the field :
N _ _ N
[ade ] (7] lgs) ™ = ls] ™ [l ) [

[dA]" 1] (7 2] = [oa] " (7]’ [n] [ 4] det g
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N .ot B

(F,F) =207 ([dAT} In] 1] [gsl) = 2T ([dAw} 0] (7] [9s] 1) det gs

iii) For the field we have 2 identities :

the Codifferential equation : DF =0 = F = «dK

the Chern-Weil theorem : T'r ([F,«]t ] []-'w]) does not depend on the con-
nection

and the Currents equations :

VoA € Moo (TMTVU) < [ 5, <¢6 S 5A5>H S—

with R

Jp = Ady, Qr @V, e X (MU @ TM)

6=2500 30, [Aﬁ,faﬁ] Ko © 00 € X (ToU © TM)

Except for the Codifferential equation and the Chern-Weil theorem, all the

equations hold when A is not continuously differentiable and F is expressed
with the first jet extension j'A.

10.2 The codifferential equation
10.2.1 The codifferential as a differential operator

The codifferential equation is an identity : it is verified whenever F is computed
from the partial derivatives of A. There can be discontinuities. To study the
problem we need to express the equation with the potential itself, and for this
to use the jet formalism.

An element of JAy (TM;TyU) reads jL A = (m A A%a,a =1..16,a,8 = 0..

where 2 _ 1% A“ L€ @ Ky are 4 independent one form (Maths.6.2). If j' A

is the prolongation of a section then A% = dzA%.
The strength can then be seen as a differential operator :
F o JWN (TM;ThU) — Ay (TM;TYU) =
F(5'4) = Zpasymo.s Tacs (A% — Al + [ Aa, A ) de® nde? @ 1,
The codifferential is, in a general chart :
DF =
3 16 o 3 o -
2 S (1) goa (25:0 0 (Fo8\/det gg)) //|det glde® A..dea A..de?
and as a differential operator :
DF : J'Ay (TM; ThU) — A3 (TM; Ty U) ::

F(5A) = X0 Xy (1) x

Jaa (Z%:o s (Zi,uzo 9> g (A‘iu — As, + [AA, ] ) \/Idetg\)) /V/|det glra®

dg0 A e A .dE?
525005 (22 m0 9™ (A%, = Agy + [An 4] ")) videtg])
=235 005 (Z/L L (go0gPr — gongho) ((Aa — A%y + [Ao, ]
+23 50 0 ((9“1952 —g°2g"1) ((21‘1’2 — Ag, + [Al,AQ} )) \/M)
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+2375_0 05 ((9“19 - g*%¢"") ((A‘fs — Ag, + [Al, Az] a)) V/|det gl)
+2350 08 ((9“29"3 — g*3g"?) ((A — A%, + [Az,Agr)) V/Idet gl)

Let us denote as usual
[ff]:[]:é@ Fis -7:51]5[]'—11;]:[7:01 Fo féls}

and denote : _
9*g°" —g*'g” )
D] = | g 09‘32 932922 =9 [95'],— 9" [95'] .
9 g —979 |
a3 B2 «a2,83 7
[Dp?] = z‘”gﬁ?’ g | = (lo5],) o]
" g22gP1 — go1gB2 p «

S0 (Z:’A’#:O g ghn ((Agu — Ao, + [AA,AMF)) «/|detg|>
= Y5006 (172 [D27] + (7] [D27]) /[det g])

F(i'A) = a%jogwag( 21 D)+ 1771 (D)) Videtgl) e

In the standard chart :

Ka®(—1)% dEOA..dEON..dED

(69)

D]—'(ylA)
Satr Xsmr O ( Mos '], |det9|) |det T a @ A€ A dE? A dE
+Y 0 (—)” gaa( ( 195, \/M) +Za 95 ([fg] [D2#] \/m))
ana@@dg% dEY A dE?

(70)

It is not a linear differential operator, because of the brackets. But it defines
a distributiqn.
DF (le> acts linearly on 6Z € Ay (T'M;T1U) by :

DF (j1}1> (6Z) = 31 00adZ% A DF (lea) \det g]
=233 0 (0Za: gaads (73] [D37] + (2] [D2%]) V/Idetyl) ) 4 € Ay (TMT1U)

Let us define :

16
DF (le) (67) = / > 1482 NDF (le“) \det g] (71)
Q a=1
ﬁ(jlzzl) € Xooe (A1 (TM;TyU))" the space of distributions on smooth
compactly supported sections Ay (T'M;T1U)

We have a map : DF : J'A, (TM; TyU) — Xoce (A1 (TM;T1U))
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We will say that j 1A meets the codifferential equation if

V6Z € Xooe (A (TM; TVU)) : D]-‘( A) (62) =0 (72)

In the standard chart if there is le such that F ( A)

55105 (178 93] , VAeTgs) = 0
0~ 1,230 (172 55, VATTR) + 55,05 (721 (D7) VATE) =0

the condition is met.
If there is K € Ay (TM;ThU) :

[Fo] = [dK2] [gs) ' Vdet gs; [F2] = — [dKE] [g5] //det g3

The first equation is always met :

05 ([dK;}] B) — 01 (3]s — 0y K3)+0s (1 K3 — 05K1)+05 (921 — 1K)
= 8183K2 — 3182]:{3 + 8281K3 — 8283K1 + (9382K1 — 8381K2 =0

For the second equation :

(Fa] [g5'],, Vdetgs = — [dK] [gs] [95 '], = — [dK¢],

a=1,2,3: -8 ([dK],) + X5, 95 (1F¢] [Dp°] detgs) = 0
using the identity :

[M]'j (r) [M] = j ([Mrl I }) det M
lga) " [D57] = lgal 3 ([937]5) [95']o = (9073 ([95]5) [957]),

{J ([93] 95 1]ﬁ)} det([gs} 1) (4 (5)) det ([93]_1)
(7] [D?] vdet gs = — [dE ] (7 (ea)) 5

the second equation reads :

o =1,2,3: =00 ([dK?),) = 4, 95 ([dKS] (G (ca))s) = 0

and one can check that it is always met.

So we can safely conclude that the solutions of the problem at equilibrium
are sections j'A such that :

IK € M (TM:T30) < |7, (3 4)] = K] lg2) ™ Vet ga: [F, (5 4)] = (4K, 2] / /et gy
(73)
[Fuw] = [ Aoy — Ao + [1210, 1211} Ags — Ago + [Ao,Az} Aoz — Azo + [Ao, A3} ] =
- [ BKy — 0Kz 01K3— 03K, 0K — 01K, ] [93] /\/(Fgg
[Fr] = { Agy — Aoz + [Asw‘\lz} Ay — Az + {1211,/\13} Agy — Ara + {f\lz,f\h} } =
[ (BoK1—01Ko) (9oFKs — 0:Ko) (00Ks — 3Ky) ] [gs] " V/detgs
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10.2.2 The Chern-Weil Theorem

The Chern-Weil theorem must be met whenever the strength is defined through
partial derivatives.

Let K € Ay (TM;T1U) such that F = *dK

With the matrix notation for 2 forms :

(K] = [dKg][gs] " V/det gs; [+dK ] = — [dK2) [g5] /v/det g5

[F) = [dK ] lgs] 7 Vet ga; [Fi] = — [dK?) [gs] /v/detgs

Then :

Tr (7] [ [Ful = =Trlgs] " (A ] [dK, | lgs] = =T [dK)" [n] [dE, ]

does not depend on the connection (that is A, F).

10.2.3 The codifferential equation for the EM field

The present model holds when the field is restricted to one of its components,
be the EM field or the gravitational field, and of course in the approximation of
SR geometry. For the EM field (a = 1) the current is null, and the codifferential
equation reads :

a=0..3: EZ:O 0s (.7-"1“5\/ \detg|> =0

In the Special Relativity Geometry it is :

a=0.3:30y, 00 (naxﬁﬁufiu) = 35005 (nawﬁﬁfig)

= Naa g0 78508 ((%A}s - 35%)) =0

—R, AL+ O3 AL + 05, 92, AL — 03,AL =0

Boadd = L5y 02,41 = a (004 — 3, 95A})

With the Coulomb gauge it sums up to : OA! = 0. That is the wave equation,
which is the most typical feature of the force field.

The solutions are found using the Fourier transform (Maths.7.5). The fun-
damental solution (or Green functions) is the family of distributions U () acting
on functions defined on R3, depending on ¢ :

U(t): Coo (R} C) = C: U (t) (¥) = 755 [q2 ¥ (s) doa (s) where 52 (0,¢) is
the sphere of radius ¢ and center 0 in R3.

Then the solution of U = §y, with the distribution U acting on functions
felx (R; Cwo (RS; (C)) is the distribution :

U(f)= [, U @) (f(t,tx)dt = [;° (H () 152 [g2 [ (t,t2) doy (z)) dt with
the Heavyside function H (0) =0,t > 0: H (t) =1

Its support is the hypercone ¢ 2 0, ||z| = ct.

The solutions of the problem in SR :

A e C(Q;R) with Q = [0, ] x Q3 (0)

OA=0 X .

m e Q3(0): A= fo; §Ali=0o = f1

are then A (t,2) = U (t)* fo (z)+ 4« f1 (z) with the convolution of functions
and the derivative of distributions using :

QU (t) = 60 — O U (t) * fo) = fo

40U (t) =6 — O (LU (t) = f1) = f
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On a manifold with a Riemann metric on Q3 (¢) there is still a unique solu-
tion, which is an integrable function with compact support.

In both cases one goes from the fundamental solution to the specific solution
by the usual association of a function to a distribution through an integral :

U—-F (t,:E) = 4%# fS2(0,ct) fO (LE - 5) dos (5)+% (%ﬂt fSQ(O,ct) fl (x - 5) do (5)>

which is how Green’s functions are usually seen.

The computation of the field created by a single particle is the “point particle
problem”, about which there is a vast literature : a field, usually scalar, defined
by a map F € C (M;R) is such that OF = 0 in the vacuum, and OF = f on
the trajectory of the particle. One basic idea is that F' is given by f on the
trajectory and in the vacuum should be some image of f. This is consistent
with a general fact in Partial Differential Equations : the solutions are image of
the initial conditions and, here, the particles, on their trajectories, add initial
conditions for the field.

In all cases the physical meaning is that the field originates from interactions
with particles, which are the sources, propagate by spherical waves, and the
value of the field at a given point is the sum of the field originating from the
sources.

10.2.4 The issue

It is quite clear that the equations listed previously and resulting from the
implementation of the Principle of Least Action, are not sufficient to provide a
solution of the problem, even in the simple case of a continuous model. We need
to call for additional properties of the field, and of course for the assumption
we have made that the field propagates along Killing curves.

The Fourier transform uses the abelian group of translations on R*, which
is not accessible in General Relativity. But, with the assumption that the field
propagates along Killing curves, we have access to another group of transforma-
tions : the isometries. And because the field is no longer scalar, we must extend
the theory of distributions to vector bundles.

In a continuous model the variables related to the particles show a symme-
try, given by the vector fields Vj. As a consequence there should be also some
symmetry for the field. Because the field is defined on €2, and not on trajecto-
ries, this symmetry is expressed in a different way. At any point m in Q there
should be an incoming Killing curve along which some copy of the value of the
field is transported. The field is measured through its action on particles by the
potential. So the symmetry should apply to the potential.

The usual distributions S are continuous linear functional acting on scalar
functions ¢. They are associated to functions f acting on the functions ¢
through an integral : S — f such that S (¢) = [ fedz. Variational derivatives
are linear functional acting on sections Y of vector bundles.(Maths.7.2.3), then
distributions are associated to forms X over the vector bundle through the
integral such as S(Y) = [, X (Y) wo. Here the variables are either sections of
vector bundles belonging to X (Pc ® TM) such as the currents ¢, J, or forms
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valued in 71U, such as A, F. To a linear scalar functional ¢ acting on sections
YeX(Po® TM) is associated a section X € Ay (TM;T1U) through
=X () = Jy (X0 Y7) 20

10.3 Morphisms induced by isometries

(see Annex for the mathematical details)

A diffeomorphism on 2 is a bijective map f : Q —  such that its derivative
[ Ton 2 — Ty s itself invertible. By pullback or push forward it defines a
morphism on the space of tensors on the tangent bundle ®T'M. They preserve
the type of the tensors, the product of tensors and the exterior product of forms,
commute with the exterior differential, and can be composed.

An isometry is a diffeomorphism which preserves the metric : f.g(m) =
g (f(m)). Then it preserves the scalar product G, (A, p) of forms as well as
the volume form wy, and commutes with Hodge duality : *(f*)\) = f* (xA).
The derivative f’ (m) can be extended to a Clifford morphism, and further to a
Clifford morphism Fx on Po which is real and preserves the Hermitian product.
It can be expressed as Adg(s) where S is the product of at most 4 vectors : it
is either the scalar multiple of a fixed vector, or an element of Spin (3,1).

A one parameter group of diffeomorphisms is defined by the flow of a vector
field V :

fii M= M f; (m) = Dy (r,m)

f/ T MHT@mi f‘r( ) (p/V'm(T’m)

which is then transported along an integral curve : V (®y (1,m)) = @1, (1,m) (V (m))

A one parameter group of isometries is defined by the flow of a Killing vector
field V', which then transports the metric, and this is equivalent to £y g =0 <
@y (7,m)., g (m) = g (B (r,m).

A one parameter group of isometries can be extended to a one parameter
group of morphisms on P¢ :

fo: M= M f, (m) = By (r,m)

F, : Pc — Pc: Fr (m) (Z Z°F, m)) wpet [Adcs@y (rm)]y ZFa (Pv (1,m))

where C (S (®y (1,m))) = eXpTC’( -C (S (m)) and C (S (m)) is given by
o1, (0,m).

A Killing vector field defines uniquely a one parameter group, and then both
V.S at each point.

We have assumed that the field propagates along null, future oriented, Killing
vector fields V' € X (K) so we will restrict ourselves to this case. Because
(V,V) =0, exprC (V) =1: C(S(®y (1,m))) = C(S(m)) is constant along
a propagation curve and the morphism S (m) on CI1(3,1) is necessarily the
product of a spatial rotation and a translation, defined by V = cgg + v with
the components v of v in the tetrad, and a parameter » which can be seen as
a polarisation :

v,r:Q—R3

C (S (m)) € C(Spin(3,1))
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C (S (m)) = <e 1— 4 (@7)%,0,0,-1ij ()3, 7‘,0,0,0) Je=+1

V' is necessarily an eigen vector of Adg with eigen value 1 (usually it is not
the only one).

Moreover the push forward by V preserves the time vector : fiy.eq = €9. The
only elements of C (Spin (3,1)) which have this property are the pure rotations
: —Lij(r)v=0= 7= A0 and :

C (S (m)) = (e\/lf)\Q,O,O,O,Xﬁ,O,O,()> Je=+1 (74)

The parameters are fixed along the curve, so A, v, € are fixed at m.
C(S(m)~' =CC(C(S(m)))" = (ev1—A2%,0,0,0,-7,0,0,0)
SA— —A

The matrix of the adjoint map is then :

a v9 v w r T X b
a 1 0 0 0 0 0 0 O
Vo 0 1 0 0 0 O 0O
v 0O 0o J 0 0 0 00
[Adc(s)] 1616 = w 00 0 J 0 0 00
T 0 0 0 0 J 0 00O
Zo 0 0 0 00O 1 00O
T 0 0o 00 0 0 JO
b 00 000 0 0 1|
where [J]5, 5 = 142X (V1 — A2 (D) + Aj (V) j (V) is the matrix of a spatial

rotation of the tetrad. Thus [J]'[J] = 1.
The restriction of Adc(s) to the space of CI(3,1) spanned by (¢;),_4 5 :

. 1 0 T T~
=0 5| =a =7 7]
1t ~
This matrix is orthogonal : [N } 7] [N } = [n]
The maps f. are expressed, in the basis of the chart, through the jacobian
(L] = [y, (1,m)] :

L] = { [ﬁ] [z[]L;i } and because £ is preserved [L] = { : [l]gxg }

There is a relation between [L] and the restriction N of Adg to the space
spanned by (g;),_¢ 3

[L(@v (r,m))] = [P (@ (r.m))] [N] [P (m)
so in the standard chart :

, 1 0 J_[1 0
[L<T>l=[%m<ﬂmﬂ—[o s }—[o Q (@ (r,m)] [J][Q (m)]

3x3
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The same one parameter group can be used to transport tensors on T'M,
as well as elements of Pg, and so of elements of the tensorial bundles TM ®
T\U,TM* ®T,U. The currents, the potential and the one form K are equivari-
ant in a global change of gauge. We can transport them by the same one
parameter group : we transport the tensor (vector or form) by the push for-
ward with ®y (7,m) on one hand, and we transport the vector of CI(C,4) by
Adc(s(®y (r,m))) on the other hand. So we combine two operations based on the
same Killing vector.

Push forward of vectors X =Y ® Z € X (TM ® T\ U) from m to @y (r,m) :

Fvr (Y ® Z) (m)) (v (1,m)) = fvY ® AdC(S(m))Z (m)

Fyra (X (m)) (@v (1,m)) = 305, ) [Adcm) ]y 35 1m0 [L (@Y, (1,m))]2 X¥7 (m) 050
Ko (Py (T,m))

with the matrix [L (®,,, (1,m) } = [y, (1,m)]
33

Push forward of one forms : A € A1 (TM T1 U) from m to @y (1,m) :

Fyre (A (m)) (Pv (1,m)) = Adc(sm)) (fyreA)

Fyre (A (m)) (B (1,m))

=Y et [Adesmn]y 320 50 [L (B, (=7, @y (1,m)]] AL (m) d€P@rq (By (7,m))
(I)Q/m (=7, @v (1,m)) = (Pvrm (T, m))_l

with the matrix [L (®1,,, (=7, ®v (1,m)))] = [L (P}, (T, m))] "' =L (P, (1,m))] =

{ é milg }

e (A (;r)z)) (Bv (1)) = Carper [Adesenn]y 25 oo L (Rvrm (r.m)F N, (m) déPo
’ Sovth&;t for a vector Y € X (T'M)

Fyr (M (fye:Y) (m)) (By (r,m)) =

Frre A (freaY) (m)) (v (r,m))

= Sape [Adeisimy]y 325 a0 L (R, (=, By (1.m)))]3 N, (m) [L (2, (r.m))]] X7 (m) ki (By (r,m))

- Ea b=1 [AdC m))] Zi)ﬁ:o /\E’y ( )X’Y ( ) Ra ((I)V (Ta m))

and for Y € %(TM@T U)

o (Fme () (@ ()5 Fyre (Y (m)) (@ (r.m)”)

= 50 ([Ado(somy] A (m)5 [Adogsny] Y7 (m)) =35, <A S m))
Push forward of 2 forms A € Ay (TM;T1U) from m to @y (1,m)
Fyre (A (m)) (B (1,m))
= Caber [Adesn ly 5 [ (¥, (rm) 5 [ (@4, (7 m)) XS, (m) dA
déP @ ko (Py (1,m))
which can be written
Fvre (M(m)) (®v (7,m))
= Yaper [Ade(sonn]y 2x s Mg (Bv (r,m)) dE™ A dEP (D (7,m))

where, using the usual notation

A (B ] lov romy = DA [Aull oy oy (L2 (@, ()

[Adc(smy] A(Y) (m)
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with the matrix [Lp/ (®v (17,m))]g4¢ = [

[Lo] = [Lp) ™! = [Ly-]
[A,.] = (A [ (det )"

K] = (a1

Push forward of the metric from m to @y (7,m) :

Fyrs (g (m) (@ (rom)

=320 po (L (@vrm (7 m))]5 (L (R (7,m))]5 gy (m) dE*@dEP (@ (7,m))
[Fvreg] = [L' (Pvrm ( ))]t lg (m)] [/ (‘Pv' (1,m))]

[Furags] = 1" los )] 1) = (107" o (m)] )

which gives :
_ -1 0
aevEml=| " g |
and we can check that [Fy . (g (m)) (Py (1,m))] = [g (Pv (T,m))] :

10.4 The equations for the field
10.4.1 The current equation

i) Because the field propagates on Qg (t) the current equation
VA € Moo (TM;TRU) 5 [ 300 (0% + S0 J,‘j,(SAa>Hw4 —0

reads :

Ve [ (fgsm > oo <¢a,6AQ>HW3) cdt=—y"_, (fgg(t) 3 <Jg,5Aa>Hw3) cdt =
o by (oo (U 0a) lawin) edt

that is

Jowy Zomo (67040 ) @3 = =81 X0 (J040) oo
1(6,8)  Mreoe (TMTIU) = R 2 1 (6,8) (94) = oy Xoo (6%,04a) o

is a distribution acting in Q3 (¢) and depending on ¢

B 5 Ao (TM5TIU) = R (18) (64) = 0, Y00 (I8 04a) Lot

is a finite sum of Dirac’s distribution acting in Q3 (¢) and depending on ¢.

uk,@k,Vk are symmetric with respect to Vi, so is Ji : Ji (®y, (1,m)) =
Oy, rodi (M) .

i (Jk, t) (5A) = Zi:o <J§,5AQ>H |¢Vk (t,z,) With the location z; of each
particle of the family &k at ¢ = 0, so that u (Jk,t) is symmetric with respect to
Vit b (Ji, t) = Py en b

Assuming that J is known, we look for a continuous map ¢ which provides
an equivalent distribution ¢ acting on SA.

The current equation is the key relation between the field and the particles.
The distribution u (Jg,t) is symmetric with respect to Vi, we can guess that
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there is some symmetry for ¢ so we will focus on maps symmetric with respect
to all isometries. To be consistent we need to assume that d A is also symmetric.

ii) Let @ > 0, O(1) = @, (cT,x0), the propagation curves with origin
Ot—10) = po(c(t—0),x0) tangent Y = cgp + y intersect Q3 (¢) at points
q = @, (ct,xz) which belong to a sphere S (O (t),0) C Q3 (¢) with center O (t) =
©o (ct,xg) and radius cf. The spatial vector y is orthogonal to the sphere. The
components of y in the standard chart do not depend on ¢.

SO@),0)={q: =ceo+yecX(K),q=2y (0,0(t—-10))}

Conversely, the propagation curves originating from Qs (t) and reaching
O (t + 0) come from points belonging to S (O (), 6)

S(O(t),0)={q:3FY =ceo+yecX(K),0(t+0)=2y(0,9)}

So that the system of spheres S (O (t),6) has a dual meaning : as the des-
tination points of propagation curves originating from O (¢ — ), and as points
of origin of propagation curves reaching O (¢t + 0).

Qs (£ —0) Q3 (1) Qs (4 0)
5(0(t),0)
/ T N\
Y ct Y,
/ 1 N\
O@t—60) — ce — O (t) — ¢ — O({t+0)

The volume form on S (O (t) ,0) is dos (q) = mw;; (t) (y) = L/det gzde' A
dg? A de® (y)

The surface o2 (O (t),0) = fS(Oﬂ) doz (q) of S(O(t),0) is the scalar com-
puted with the image of the form in any chart. S (O (t),0) is isomorphic to
S(O(1),1),02(0(1),0) = (c8)” p(O(t)) where p(O (1)) = 02 (O ()71) de-
pends on the metric on Q3 (t). In Special Relativity : o2 (O (t),0) = 37 (ch)”.

ili) Let X e X(TM @ ThU) ,Z € Aicoo (TM;T1U) both symmetric with re-
spect to isometries and Z smooth, compactly supported with support in 2: VY €
X(K): X (®Py (0,m)) = Fyg (X) (Dy (6,m)), Z (Py (0,m)) = Fygs (Z) (Py (6, m)) =

o (Fya (X (m)) (@y (6,m))° , Frou (2 (m)) (By (6,m))) =25 (X7 (m), Zs (m)

Let be O (1) = ¢, (cT,x0) , 2o = Ct

Vge S(O(t),0):FY e X(K):0(t+0) =y (0,9) © q=Py (—0,0(t+0))
E%:O <Xﬁ7ZB>H |q -

550 (B o (X (@) (@ (<0.0 (14 0)))° oy (Z(2)) (@ (-0,0(t+0)),)
:ZZ 0 (XP,Z5) ; lo+o)

fs(o Z,g -0 < ( )5 A (Q)5>H dos (Q) =02 (O (t) ,9) ZZ:O <X5, Z6>H |O(t+9)

Slmllarly
Yoo (8 Zo) i lawesow.0) =
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Yoo (Fyox (T (a)™ (By (0, ax (1)), Fyox (Z (1)) o (B (0,05 (1)) 4
= ko1 Zaco (Frow (Ji (1), Za) it o)
Jstowa Lo (X @’ Z(@)5) , do2(a) = 02 (0 (1).0) Ty (X7 Zs)  logo
Because § is relatively compact, for a given O (t) there is 6ps (O (t)) such
that V5,30 < 0 (O (%)) : g; (t) € S(O(¢),0). The choice of O (t) is arbitrary,
as well of 2. We assume that there is 07 such that :
Qs (t) = Up=0...0,,S (O (t),0),¥5,30 < O : g; (t) € S(O(¢),0)
Q3 (t) is a ball of center O (t) and radius c¢fp; which includes all the particles
of the system.

Jowto Zieo (X @07 2(@)5), 3@ = Iy (Jsio.0) Zhoo (X @ Z(@)5)  don(q)) o
= Jy" 2 (0 (1),0) (Sheo (X2, Z5)y loteny ) O

0" Jouy Dhoo (X @7 Z(@)s) @3 (@) = 5" ([ 02(0 (). 0) (S5 (X7, Zs) oo ) d0) cat
Proceed to the change of variables (Maths.3.2.3) : (t,0) — (( =t+60,n=10),

then the jacobian is { 1 (1) } ,det [ i é ] = —1, the domain becomes (0 x (to + 0r)) :

o (02 (0(1).0) (heo (X7, Z8) y losay ) dB) cat
= J gy a0 €= m) ) (S <Xﬁ,zﬁ>H lote)) 1-1] cdédr
= " (oo (X7 Zs) y loe)) (Jy™ 02(O (6 = m) m) ) edg

The quantity [} o2 (O (§ — 1) ,n) cdn = 2 < (€ —m)nPdy = [ p(O(t)) 6%do
is the volume of the domain Q3 (t), it is finite and we can assume that it is con-
stant equal to Q.

0" ( oeM o2 (0 (t),0) (Z%:O (XP,Z5) |O(t+9)) d0) cdt = o t0+9M (ZB 0 (X% Zs)y |O(5)) d
or equivalently g ttio (ZZ:O (X5, 28),, |O(f)> dt
S50 20, 500 o (b () )

And the current equation reads :
Do J, (Zﬁ 0 (X% Zs) |O<t>) dt

t 6 a
= - ;O(OM Py (00 (Froe (i (@)™ s Za (@) g loe+9) ) an(oresio).0)46) cdt

The relation holds for any O thus this is a definition for m € Q2 and we say
that ¢ meets the current equation if

O P
YO (1) : 6 (0 (1) = — — / 3" B (i (@6 (9)) (O () lawe—oyesot0).0)d0
k=1

Q0
(76)
that is the integral over 6 of the push forward by Y of Ji (gx (t — 6)) from
g, (t—0)e S(O(t—20),0)to0(t).
So if the field is symmetric for any isometry, then the current equation implies
that the right hand side is also symmetric.
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iv) The equation above shows that particles are sources of the field, and the
current related to the field propagates from an interaction with a particle in
spherical waves, 2 dimensional spheres located in Q3 (¢ + 7) with radius cr. We
consider the interactions with all particles, “coming from the past”, and located
at increasing spatial distance from O (t) .By the choice of 0, all particles of the
system impact the value of ¢ at O (t). However :

The particles which are involved in the right hand side are located on prop-
agation curves reaching O (t) . A particle never follows a propagation curve (its
spatial speed would be ¢) so a propagation curve meets at most once a given par-
ticle. The particles which are included in the increasing spheres S (O (t — 0) ,0)
are located, on 3 (t), at increasing spatial distance from O (t) = g (ct, zo) .
For a particle j if ¢; (t —0) € S(O(t —0),6) then ¢; (t —0") € S(O(t—10"),0")
because the spheres S (O (t — 7), 7) have for center O (t — 7) = o (¢ (t — 7) , zg)
and the spatial distance from g; (¢ — ) to g; (t — 6’) is certainly smaller than
c(6 —0") (if the particle were immobile then g; (t) = ¢, (ct,x;)). As a conse-
quence :

A particle is “seen” only once by O (t).

By taking O (t) = ¢; (t) a particle j does not interact with a copy of itself in
the past.

cecti i 4B — 0 _ oy ) A”
v) The section ¢ is defined as ¢** = 53 (F.F) =23"3_0"aa {A,\,]:ﬂ ] :
It is continuous. The solution ¢ that we have found for the current equation is
actually a distribution, based on a map

¢ € X (ThU ® TM) such that
5%‘1 (fQ (F,F) w4) (5A) = fQ Zi:o <¢a’5Aa>Hw4 =~ fQ Z:1 (Zi:o <J1?’5Aa>H) W4

Which is necessary in order to compute an integral. The formula above for
¢ (O (t)) is a bit abusive because J is defined locally.

vi) The current equation comes from the computation of the partial deriva-
tive for the energy of the field :

2 (o (FF =) (04) = Jo 0 ({0, 5AQ>H —2(F.dsA)) @,

in which the second item is null. It represents the variation of energy carried
by the field in its propagation, with respect to the potential A. So it is not a den-
sity of energy with respect to the geometric volume, or a flow of energy. There is
obviously a variation of potential when the field interacts with a particle, which
is represented by —Ji (qx (t)), and the meaning of the current equation is that
this variation is spread continuously in a spherical propagation.

10.4.2 Morphism for the potential and the strength

We assume that ¢ is transported along a propagation curve with tangent Y,
that is :
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16 3

6 (y (r,m) = > [Adeisemy]y D [L( @y, (1,m)]; 677 (m) 0p2rq (R (r,m)
a,b=1 B,y=0
. (77)
Let us assume that A, F are also transported similarly along the same curve.
That is :

A(@y (rm) = FrraA (@y (r,m) = 10, 535 A5 (By (m) rade? (@ (7,m)
As = 30 [Adoqsm ]2 2 oo (L (@, (=7, @y ()]} AL (m)
F(®y (1,m)) = Fyr.F (Py (1,m))
= 2oLt Capy=o.s Fas (B (1,m)) de A de? @ ria (B (7,m))
7,
= [Adosiony]2 S g [L (@), (< @y (rom)))JA L (B, (=7, Dy (7)) 2L, (m)
[L(®Y,, (=7, @y (r,m))] = [L (B, (r,m))]
Let us denote [L (®yp, (1,m))] = [L],[L (P, (—7, Py (T,m)))] = [L'] =
iy
A @y (1,m))f = Yot [Adeisamy ]y oo p—o [T} A%m)
F (@y (r.m))ey = SiL [Adogson ]y (17 (7] 12),
The computed value of the current at ®y (7,m) is then :

¢ ~< a
= 25000 0 o [ A Xm0 9 @y (7.m) g% (@y (7.m)) o] wate
b

=2 401 [Ado(smn], X s—o [Zi—o (LT} A im0 0% (2 17] [LI]):] Fa®
0&,,

= 25001 [Adoisonp ]y To g o (L3 [A o1 (1) 17 121)
(%a b

=230 [Adegsenn]y Ya g [L15 [Aw ([971] LT AL g 1]>Z] fa®
&,

The metric is transported along the Killing curve and :
lg (‘PY (r,m))] = [L’] [ (m )] [L’} I
lg7 (@y (r,m))] = [L] [g~! (m)] [L

)

(I (‘Py(ﬂm)][ 1 (AL ][ <<1>Y<T m)]),
=( [ m] (]! () A ) 2] [ (m)] (L))
)] 1F [ < NIEY) =S80 L3 ([ m)] [ ()] [9" ()], (12)')

2 b
o] e

I
/-\
=

i
S

(m)] 5
EAMOL [ m]
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~ a N e} b
¢=2 Zzlszl [AdC(S(m))]b Zi,ﬂ,y:o [L’]73 {Aw Zi,u.:O (L] [}—M (m)] [L]ﬂ Ka®
0o .
= 22111,611:1 [AdC(S(m))]Z Zi,ﬁ,y,A,#:o [L’]E [LLBL (L]} {A% []:/\M (m)]} Ka &
0a
_oyl6 A a3 a5y Ay b
= Za,b:l [ dC(S(m))]b Za,%)\:o (L] [Av’ [*7: (m)]} Ka ® 08a

= 23,51 [Adosmy)]y X yaeo (L5 67 (M) ko @ 04

that is ¢ = Fy,.¢ (®y (1,m))

The assumption that ¢ is transported on a propagation curve is consistent
with the assumption that A, F are also transported similarly. This is consistent
with the metric equation which tells that the metric is defined by the field. So
we state :

N

A(Qy (r,m)) =

Sacoet [Ade(simn ]y 30 a0 [L (B4, (rm)]} AL (m) d€P @ kg (R (7,m))
(78)

F(®v (T,m)) =

Yave [Adoismn ]y 325 50 [L (B (rem))] [T (R, (7, m))]fs FR, (m) dE* A dEP @ Ko (By (7,m)
(79)

[g(@v (r,m))] = [L (B, (r,m)))] [g ()] [L' (@4, (,m))]  (80)
F =*dK and Fyr, commutes with the Hodge duality and exterior differen-
tiation, so dK transforms as a 2 form as F and K as A.
dK By (7,m)) = Yo%y [Ade(simn]y 25 5o [T (@4, (rem))]3 [T (24, (7.m))]f5 AR, (m) dE*A
déP @ ko (Py (1,m))

The decomposition of the field along the components in the basis k,,a =
1...16 of T1 U is, in some way, similar to the wave lengths of the EM field.

WU = {(iA,VO,iV,iVV, R, X0,iX,B), A, Vp, X0, BER, VW, R, X € R3}

The EM field corresponds to (iA4,0,0,0,0,0,0,0), the gravitational field to
(0,0,0,iW, R,0,0,0), the weak field to (0,0,0,0,R,0,0,0), the strong field to
(iA,0,iV,0, R, X0,0,0) . The matrix of the adjoint map is :
i AV V W R Xgo X X

[AdC(S)Lexlﬁ =

CESESE- IR N
OO OO OO O -
OO O OO OO
(e es il s B e B s NN e B an)
OO DD O o oo
(=R el an BRI o B e B e B an)
OO OO o oo
SO Goooooo
R OO OO o oo

[0}
(=}



The structure of the field is preserved in propagation.

10.4.3 PDE for the field

The relations above hold for any propagation curve. There is a unique propa-
gation curve starting from a point with a given spatial direction. The formula
above tells how the potential is split along all the directions. However this is also

given by the strength 7. Coming back to its definition : F (y) = —p}; (.£A> (y)
we take any vector field y on TM, that we lift y on Py as a vector field
Y (py (m)) = pl, (m)y (m) using the standard gauge p,

we transport the connection form A along Y : (®y (7,.))* A (pu) , (®y (—7,.))" A (pu)
we compute the variations

A () A(pa) =2 ((@y (7,)" A (o) — A (p))
AL(M)A@a) =L (Ama) = @y (=7,)" A (b))

the Lie derivative of the connection form A along Y is defined as

~

"EYA (pu) = % (q)Y (Ta ))* A (pu) |T:0 = lim, ¢ AR (T) A (pu) = —lim; ¢ Ap (T) A (pu)
According to the formulas above, along a Killing vector field :

A(®@y (r,m)) = Adc(s(m)) (@YT* (A (m)))
C (S) is constant on the curve, but depends on the curve, then, for any
propagaAtion curve at m :

Ly A(py) = F (m) (Y (m)) = L (Adc(y)flA (®y (1, m))) lr—0 = Adgyy-1 A’ (m)Y (m)
L0 a0 FagYPde® = 00, [Adegy 1|, oo (9545 ) Yodg®
3 3
1 N
a=0.3:5 Y Fas¥V’ = [Adc(y } Z (aﬁAg) Y? (81)

a,B=0
The left hand side reads, for ¢ = 1...16

535 Ty = i [AdC(y : L ((2045) e+ 3, (9548 v7)
(f10c+f12y +}"13y 2 [Ade Y)fl] ((0A8) e+ 325 (904%) )

e 7+ ) - sy | ()5 5 (048

L (Faoc+ Fary + Faoy?) [Adc(y) ] ((aoAg) c+ Y2, (aﬁAg) yﬂ)

In matrix form :

0 Féi Foo Fis Cl
_ Ta 0 _Fa a " N
v A Ly e N
—Fos  —Fis 32 0 ys

DAY 0 AL  9,AL 93 AL
501‘}’1 511‘}’1 521‘:“{ 531‘:1({
BoAg BlAg BgAg 80Ag
QAL AL 9,AL 9, AL

With [aAb] -
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a=1.16: [FI[Y —QEZPwaml}[ } (82)

We can choose any null, future oriented, Killing vector Y (m) at m. Let us
take successively the vectors Y; (m) = ¢ (g9 (m) +¢; (m)),j = 1,2,3 with the

vectors ¢; (m) of the tetrad at m : 5,4 =10,1,2,3: Y’8 =c ( (m) + Pﬁ ))
The matrices Adc(y,) are built with the matrices

[Jilzus =1+ 24, (\/ L= X35 (g5) + Ajd (95) @j))
with y; the vector y; expressed in the tetrad at m. Adc; depends on a single
scalar fixed parameter A;. And Adc(y_)l is computed by taking A; — —A;.

j:Lz3[fﬂ[]_22b1Pmay)4 pAﬂnﬂ
and we get the equations :

721 1Qs) = 2042, [Adeqyy ]| (00dh+ [M2] [@1))

- [Fa) +g<fa>[@]1f22b1[Adcy> ] (8] + [M3] Q)
with

Q% Ao A
Q)= QF |:[M]=[aAf 0, AF 9545 | [M3] = | d0Ab | 5[MS] =
Q3 A Al

AL 0,AL 93Ab
AL 9,AL  B3AY

7ol = (1 (FD Q1) — 2538 [Adeqy ],
— (=3 (@) (1F21) — 25538 [Adeyy ],
= 1113 Q) = 20 [Adeqy ], (V3] + (48] [@0)'
Fi11Qs] = =253 [Adory ], () + (35 104)' @)
=253, [Adoyy- } (905 + [n1] [)])

— (M) + [M5][Q5])' (@] = (3vo+[M1HQ )

[&M Dy AY @M]

= 9o + [M1] [Qy] + (IMa] + [M3] [Q,1) [Q4] = 0
0o + (M) + [Ma]") [Q) + Q1" [Me]' [Q,) = 0

We get the set of PDE :

j=1,2,3

S0 Al + (141] + (M) ) Q) + (@] [Ms]' [@5] = 0
(Ful = 17115 (Q)) = 2 [Adegyy ] (M) + Qi)' (M)
which read :
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i=123
o Ao + Zi:l (ayAO + 80Aﬂ/ + 22:1 Q?a'yAB) ;=0
For = ~FnQ2 + FiaQ3 =2 [Adeyy 1 | (B0ds + S5, Q)01 4g)
For = FnQj — F3 Q3 —2 [Adc(yj)fl} (801212 +3 0 Q?(%A,B)
Foz = *‘7:13@; + .7'.32@? -2 |:AdC(YJ)’1] (80A3 + ZZ:I QfagAg)
(83)
The components of the tetrad are fixed parameters in these equations. We

have a large freedom of gauge.
For the EM field the equations read

Bodo + 323y (9540 + Do, + 4, QJ0,45) Q7 = 0

01Ag — 300 A1 — 2Q101 A1 — Q02 A, — Q30341 — Q201 Ay — Q301 A3 =0
02 Ao — QL0rA; — 3004y — Q101 Ay — 2Q20,A5 — Q20345 — Q20,435 =0
9540 — QL5 A; — Q205 A5 — 300 A3 — Q101 A3 — Q20 A3 — 2Q303A5 =0

10.5 The metric equation
Denoting
|:dAr] =[ Asg— Aoz A1z — Az Ay — Ay |
|:dAw} = Agy — Ay Apa — Agy  Apz — Az ]
[dKT] = [ O3 Ko — 09K3 01K3— 03K; 09K1 — 01 K5 }
[de] = [ 80K1 — 81K0 80K2 — 82K0 60K3 — 83K0 ]
and similarly :
[Xw]p = |:A0aAp} 7[X’l“]1 = |:A37A2:| a[Xr]g = |:A17A3] a[Xr]g = [A27A1}
The codifferential equation is met if there is K € Ay (T'M;T1U) such that :
[Fu] = [ddo] + [Xu] = = [ [gs] VAot g5

(7] = [dA] +[X,] = [dK) [gs] ' VAetgs
Then the metric equation

[dA] 1 (Fullos) ™" = [os] ™ (7l [n] [ A
[dA]" 1] (7 l92) = [oa] " (7]’ [n] [ 4] det g

) =2 ([ad,] 17 el ) =27 ([d] Bl ) den s
reads with dK :
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[, ] s, ] = [a, (o] [,
(@A) ) = (a5 o) [a

7t . 7t
(F,F)=2Tr ([dAr] [7] [dm]) Vaetgs = 2Tr ( [dAu| ] [dm) Vet g
(84)
{d}l} changes along a Killing curve as [F]. The equations should hold along
a Killing curve, that is :

(A, @y (r,m))| 0] [dK, (@ (r,m))] = (0K, @y (;m))]* ][44, (@y (r,m))]

[, (@y ()| 4K (@ (r,m)] = [0, (y ()] ][44, @y (rm)
With the previous formula :

] [Ra]] lov ramy = (A [l oy oy (L (@3, (7))
with the matrices

(L (Py (1,m))]gx6 = [ . (dgtlY [l]o_l ]

L@ (s = | ) |

(44, (@ (rm)] = [Adesimy ] [aA ( )] 0 (detty™
(a4 (@ (r,m)| = [Ade sy | [dAu m)| 107

(K (@ (7,m))] = [Ades -+ | 145 (m)] 1) (det )™
[ (@ (1.m)] = [Ade sy | 4K ()] 17!

and accounting for :

S e Spin(3,1) =
t
[Adc(smy] = 1] [Ad(smyy] 1]

[Ad(c(s(myyye] ) 0] [Ade(smy] = [Adc(smy)t-osmy] =1
The first equation reads :

a4, ()] o] 4K, (m)] = (K, (m)]" ) [dA, (m)]

ihe second equatiton reads : .
A, @y (rm)| In) (@K (@ (r,m)] = [ (det )~ [dA, (m)] o] [dK., (m)] (1)
(K, (@ (rm)]' 7] [dd @y (r,m)| = 1) (det)) ™ [dE, (m)]) [n] [dAy (m)] 07!

a4, )] o] 4. ()] = [, ) ] [ ()|

So the metric equation is preserved by propagation.
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These matricial equations are quite strong, and should be met at each point
and whatever the spatial chart. The one form K is not unique. With these

equations it is logical to assume a linear relation between [d}lr} ,[dK,] and
[dAw} [dE).

Let [M],[N] 16 x 16 matrices acting on 71U which is a real vector space
with the real basis Ka. It suffices that the matrices are real.

(] = [N] [dAy | [dK,] = [M] a4,
Hi[[H]HHH
44 ]{W{ o] = o] oy o

" }[ M] must be such that : [M]" = [n] [M][y] = [y] [N] [1], [N]" = [)] [N] [n] , [M] =

that is :

[dK] = [N] [dA]; [N]" = 1] [N] [ (85)

Then the metric equation is always met.
Conversely if [dK (m)] = [N (m)] {dA (m)} then the transformations rules

along a Killing curve are met if
(a4, @y (7,m))] = [Ade(sgny | [d4r (m)] 1" (dett)”
D] = [Adesmy ] [dAw )| 107
(K, (@ (7.m))] = [Adesgnyy— | IV (m)] [dA, (m )}H (det )"

= [N (@v (r,m))] [dA, (@ (r,m))]
(K (@v (7,m))] = [Adesgy 1| IV (m)] [dAu (m)] 7
= [N (@ (r,m))] )

] )

= [N (@v (r,m))] [Adgs(u—1 | [dAr (m)] 1) (det )™
] V] [ddu ()] 17 = (N (@ (7,m)] [Adsgmy 2] [dd (m)] 17"
IV m)] = (N @y (7,m)] [Adgygs -1 |

IV @y (rm))] = [Adgqgiuy-1 | N m)] [Adgqsuy 1] = [Ade(s 1| IV ()] ] [Ades ] 1
C (S (m)) is constant along a propagation curve, so [N (m)][n] is constant

[Adcw(m))

and commute with | Adgg(n))—1

[Ado(simy] [N (m)] [n] = [N (m)] [n] [Adc(smy)]
The only elements which commute with all C (S (m)) are the scalars, and
then [Ady]| =1
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The solution for K is not unique, the choice of N meeting these conditions
is somewhat arbitrary and the sensible choice is [N] =T

[dK] = [dﬁ} (86)

Replacing dK by its value from A:

(Ful = [dAu] + [Xu) = = [N] [dA,] [gs] /vt ga
(7] = [dA,] + 1] = [N] [dAy | [9s) " vetgs
[dAu] + [N] [dA,] lga] /vAoTgs = - [X.

(V] [dAu ] 92) " VARTgs = [dA,] = [x,]

We have 6 x 16 first order PDE, linear in the derivative, for A with the
parameter [N ]t =[n][N][n] :

[dAu| = (14 INF) (= [Xu] + [N [X] [9a] /et g3)

4] = 7 (L V) 6 <(1 FIVE) - 1) [Xu] g95) " Vet g
With N =1

[[dzxw] = 5 (= [Xu] + X, [ga] /et ga) -

A, = =3 (1] + (%] loa) ™! VAT g5)

The metric is defined by the value of the field, as expected. For the EM field
one retrieves dA' = 0.

We have the identity 22:1 [d}lr} =0=
P

St <— (1 VP) T NI, + 3 N ((1 FINP) - 1> [Xw]qgmm)
=0

S0 (C IV, + S (1 (14 INT)) X, 970 vAets ) = 0
23: <[Xr]p + ZS: [Xuw], g7/ det 93> =0 (88)

p=1 q=1
We have a set of 16 linear equations in gP9.
The results still hold in the Geometry of Special Relativity : Killing curves
are straight lines, [g] = [7] and S = 1,[N] = I. The differential equations read :

[dﬁw} = —1[X,]+L[X,]
[4A:] = -3 (X - } X

[dK] = [dA} 2
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10.5.1 Chern-Weil theorem
The Chern-Weil theorem reads :

Tr ) ) [Ful = ~TrdKu) ) (4K, = ~Tr [dA,) (N ) [N) [dA,] =
~r [ad,) o] [NT? [dA, ]

If [N]=1:Tr {d}lw} t 7] {d/\lr} does not depend on the field.

Tr[adu] I [4d] = 4 (- [Xu] +[X Hgg]/ﬁdetgg)tw(([Xerw} lga] ! Vot s) )
AT (X ) [X] = (X)) (X) lgs] Vet gs
[n) [X,) /v/det gs + [ga] (X, [n] [Xu] [95] "}

+ 93] [X+]" [n]
=—3 (X' 0] [X,] + T7[gs] (X0 [n] [Xo] [gs]

~r (1) ) (X lgo) ") VAetgs + T ([gs) [X,]' 0] [X,]) /et ga}
3 {rr (16 0 DX l90) ™) Vst + T ([gu] LX) ] 1X,]) /et gn

¥

11 One and two particles systems

It gives the opportunity to show how the previous material can be used to get
a good understanding of the evolution of the system.

11.1 One particle

We have 2 cases.

i) The hypothetical model of “one free particle in its own field”. We can
choose the particle as the observer : then by definition the state of the particle
fixes the gauge, u = 1 and ¥ = vy, which means that the field is null.

i) If

- at t = 0 the particle has another state, then the initial field is not null with
respect to an observer, it has a fixed value over Q3 (0) and propagates

- the particle is subject to an external field

then part of the variables are known with respect to a given observer. The
state of the particle or the value of the field adjusts to the known conditions.

11.2 Two particles

The interesting case is that of 2 free particles subject only to their mutual field.
With free particles we can take the first particle as location of the observer.
Then
q1 (t) = ¢, (ct,x1) with 11 = Ct,V; (t) = ceg,uy (t), 1 (t) = Aiul(t)Ql ®ceg
42 (£) = 0o (ct, @ (£)) with uz (£), Va (£) = 92,3 () = Adyy Qs @ Va (8
The freedom of gauge can be exercised by fixing the value of the field at the
location of the observer : A (g1 (t)) = Ao, ¢ (g1 (£)) = o
i) We will implement the general results with O (t) = ¢; (t),O(t) = ¢2 (t)
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YO (1) : 6(0 (1) = =g Jy ™ They Friow (Ji) (O () lgu(e-s)es(o(t—0).0)d0

that is the integral over 6 of the push forward by Yj of Ji (qx (t — 0)) from
g (t—0) € S(O(t—0),0) C Q3(t—10) to O(t) = Py, (0,qx (t —0)). In this
integral 0 is an argument, but in its computation it becomes a variable 6 (¢). It
is a measure of the distance between the particles. To keep it simple we will
replace t — 6 (t) by 6 (t) < t.

First case : O(t) = q1 (), 0t —0) = @,(c(t—0),z1) & OO (t)) =
00 (c0(£), 1)

1st sphere S (q1 (t),0) : Jy (%)

2nd sphere S (g1 (02 (t)),t — 02 (t)) : there is a unique propagation curve
reaching ¢ (t), it starts from go (02 (t)) with the vector Y5 :

2 (02 () — @1 (t) = Py, (t =02 (1) , g2 (62 ()))

T (g2 (02 () = Fyy(i-02)« (J2 (a2 (62 (1)) (a1 (8)) = [Adcy )] Aduy (020 Q2®
[L2 (¢)] V2 (62 (2))

where Cs (1), [ )] = [L (@g/zm (t—02(t),q2 (02 (t))))] depend on ¢

¢ (a1 (1)) = —q5 (Adu, ()@ @ ceo + [Ade, ()] Adus (0,1 Q2 © [L2 ()] Va (62 (1))

Second case : O(t) = q2(t),0(t—0) = v, (c(t—0),22(t)) & O(0(t)) =
Po (¢l (), 21 (1))

1st sphere S (g2 (t),0) : Jo (¢)

2nd sphere S (¢, (c02 (1) ,z2 (t)),t — 61 (t)) : there is a unique propagation
curve reaching g¢s (), it starts from ¢y (61 (t)) with the vector Y7 :

q1 (601 (1)) = g2 (t) = Py, (t = 01,¢1 (61 (2)))

J1 (a1 (01 (1) = Fyy(-0,)= (J1 (a1 (01 (1)) (a2 (1)) = [Ade, ()] Adu, (0, (1) @1®
[L1 ()] VA (61 (1)) = [Adc, (1)] Aduy (0, () @1 @ ceo

where Cy (t), [Ly ()] = [L (@’Ylm (t —61,q1 (61 (t)))] depend on t and [L; (t)] eo =
€o

¢ (g2 (1) = =g ([Aduyy] Q2 @ Va () + [Adc, (1y] Adu, 9, (1)) @1 @ c20)

ii) ¢ is symmetric on the propagation curves :
Y21 g2 (02 (t) — q1 (t) = Py, (t — 02,2 (02 (1))
= ¢ (q1 (1) = ¢ ( Py, (= 02,42 (02 (1)) = Fyyt—02)x (a2 (02 (1)) (a1 (t)) =
[Ad@ 0] [L2 ()] ¢ (g2 (62 (1))
¢ (a2 (t) = —q; ([Adw(t)] Q2 @ Va (t) + [Adc, (1) ] Adu, (6,() Q1 @ c20)
¢ (g2 (62 (1)) = =g ([Adus(02(1)] Q2 @ Va (02 (1)) + [Ade, (0,(1))] [Adu, (9,005 (1))] Q1 @ c20)

¢ (Ch (t) =
a: ([Ade, )] [Aduy(o,1))] Q2 @ [La (1)] Va (02 (1) + [Adey (1)) [Ade, (0a(1))] [Adu, 6,00,(1))] @1 © ce0)

Yi:iqu(01(t) — g2 (t) = Py, (E— 01,01 (61 (2)))
= ¢ (g2 (1) = (‘I’m (t—01,q1 (01 (1)) = Fyyt—0.)« (¢ (q1 (01 ()))) (g2 (1)) =
)] ¢ (Q1 (61 (2)))

[Adcl t)] [
¢ (q1 (1) = =g (Adu,(1y@1 ® cgo + [Adey ()] Aduy (6,1 Q2 @ [La (8)] Va (62 (1))
¢ (q1 (01 (1))

= — g5 (Ady, (9,1 Q1 @ cgo + [Adey (0, (1)) [Aduy (0200, (1)) Q2 @ [L2 (61 (£))] Va (62 0 61 (1))
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[ dc, 0] [Adu, 0, (1)) Qu@ceo+[Ado, (1)) [Ade,0,(1))] [Adus (0,00, (1))] Q2

[ ()H ( ()] V2 (02061 (t)))
Then

¢ (q1 (1) = =g (Adu,(1y@1 ® cg0 + [Adey )] Adu, (0,1 Q2 @ [La (1)] Va (62 (1))
—az {[Ade, )] [Adus 0,0))] Q2 ® [L2 (8)] Va (62 (1))

+ [Adcé(t)} [Adcl(92(t))] [Adul 01002(t ] Q1 ® 050}

Ady, (@1 ® ceo + [Adcy )] Adu2(92(t))Q2 ® [La (t)] Va (62 (1))

= [Adc, )] [Adus6.(1))] Q2 ® [La (£)] Va (62 (1))

+ [Adc, )] [Adc, (o, t))] [Ad., (6,00,())] @1 ® ceo

Ady, (1)Q1 ® cg0 = [Ade, 1)) [Ada(oz(t))] [Ad.u, (6,00, (0))] @1 ® c20

uy (t) = C2 (t) - C1 (02 (1)) - ur (61002 (2)) (89)

¢(CI2 (1) = —q; ([Aduyr)] Q2 @ Va (t) + [Ade, ()] Adu, (6, (1) Q1 @ c20)
—a [Adcmt)] Ady, (0,(1))] Q1®cgo+[Adc, )] [Adesy0,)] [Adus (0200, (1))] Q2
[ (t)] [La (61 (t))] Va (92 0 61 (1))
[Aduz 1] Q2@Vz (t)+[Adc, (1] Ady, (6, (1)) @1®ce0 = [Adc, (1)] [Adu, 8,1))] Q1®
ceo+ [Ade, (] [Adey 6, (1)) [Aduzwzoel(t )] Qa®[Ly (8)] [La (61 ()] Va (92 06 (1))
(t) = [Ade, )] [Adcg(al(t))] [Ad.uy (9,00, (1)) ] Q2@[L1 ()] [La (61 (£))] Va (B2 © 61 (1))

ug (t) = C1 (t) - C2 (01 (1)) - uz (62001 (t)) (90)

[Ad,, 1] Q2®V2

Va (t) = [Ly (D) [L2 (01 (1)) V2 (62 0 01 (1)) (91)

The obvious solution is :

0100211d102091 (92)

q(t) = @y, (t =02 (t),q2 (02 (1)) = @1 (61 (1)) = Py, (01 (t) —t,q2 (1)) &
q2 (t) = Py, (t — 01 (t),q1 (61 (1))

@ (t) = @y, (t—=01(t),q1 (01 (1) = q2(02(t)) = Py, (62(t) —t,q1 (1) &
q (t) = @y, (t —02(t),q2 (02 (1))

then :

Ca(t)-Cr(2() =1d=Cy(t)- Ca (01 () & Ca(t) = C1 (02 (1)) (93)

(L1 (D) [L2 (61 (1)) = Id & [La (8)] = [L1 (62 (1)) (94)

The quantities ¢ (t — 61 (t)),c(t — 02 (t)) are measures of the distance be-
tween the particles, they are not necessarily equal (the curves are not the same).
From 6, 0605 (t) =t we have dftl ddet? 1: 61,05 are not constant and vary in the

same way with ¢. So either we have an attraction : 6 (t) — 0 or a repulsion. In
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the first case we have a collision, and in the second case the particles get back
their freedom and do not interact any longer.

iii) ) Moreover :

¢( (t)) = ¢o =
— g (Ady, (1yQ1 © ceo + [Adey ()] Aduy(0,(1)Q@2 ® [L2 (1)] Va (62 (1))

]
= Adul(t Q1®C€o+[z4dcg(t)} Aduuy (0,(1))Q2@[La (8)] Va (02 (1)) = —00Q0l4, (1)
At 0; (1) : Ady, (9,)Q1®cc0+[Adey (9,)] Aduy1yQ2@[La (61)] Va (£) = —¢0Q0l g (61 (1))
Ady, (9,)@Q1 ©cgo + {Adclurl} Adyy(1yQ2® (L1 (1)) Va (£) = =¢0Q0lq, (0, 1))
This tensor is defined at ¢; (61 (¢)). By transport with Y7 : ¢ (6 (t)) —

g2 (t) = Py, (£ — 01,1 (01 (1))
Adul(gl)Q1®CEO — [Adcl(t)] Adul(el)Q1®[L1 (t)] Cepg = [AdCl(t)} [Adul(el)] Q1®
CEp

[Ade, 1| Aduy Q2 @ 1L (0] Va ()

— Ady, (1 Q2 @ Va (1)
Jo(q2 (1)) = Ady,4)Q2 @ V2 (t) is a decomposable tensor and J (g2 (t)) =
Fy,(t—0,)+Jo where Jy is a fixed tensor. That we can write :

J2 (g2 (1)) = Adyy(yQ2 ®@ Va (t) = [Ade, (1] Qo © [L1 ()] Volgyr) (95)

There is T € U : Qo = €AdrQs where ¢ = £1 to account for antiparticles
(Ad # —1d) and :

(96)
iv) The potential is similarly transported along the propagation curves.

A(@y (1,m) = Yoot [Adeismn ]y 325 s (L (@Y, (r.m)))]} AL (m) dP e
Ko (Py (T,m))

Y2:q2(02(t) = q1 (t) = Py, (t— 02,42 (02(2))) . .
= Alqr (1) = A(®y, (t = 02,02 (62 (1)) = P2 A (01 (1) = [Adey] Algz (62 (1)) [Lh ()
with [Z4 (1)) = [L2 (0]
Aar (8)) = [Adeyw] [A (g2 (02 ()] [L2 ()7 (97)
Yiian (01 () = 2 (1) = @y, (6= 01,1 (6 (1))

A(@y, (t = 01,01 (01 (1)) = Fyy 0,1+ A (a2 (1) = [Ade, ] [L3 (D] A(ar (61 (£)))

[4 (a2 ()] = [Ado, 0] [A(ar (62 &) 121 ()] (98)

and we can check that :

Alax (02 (1)) = [Ade o)) [A(ar (01 0 02 ()] L1 (02)] !
Aqr (1) = [Adey ] [Ade, 0,)] [A (q1 (61002 (t)))} (L1 (62)] 7" [La (1))
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Moreover A (¢ (t)) = Ay = Ct

[Aa: ()] = [Adey o] (Aol [Ls (9] (99)

v) The equation for the state of the particles imply :

<Adquk [ (Vi) , e } +A(dvk)>H oty =0
For k = 2:

Zxduzczzl AdclAcgiT@?:Adleo B D
G uy e (1) = §(Ci(t)-T)-T~1- Oyt = 407 = Ade, (C7H- 97)

A(Ve) = [A(@ )] [14] Vo
4 (a2 ()] = [Ade, o) [Aar (62 0] L 0]
A(V2) = [Ade, )] [Alar 01 0)] Vo = [Ade, o] [40] Vo

The derivation ddt2 is taken with a constant tetrad :
Ve = kg 2%21 1
[Va ()] = [P (a2 (1)) [V (¢ N Vel

72 (0)] = 1P <q2< N[ <t>] w

[452] = [P (g2 ()] & L4 (9] [V

W = [P (g2 (1)) [%} = & (L1 (1)) [V

A (%) gy = [A 2 ()] % [14] Vo] = [Ado, @] [A(an (00 @)] 21 (0] & [L1 (0] Vo] =
The equation reads : °

[Ade, ] [Ao] [Ly (0] & (L1 ()]
(Adc, Qu, [[Ade, )] [40] Vo, Ade, (O 450)] + [Adoy o] [Ao] [L1 (0] & [Ly 0] Vel) =

J

L
[V

0
The equation for the motion of the second particle sums up to :

(o [0l Vo (07 2] 5 Ll L2 0] G a0 G) =0 (100

H

There is a relation between [L1] and the restriction [ﬁl} of the matrix Adc,

to the space Span (5j)j:0
(D3, (= 01,01 (01))] = [P (Py; (t — 01,1 (61)))] [Nl (t)} [P (g1 (61))]
= [P (a2 ()] [ My (0] [P (a1 (61))]

(L (0] = [P (@2 )] [ Ry (0] [P (@ (61 1))
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12 Stable systems

As the last example shows a system, even in the continuous picture, is not
necessarily lasting. And indeed the only known stable free hadron, compos-
ite particles composed of quarks and antiquarks, is the proton with 3 quarks.
Meanwhile hadrons can be stable in a nucleus when associated to other particles.

With a unified representation of force fields, the first task is then to build
a model of matter, and first of nuclei. It is not sensible to represent these
very stable objects as systems in perpetuate turmoil. Atoms are represented
with an electronic shell, composed of electrons moving around the nucleus, in a
continuous process and at equilibrium. Similarly nuclei should be represented
by elementary particles interacting together in continuous processes, and at
equilibrium. It is usually assumed that nuclei are composed of protons and
neutrons, which are themselves composite particles. So we cannot assume that
they are the basic bricks : we cannot a priori exclude any particle. Moreover
the possibility to represent interacting systems by tensorial products does not
exclude the validity of the representations of each object and their interactions.
The scope of possible combination can be studied through the equivalence of
tensorial representations with sums of representations, but these mathematical
operations do not tell us if a possible combination will occur, or is stable.

So it makes sense to study a system of a fixed number of elementary parti-
cles, of different types, and the resulting force field, and the conditions for its
equilibrium.

We say that a system of particles and their field is stable if it is lasting (the
system does not end in collisions or free particles) and behaves as a unique set.
Stable systems are ubiquitous : nuclei are extremely resilient, as well as atoms.
The strongest materials are based on crystals. At the opposite scale all stellar
systems seem to be organized similarly. The processes at work in these systems
are continuous, and there seem to be some organizational principle such that
they accede to a great stability.

This issue is somewhat the generalization of the old N bodies problem : find
the law of evolution of a system composed of N astronomical bodies interacting
through the gravitational field. It is well known that this problem has no explicit
solution for N > 3, and they are usually fragile in the meaning that a small
perturbation can lead to catastrophic divergences. Our problem seems much
more complicated : we are in General Relativity, the field has 16 components
and as many different charges, the laws of interactions are more subtle than the
classic % But the fact that a nucleus of iron is very stable shows also
that the solutions are common, and robust. And we will see that the Geometry
of General Relativity is not an impediment, on the contrary...

Continuous systems show symmetries, for the particles on one hand, and for
the field on the other hand. Adding initial conditions, there is no compelling
reasons why such a system would be stable, if not for a reconciliation of the
symmetries. The symmetry of the field is reflected in the symmetry of the
metric. As the example of crystals show, an adequate geometric arrangement is
the key to robustness.
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12.1 Stable systems of elementary particles

Because the system is stable, we can choose an arbitrary origin of time t =
0,.and the system is always at equilibrium. There is a point O of the sys-
tem which can be considered as its “center of mass”, whose trajectory O (t) =
o (ct, 0 (0)) is representative of the trajectory of the system. If the system
is free, that is not subject to an exterior field, O can be taken as the ob-
server, and the gauge is fixed by the value of the field at O(t), then we have
AO(t) = Ct,F(O()) = Fo = Ct,p(O(t)) = ¢o = Ct with non null arbi-
trary constant.

12.1.1 Symmetries

For a continuous system the variables u, @ are symmetric with respect to the
vectors Vi, and their value is fixed by the location ¢; (t) = @, (ct,z) of the
particles. The symmetry of a stable system is then defined by the geometric
location of the particles at each time ¢ with respect to the point O(t). The
particles are located in Q3 (t) at increasing spatial distance ¢f, and the prop-
agation curves reaching O(t) originate from the particles as they were on the
spheres S (O (t — 0),0) with center O (t — ). The closest thing to a fixed sys-
tem is a periodic system. In General Relativity it means that all the variables
are periodic with respect to the time. We assume that the particles on Q3 (t)
are organized in n rings (actually 2 dimensional surfaces) denoted Ry, ..., R,
located at increasing distance 6,26, ...n0 from O (t) and corresponding to the
intersection of Q3 (t) with the hypercones of propagation curves originating from

O(t—8),0(t—20),...0(t —nb).

We denote g; (t) = ¢, (ct,z; (t)) the trajectory of the particles, V; = %
their velocity, @; their charge and ¢; = +1 for a particle and ¢; = —1 for an

antiparticle.

We can then use the theorems about the quantization of the system. The
state of the particles of the same family belong to the vector space F (v)
spanned by {9 (u (¢)) o} C CI(C,4) and (F (¢9),?) is an irreducible unitary
representation of U. It can be collectively represented in the tensorial product
®"F (1) . If we label each of these particles 1...N the state of the system is
the same for any permutation for the labels, so their collective state belongs to
a representation of the symmetric group & (n). They are defined by n integers
p1 < P2ee < Pr i p1+p2+...pp, = N which define a class of conjugacy of & (V).
Each ring is composed of p particles belonging to the same family. Moreover
their geometric disposition inside the ring is spatially symmetric.

To measure the variables for the ring p in the same gauge we push them
forward from g, (t — pf) to O(t).

The propagation curves originating from the particle j of the ring p at t —p#,
that is g; (t — pd) , to O (t) have for tangent Y; = ceo + y;, the components of y;
do not depend on ¢, and are fixed by their value at a point on the curve. Then
for the ring p :

q; (t = pl) = @y, (—pb, 0 (t)) & O (t) = Py; (p0, ¢; (t — pb))
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By construct for the vectors of the basis of TiU : Fyps (kq (gj (t — pb))) =
ka (O (1))

The charges have the same value : Q; = Q)

The variables are transported along the curve :

uj (t —pb) € Po (g5 (t = pb)) = Fypox (u; (t = pf)) (O (1)) = Adg; 1yu; (t — pb)
FPo(O(1))

A(0(8) = Fryop (Alg; (t=90))) (O (1)) = Ade, A (g, (¢ = p8)) [L' (9%, (0,4 (¢ — 1)) )|

Vi (a5 (t = p0)) € Ty (t-po)2 = fv,p04Vj (a5 (£ — p0))

= (£ (@, (00,5 (¢ = p0))) | V5 (a5 (¢ = 90)) € To 2

the value of A(Vj) is transported as :

Fy0p: A (ijep*V) (O (1)) = Ade, A (V) (g (¢ = pb)) € TLU

In the tetrad [P (O (t))] the vector fpe.V; (g; (t — pf)) has for components :

Vi () = [P (O )] [£ (%, (p0.q; (¢ - pe»)} (a5 (t = D)

The symmetry with respect to the permutation & (n,) of the particles of
the ring can then be represented by the existence of a spatial rotation at O (t)
represented by oy, (t) € Spin (3) acting in the tetrad at O(¢), then in P¢ (t), such
that : (o, (t))"” = 1. 0}, (¢) is defined up to an arbitrary rotation. If a variable Z;
at g; (t — pf) has a value 2(116:1 7% (qj (t — pf)) Ka, expressed in the orthonormal
basis g (g; (t — pf)) then the variable transported along the curve to O(t) has
for value Fop.Z; = Adg(, (1 Xp (t) where X, (t) = 3,0, X2 (t) ka (O (1)) is
common to the ring p. Which is equivalent to

Fyyope (Xals 25 (a5 (6 =) i (a5 (£ =) = S22, Z5 (a5 (¢ = p0)) Py (a (a5 (¢ = pB))) =
Adg(q, (1)) Sl X2 () Ka (O (1))

Fy,ops (u; (t: p0)) = Adg(o, (1)) tp (1)

The vector Vi (g; (¢ — p6)) = [P (O (g} (¢ — p6)))] Vs (q; (¢ — p0)) is trans-
ported as Adc(a (t))JV (t)

fyiop Vi = Adg,, (f))JV (t) =[P (O®))] AdC(cr (t))JV ()

Fy;op (A (Vi) (g; (t — p9))) = Adc (s, (1)) ( ))

with common quantities u, (t) € U (O (¢)), V), (¢ ) Zk o Vy M) ex (0(),V,(t) =
[P (O (£))]V, (t). The vector V, is related to u,, () through the usual formulas
for the motion : up to a change of basis V; is deduced from V), by a rotation

multiple of o,.
Then the current for each particle

Jj (g5 (t = pf)) = €;Ad; Q5 @ €;V; (g; (£ — po))
has for image at O () :

epAdc (s, (1)) Adu, () @p @ epAdc(s, (1)1 Vp (1)
The current equation reads at O(¢) :

¢ (O(1) = o = —g: 2p—1 2 jer, DAdc(o, 1)) Adu, (1) Qp@epAdc(y 1)1 Vi (t)
The right hand side is the sum of decomposable tensors.
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The velocity of the system, considered as a single particle, is ceq, its state is
1 by definition and we define the apparent charge of the system as Qg € T1U
such that g9 = Qg ® ceg. Then :

n

D> @A, 4y Adu,()Qp @ epAdo(y ) Vo () = Qs @ ceo (101
p=1j€ER,

12.1.2 Equations of state
The equations for the state of the particles imply :
, 5 [ duj |- y 4V _
VjeR,: <Aduij, [A(vj) Ly 1] +A (W»H Loy (1—pt) = 0
The hermitian scalar product is preserved by transport along the propagation
curve from g; (t — pf) to O(¢) :
FYjep*Aduj Q; = AdC(ap(t))j Adup(t)Qp
FYJHP* [A (VJ) ) % : U;l} = [FY,-OP*A (Vj) aFYﬂp* (ddltj ’ u;l)}
. dus
= [AdC(ap(t))jA(Vp) (O@), Fy,op (% "y 1)]
Fyjopeuj = Adg(g, 1y)1tp (1)
-1
duj . —1) _
Fy;opx (Tt’ Uy 1) = % (AdC(ap(t))juP (U) : (Adc(a'p(t))jup (ﬂ)
= 4 (Clop ) - up (1) Cloy (1)) (Clop ) - up ()7 C oy (1))
#(Clon®) - up () Cloy (1))
. iy Cdu, iy .
= 4 (C@)) - Cloy) ™ +Cla) - %2 - Cloy) ™ + Cloy) - uy -
i (Cn™

du; —1
Fy;op ( @ Uj )

= Adg(e,ys (C 0y )7+ £C 0y 1) + up (1) up ()7 + Adu, (£ (C (0, 1)) - C (0, 1))

Fyyops [A(V}), %2 -] =
Adg, 1i |[A(V) (O1),C (0p) 7 - LC (0,) + L2 u,=t + Ady, (L (C (0,)77) - C(0,)
C(op) P ) P dt P dt P p \ dt P P
i [ 4V i [ dVe
The equation reads :
0 :< Adc(o_p(t))jAdup(t)Qp, ' - . .
Adg(ayy [AH) (O (1), C (o)™ £C (o) + %5, 4+ Ady, (8 (C (o)) - C (o)) |+
N [ dVy
Adc(o_p)jA (T) >
0=< Adu,,(t)va

101



[AV) (0 (1),C(0,)7 - 4C (o) + %2 w4 Ad, (8 (C (o)) - C (o)) |+
A(%), > o
For j =mn, : %C’ (op (t))j =

(Aduy Qs [A (V) O ©), drp (8) -y (7] + A (52)) o =0
=Vj:

(Ady, Qs [A(5) (O (1), C (0, (1) 7 - 4C (0, ) + Adu, (% (C oy ) 7) - Clo®)Y)])
! =Vj: %ap(t) =0

o

(Aduy @y [A (V) O ) (8) -y (7] + A (%)) o =0
45, (t)=0
(102)
The first equation is the motion equation for a particle of charge @), state
0 (uy (t)), velocity V,, which would be located at O (t).

12.1.3 Energy-Momentum tensor

The lagrangian for the particles of the ring p at t — pf is :
L () = (Ady, Q3 % - u; + A(V)) (g (= p0))
and the same computatlon as above gives :

. duy — A
L (u5) = (Adu, 0 Qp, %2 -1y~ + A(V,) (O (1)) )

H
L (jluj) has the same value on the ring p :

L") = (Adu, 0@ i 0 0y (07 + AT O@))  (103)

H

We can replace the lagrangian for the particles of the system by

S L (1) = Sy i (Aduy 0@ 1y (6 (07 + A1) (O (1))
The variational derivative with respect to u, is :
T (0uy) = fo (Adu, Qps [ 5 -0+ AV, 0y 0 ] + A (V) o

and gives the related component of the Energy-Momentum tensor, and then
the resistance of the system to a change :

_ 16 Ouyp _1 a.
6“17 - Za:l aza ’ 0z ’

o _ 16 9V Lo — §8 sinh f,, cosh fry, swd
5‘/17 _Za 1 82“ _Z'— (2 Z j

j=1 14+2(cosh p.u,)z =1 py

The value of the partial derivatives gjg Uy, I have been given previously.
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12.1.4 Metric

From the metric equation, because A is constant at O(t), the metric is also con-
stant at O(t). Along any integral curve of a Killing vector field then g (®y (7,0 (¢))) =
freeg (O (1)) :

9 (®y (7,0 (©)] = (L' (@10 (1,0 ()] [9.(O @) [L' (B (7,0 (1))

We are free to choose the origin of time, there is a unique Killing vector
field Y with a given value Y (O (0)) . We can define a spherical chart of €, with
center O (0), the tetrad at O (0) and the components Y7 of and unitary vector
Y (0 (0)), a point m = ®y (ct,0(0)) has then for coordinates £ = ct, and
€5,8 = 1,2,3 are 3 independent parameters defining Y (O (0)). The 4 vectors
of the holonomic basis 9¢” are, distinct, Killing vector fields. From £yg = 0
with each axis we get [g (m)] = [g (O (0))] = [n].

12.2 Nuclear interactions

The field has 16 components, the first, the scalar component, associated to the
EM field, is special, as well as the components W, R because they are directly
related to the geometric motion of material bodies, the most obvious feature of
their state. But theoretically all components of the field should act on elemen-
tary particles, and then on material bodies, on the same footing. But the weak
and strong interactions appear only in some circumstances, at a subatomic level,
which is seen usually of the evidence of the existence of distinct force fields with
specific characteristics, among them their range.

The field is measured through its interactions with particles, and these in-
teractions depend on the charges of the particles. These charges have been
computed from the states of the particles, and actually are just deduced from
the behavior of the known elementary particles. The structure of the charges
does not proceed from any superior principle : they are experimental facts.
Their value, defined up to some universal constant, can be measured with re-
spect to the EM charge, which is just Q1 = (¢, %0) 5y - By construct each charge
is associated to a component of the field and if a charge, as measured, is small
one can expect that the particle interacts weakly with the corresponding com-
ponents of the field. Indeed this is what we do with the EM charge, which can
be null, or the gravitational charge.

Stable systems of elementary particles are special, but they are also com-
mon, even at the atomic level. They behave as a unique body, and can be
characterized by a charge Qs . And it can happen that, for the known stable
systems, that some components of Qg are privileged. Then for all experiments
which involve these systems, some interactions are masked. The fact that all
systems of quarks, except the proton, are instable leads to this conclusion.

12.3 Deformable solids

A the atomic level and up stable systems behave as single particles, endowed
with charges Qg such that they interact only with the EM field, represented
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by the scalars T1U (1) = (iA4,0,0,0,0,0,0,0) and the gravitational field, rep-
resented by the subalgebra : T1Uq = {(0,0,0,iW, R,0,0,0),W,R € R} . The
charges are then Q = (Q4,0,0,Qw,Qr,0,0,0) € T1U with all the components
real.

The state of the particles is then measured by v € U (1) x C (Spin (3,1))
and the variables related to the field take their value in the subspace

(i4,0,0,iW, R,0,0,0) C TyU

which is preserved by Ad,,u € U (1) x C' (Spin (3,1))

All the particles are assumed to belong to the same family with charges @,
the representation of each particle through a common section v € X (Py) and
vector field V. The location of the particle is ¢ = O (¢) , with velocity V =V, its
state is measured by u = u, (£) but usually the particle is no longer free and the
observer is not O (¢) so that for an individual particle ¢ (¢) = ¢, (ct, z (t)) with
the usual standard chart. This is a change of observer and the state equation
still holds :

<AduQ, [A(V) L () .u(t)*l] + A(V)>H lq() =0

It is convenient to introduce a density function p : 2 — R such that the flow
of charges is constant along the vector field V :

d
£v (p(Q)ws) =0 <= d—/; + pdivV =0 (104)
with divV = Y°5_, 05V7 + 535 V705 detg

We have the usual model of a deformable solid, or a fluid, composed of
material points which follow the integral curves of a common vector field, that
is without collision or loss of matter.

The lagrangian for the particles is :

WL () = i (Adu@, [A(V), ru(®) - u(®) 7]+ A(V)) la(®)

The state equation comes from the variational derivative with respect to u
and one can check that p is not involved : the density is deduced from the
conservation equation above. As noticed before at non relativist speed particles
follow geodesics (which are defined by the connection).

The current equation reads :

¢ (po (et @) = — g7 o 1(p) T (p) do

with 7 (p) = Fyou] (o (c(t — 0),2)), T (q (1) = Aduiqep@ V(g (1), Y
q(t) = o (ct,x)

The PDE for the field and the metric equation still holds.

It is possible to go further. The variables u, u, ) are symmetric with respect
to the vector field V. If the system is defined at ¢ = 0 over some area w (0) €
Q3 (0), it will be at t over an area w (t) = ®y (¢t,w (0)) C Q3 (¢) and the integral
Qs (t) = fw(t) uQws is well defined. If there is an isometry on Qg3 (¢) (for the
metric gs) such that its associated Clifford morphism is a morphism for u, then
we have a deformation tensor, and the system is a rigid solid it the morphism
does not depend on t.
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These equations could be useful in Astrophysics, where General Relativity
is required and the variation of the metric cannot be neglected. They enable
to account for the rotational motion of celestial bodies, which is significant
and difficult to model with the traditional representations. But of course some
Thermodynamics should be added to account for the collisions.
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Part TV
DISCONTINUOUS
PROCESSES

There is no totally discontinuous processes, we have discontinuities between
continuous processes, with the apparition of a transition phase.

13 Collision

A system of 2 particles is not stable, its fate is either a collision, or a separation,
depending on their charges. However if an external field is applied a collision
can still happen. The process leading to the collision, as well as the process after
the collision, are modeled by the equations given previously, adjusted if there
is an external field. But the outcome of the collision itself requires a different
approach. We have essentially 2 cases.

13.1 Collision without creation or annihilation of particles

The lagrangian for the particles

(@ (Zoog (w7t dau+ Adyr Aa (g (1)) Vo ())

are defined for any section

JlutR— JWU = jlu(t) = (q(t),u(t),u™t - dgu(t),B =0.3).

By definition at the location O of the collision there is a common basis for
u, V for all the particles, and A (¢ (t)) has the same value.

The energy exchanged by the field is still given by the lagrangian (F, F) and
we have seen that F is a differential operator

[(Ful = [ Agr — Aso + {1‘\107/\11} Ags — Ago + [1‘\1071‘\12} Aoz — Azo + [/\10,1‘\13} }
[Fr] = [ Ay — Ags + [Ag,AQ] Az — Agy + [A1,A3] Ay — App + [1212,1211} ]
Wh\ere o
GIA = (m,Ag, As a=1.16,0,8 = 0..3)
and Zi:o Z}il Agadga ® kq are 4 independent one form . If j1A is the
prolongation of a section then Ag o= 851213 but in a collision it is not necessarily
S0.

It is subjected to the codifferential equation :
dK € A1 (TM,TlU) :

(7, (1 4)] = 14K 95 Vet gs; [Fo (71 4)] = - 0K gs] /et g5
The metric equation still holds : dA = dK

[dA| = 3 (= [Xu] + [X,) lga] /et ga)

44| = =4 (0] + (Xl [9) " v/etgs)
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with

a4, = [ Ao — Aoy Ay — Ay Ay — Ay |
{d}lw} =[ Ay — Ao Aoz — Ao Aoz — Aso |
but the PDE for F are no longer valid.

The lagrangian for the field becomes :

e, =2 ([aA ] plla] ) Vet
— oy ([d/‘xwr ] [dK,.}) Aot g
=2Tr ({dAT] ' (7] {d/ld) Vdet g3

N N
But the Chern-Weil theorem tells that T'r [dAT} 7] [dAw] does not depend

on the value of the field. So that, if g3 does not change, that we can assume
when there is no creation or annihilation of particles, the field is not involved
: we have a case similar to an elastic collision. This holds even for composite
particles, as long as they keep their original form, but of course not at the
macroscopic level : then the density usually would change.

The conservation of energy sums up to :

5 (Adu, @y, (T (doy w7 + Aa (0 (0) Vi (w)) ) = Ct
4

H

3
Y <J;¥,5auj it Aa>H o =Ct (105)

i a=0

d’LLj _

The processes are continuous, before and after the collision, and —;

Ei:o V#au;. So that :

Z<Aduij, (‘Z‘; oyt +A(Vj)>>H = <Adﬂija ((/d;{j) () + 4 (‘7;>>>

i i
(106)
with the variables u;, V; for the incoming particles, and d'],f/; for the out-
going particles. The velocity ,‘}; are fixed by u;.
WG/_SELLI no longer use variational derivatives. The unknown variables are

@, (%) which are independent.
The states equations holds for each particle before and after the collision :
a=1...16 ;

<Adu©k7 { [%’“ cup o+ A(Vy), ‘3’;: -u,;l] + A (‘fl‘z/’:)}>H lo=0
and together they provide a solution of the problem.
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13.2 Creation and annihilation of particles

This is the domain of Particles Physics. In these processes the fundamental state
1o is not preserved. We need to come back to the definition of elementary parti-
cles. They are defined, according to the basic theorems of quantization, as spe-
cific irreducible representation of the group U : the set F = {d (u) (¢0) ,u € U}
is invariant by U. A system of elementary particles can be represented by a
tensor : U = Y 7101 ® Yoa... ® Yo, € ®7F, in another representation of U.
But a tensorial representation is usually not irreducible : it can be decomposed
in the sum of irreducible representations, which are not necessarily the original
ones but are equivalent. In this process new particles can appear.

There are mathematical tools which enable to find equivalent representa-
tions. They are based on the Cartan algebra of the Lie algebra. It is simpler
here because we have a single Lie algebra (the Clifford algebra P¢ itself) whose
Cartan algebra is 4 dimensional (see my paper on Clifford algebras).

The lagrangian for the particles is still given by

(Adu, @, (%0 + AR))

and because V; # 0 their sum is not necessarily preserved. The field is
involved. From the Chern-Weil equation it implies that g3 is not constant : the
metric adjusts to the new value of the field, but it is still continuous and the
metric equations still holds.

A discontinuity appears in the potential :

|:AA7’] = [ A32 - A23 A13 - A31 A21 - A12 ] = *% ([Xr] + [Xw} [93]_1 Vdet 93)
[84u] = [ Aot — Ao Aoz — Ao Aoz — Ago ] = 3 (= [Xu] + [X/] [96] /v/eT g3)

It is no longer smeared out in the propagation and appears as a boson.

14 Bosons

14.1 Discontinuity of the connection

The propagation of the field is expressed through the derivative of the connection
along aAprojectable vector ﬁeldAY eTU:

£y A(py) = 4= (@y (1,))" A(py) lr=o

The connection is always continuous, but not necessarily continuously dif-
ferentiable. If there is a discontinuity of the derivatives (such as expressed in
AA) there can be a right and a left derivative which are not equal :

o~ ~
N N

Ap (1) A(pu) = limr—o 2 (@y (7.)), A(pu) = A (pi))

A (1) A(pa) =lim—o L (@ (=7,), A(pa) = A(p0))
TheAdiscontinuity is Arepresented by R

AyA(m)=Ap (1) A(py) = AL (1) Alp)
=limr o 2 ((@y (7)) A (p) ~ (Bx (-7.)). A (1))
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~ ~

(®y (1,.))" A (pu), (Py (—7,.)), A (pu) are both one forms Ay (TU*; Ty U),

so Ay A (m) is a one form Ay (TU; TyU) . Because it is computed by a difference,
in a change of gauge on Py it transforms by Ad, -1 as F and not an affine law.
It depends on the projectable vector field Y. Similarly to what is done in the

definition of F we can, using the standard gauge p,, (m), pull back Av A (m)
with a vector Y € TM
P, (y) : TM — TU = Y (pu (m)) = pi, (m) (V)

p: (A) Ay (TM;TVU) — Ay (TU; TLU) =2 AA (py (m)) = pl, (m) AA (m)

Pl (AvA) : TM = TU = AA(Y) =, (AvA) (1) = A (py (m)) (B, () (1))
_ And it is then a one form AA € A (TM*;TU) , expressed with the potential
A, depending on the vector field Y.

The phenomenon is similar to a shock wave in a continuous fluid. A con-
tinuous fluid can be represented by material points, which follow trajectories
q (t) which are integral curves of a common vector field V, and can be iden-
tified by their location at ¢ = 0. Some physical variable X attached to each
material point is represented in a vector bundle by a section which is symmetric
with respect to V 1 X (®y (¢,4(0))) = frea—X (¢ (£)) . The fluid is continuous,
but a discontinuity can appear in the derivative % : this is a shock wave. It
can be represented by a function 6 :  — R such that the wave reaches the
point ¢ at the time 6 (q), and a section AX with the same base {2, such that
j1X = (q, X, % + AX ) . Which is equivalent to say that we have the superposi-
tion of a continuous process, represented by X, and a discontinuous process AX
which propagates by waves, corresponding to to the sets Q (t) = {q: 6 (¢) =t} .

In the case of the field, it is continuous but, as we have seen, its propagation
does not follow integral curves of a vector field, but happens in the 3 dimen-
sional folliation Q3 () . As a consequence a discontinuity in the field propagates
along curves. It is then similar to the motion of a particle, and leads to the
representation of bosons.

A discontinuity is always a transition point between continuous processes,
before and after the discontinuity the variation of the field is represented by the
Lie derivative F. It propagates with the field, on Q3 (¢), that is with the spatial
speed c. It is then legitimate to assume that it propagates along the same curves,
with null, future oriented Killing vectors Y = cegg + y and AA (Dy (1,q)) =
FYT*AA (q)y (T, q)) .

Proposition 17 Discontinuities in the derivative of the field can be represented
as one form AA € A (TM*;T1U) with support a null, future oriented Killing
curve, and they propagate along this curve at the same speed as the field, by
transport such that AA (®y (1,q)) = Fy . AA (By (1,q)).
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14.2 Bosons

The vector Y is a characteristic of the discontinuity. The quantity AA (Y) is
transported along the propagation curve as :

AA(@y (1,m) = Py AA @y (r,m) = [Adoqs)] [AA ()] [/ (@y (r,m))]

Y (®y (1,m)) = fysrY (m) = [L(Dy (7, m))][Y (m)]

FY*TAA (fy*TY) (@y (7', m)) = [AdC(S’)} AA (Y) (m)

where S € Spin (3,1) depends only on the curve, and so is constant for the
discontinuity.

The vector

B = [Adcs)] AA(Y) € WU (107)

is constant, and is the representation of a boson. It is similar to the state v
of a particle but does not belong to the same vector bundle.

The different types of particles and fields appear, layer after layer, in exper-
iments which involve parts of the unified field identified in T7U.

The action [Adc(s)| preserves the Lie subalgebras corresponding to the dif-
ferent fields, given by AA (Y), so bosons manifest themselves when these parts
of the fields are involved, and one can associate bosons to each type of field :

Photons : B = (i4,0,0,0,0,0,0,0) are associated to the EM field, in a 1
dimensional vector space, isomorphic to ThU (1)

gravitons B = (0,0,0,iW, R,0,0,0) are associated to the gravitational field,
in a 6 dimensional vector space,

weak bosons B = (0,0,0,0, R,0,0,0) are associated to the weak field, in a 3
dimensional vector space, isomorphic to 715U (2)

gluons B = (i4,0,iV,0, R, X, 0,0) are associated to the strong field, in a 8
dimensional vector space, isomorphic to T7.SU (3)

So there is a part common to the weak and the gravitational field.

In Particles Physics bosons are vectors of a basis of the Lie algebras

T\U (1),T15U (2),T1SU (3)

The action of Adc(g) is similar to a “spin” : S is a spatial rotation.
The quantity (B, B); = <AA (Y),AA (Y)>H is constant along the propa-

gation curve.

14.3 Interactions of bosons with particles

Bosons are essentially the field, the action of the field on particles is represented
by the covariant derivative of the connection, along the trajectory of the particle

. Vyu = Ady (% cu~t 4 A(V)) because the motion of the particle on its
trajectory forces the change in the potential. With a boson the change in the
potential occurs through AA. The trajectory of the particle is not involved. So

the interaction reads :
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Au = Ady— (d“ w4 B> (108)
dt

The interaction of the field with a particle always changes its trajectory
(through % -u~! and the fact that the motion is represented in u). In the inter-
action with a boson the trajectory is still continuous, but no longer continuously
differentiable.

The lagrangian for a particle is :

Ly (j'u) = + (0. Vv i) = 1 (009" (1) (Vvstu) o)

then in an interaction with a boson :

Ly (jlu) = 7 (¥, M)y = § (oo, 0" (1) (Aw) o) y

With ¢¥g = (a,vo,v,w,r, xg,2z,b) with complex components in the usual
orthonormal basis of CI(C,4) and

%V jlu =6k =

{(iTA, TV0 iy, iTw, TR, TXO, Iy, TB) Ty, TV0 s TXm T e R, Ty, Tw,Tr, Tx € R3}

we had

L (o, 9’ (1) (6%) (¥0)) 5y =

QaTa+ Qv Tvy, + QL Tv + QY Tw + QRTr + Qx,Tx, + Q% Tx + QpTs

that we writes : + (2,9 (1) (6k) (¥0)) i = (Q, k) 5 so we have similarly a
simple expression for the change of energy of particles in an interaction between
bosons and particles :

16

Ly (j'u) = <Q7ZB“/~%> =(Q,B)y (109)

a=1 H
with the components of B in the real basis of T1U.

By construct the bosons interact with the particles as the corresponding
components of the field.

It is then tempting to attribute charges to a boson, they would be B, which
are constant because B is constant along a propagation curve. In this picture the
“mass” of a boson corresponds to the 6 components associated to 17 Spin (3,1),
photons are massless and only “gravitons” and “weak bosons” have a mass. But
Bosons do not interact with the field. The deviation of light by stars is explained
by the curvature of the space, not by the action of the gravitational field. And
in Particle Physics the gravitational field is not considered, and what is called
the mass has another definition.

The energy exchanged by a boson in an interaction can be defined by ex-
tending the scalar product (F, F) from 2 form to 1 form.

(Ad,A4) = inaaGl (ade,ade) = i 23: Mg AASAAL  (110)
a=1

a=1\,u=0

and it can express the energy carried by the discontinuity. It is constant
along a propagation curve because it is a Killing curve. The energy carried by a
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boson is constant (the “attenuation” of photons is explained by the expansion
of the Universe).

In the action of a boson on a particle the balance of energy then reads :

(Q. By + (A, AL) = Ct (111)

14.4 Creation and annihilation of bosons

The picture of the action of the field on particles, given by the currents and the
propagation curves, is similar to the usual diagrams, where the interactions are
mediated by bosons, seen as the carriers of the field, with the added bonus that
the arrows are here clearly identified curves. However bosons are discontinuities
in the field, and they appear, or disappear, in special circumstances.

We have seen that in elastic collisions the field is not involved. Bosons are
created when and where there is creation or annihilation of particles, which
can be composite. In these processes the balance of energy for the particles

is the sum Ej <Aduij7 (% .uj—l + A(VJ))>H’ and an excess or a deficit is
balanced by a discontinuity of the field <AA, AA> .

A more frequent occurrence is the interaction with a composite particle, such
an atom. In a stable system the states of elementary particles are quantized. The
elementary particles j are located on rings p where their state follows common
rules : their lagrangian L (j luj) has the same value on the ring p :

Ly = SN0 L (45) = Sy mp (Aduy Qs ity (8- ()7 + A (V) (O (1))

In interacting with the field, the state of the particles can be adjusted in two
different ways :

i) by a change of the state u, of the particles in the same ring

ii) by a reorganization of the rings, which implies a change of n,

The process i) is continuous, but it is bounded by the necessity to keep
the stability of the whole system. The process ii) is discontinuous, and as a
consequence there is a discrepancy in the field. It works both ways : a stable
system is reorganized either following collisions as in the black body radiation
and then emits a boson, or after it has absorbed a boson. And in both cases
the exchange is quantized : it takes definite incremental values.

The boson disappears in the process but, if the energy that it brings is
greater than what is necessary, another boson can be emitted, to absorb the
rest, as in the Comton effect.

In these processes the lagrangian for the particles L, (jlu) = (Q,B)y is

expressed with B = [Adc(s)] AA (Y) and so accounts non only for the energy

carried by the boson (in AA) but also its trajectory (Y) : the latter is involved,
and as such the trajectory of an out going boson is fixed.
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Part V
CONCLUSION

We have met our objectives, that is a to provide a consistent representation of
unified field an elementary particles, with operational computations for systems
of particles. We have given a new, consistent representation for bosons and their
interactions with particles.

The most important results are about stable systems. The equation

> pm1 2jer, Adc o, (1)1 Adu, () Qp © EpAdo(y, (1)) Vi (8) = Qs © ceo

gives a general condition for their existence, which should be tested with the
values for the different elementary particles.

So far we use the nuclear forces in a crude way, based on the natural decay
of some nuclei. Other stable systems can exist, and we can hope to go from one
to another by stimulating the rearrangement..

Moreover stable systems encompass deformable solids, and the results pro-
vided here are usable in Astrophysics.

113



Part VI
ANNEX

15 Fiber bundles

15.1 Fiber bundle

Definition 18 A fibered manifold E(M, ) is a triple of two Hausdorff man-
ifolds E, M and a surjective submersion w: E — M .

which means that ¥p € E,3m € M : 7 (p) = m; 7’ (p) is surjective

M is called the base space and 7 projects £ on M. For any p in E there
is a unique m in M, but every v in V provides a different p in E. The set
7=l (m) = E(m) C E is called the fiber over m. It is a submanifold of E.

A fiber bundle E (M, V,7) is a fibered manifold whose fibers are given by a
3d manifold V. Locally E ~ M x V and they are characterized by the existence
of an atlas of consistent charts.

Definition 19 On a fibered manifold E (M, ) an atlas of fiber bundle is a
set (V. (O, a)yen) where :

V' is a Hausdorff manifold, called the fiber

(O) e 15 an open cover of M

(Pa)aca 18 a family of diffeomorphisms, called trivialization :

0a:0axVCMxV —11(0,) CE::p=p,(m,v)

and there is a family of maps (@ab)(a,b)eAfo called the transition maps,
defined on O,NOy, whenever O,NOy, # & , such that pap (M) is a diffeomorphism
on'V and

Vp € 771 (0aNOb) ,p = ¢a (M, va) = @1 (M, 05) = Vb = Pba (M) (Va)

meeting the cocycle conditions, whenever they are defined:

Va,b,c € A @aq (m) = Id; pap (M) © Ppe (M) = Pac (M)

FE
71 (0,)
! AN
T ! Pa
! AN
O, — —  — O, xV
M M xV

A change of trivialization on a fiber bundle F (M, V, 7) with atlas (O, ¢a)
is the definition of a new, compatible atlas (Oq, $a),c 4 > the trivialization @,
is defined by :

a€A

Pa — Sza PP = Pa (m; va) = @a (ma :Ja) Aad 5a = Xa (m) (Ua)
where (Xa),c4 is a family of diffeomorphisms on V. The new transition
maps are : pq (M) = x5 (M) 0 @pa (M) 0 X (m) ™" and the cocycle conditions are
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met. Y, is defined in O, and valued in the set of diffeomorphisms over V' : we
have a local change of trivialization. When y, is constant in O, (this is the
same diffeomorphism whatever m) this is a global change of trivialization.
When V has an algebraic structure additional conditions are required from y.

A class r section S on a fiber bundle E(M, V, 7) with trivialization (Og, ¥4 )aca
is a family of maps (04),c 4,04 € Cr (Oq; V') such that:

Vae A,m € O, : S (m) =@, (m, o4 (M))

In a change of trivialization : ¢ — @ :: p = ¢ (m,o0(m)) = ¢(m,o(m)) <
g (m) = x(m) (o)

Notation 20 X, (E) is the set of class r sections of the fiber bundle E

As for manifolds usually one needs more than 1 open O to define a fiber
bundle (a sphere requires 2), but the cover (O),. 4 is usually fixed and is not a
concern. Meanwhile changes of trivializations are important, notably for physi-
cists. The choice of a trivialization is arbitrary, and in Physics the implemen-
tation of the Principle of Relativity tells that a law should not depend on the
choice of trivialization. This is similar to what we say for manifolds or vector
spaces : a physical property does not depend on the charts or the basis in which
it is expressed. If a quantity is tensorial it must change according to precise
rules in a change of basis. If an observer uses a trivialization, and another one
uses another trivialization, then their measures (the v € V) of the same phe-
nomenon should be related by a precise mathematical transformation : they are
equivariant.

It is easy to see that the formulas for a change of trivialization read as the
formulas for the transitions by taking ¢p, () = x, (). So in this paper I will
drop the index a labelling the open O, when it is not required : it is assumed
that the formulas hold for a given cover, which does not change.

15.1.1 Vector bundle

Definition 21 A vector bundle E(M,V,r) is a fiber bundle whose standard
fiber V' is a Banach vector space and transitions maps @qp(xz) : V. — V are
continuous linear invertible maps : pap (x) € GL(V;V)

The fiber over each point of a vector bundle E (M, V,n) has a canonical
structure of vector space, isomorphic to V. Practically a vector bundle is defined
by the choice, at each point m € M of a holonomic basis (e; (m)),.; of V and
an element of the vector bundle E(M, V,7) reads : V (m) = ¢ (m, >, v'€;) =
>ierv'ei (m)

A change of trivialization is a linear change of holonomic basis, which can
depend on the point m :

e (m) = ¢ (m, ;) — & (m) = & (m,e) = x (m) " ¢ () |

V(m) =3 epv'e (m) = 3, 0°€ (m) & 30,06 = x (m) (¢, v'ei)

This is the generalization of the usual tangent bundle over a manifold, de-
fined by frames : the vector space can have different properties and notably a
dimension different from the dimension of the manifold.

—1

115



A complex vector bundle E(M,V, ) over a real manifold M is a fiber
bundle whose standard fiber V' is a Banach complex vector space and transitions
functions at each point @, (m) € GL(V;V) are complex continuous linear
maps.

Using the tensorial product at each point of the vectors e; (m) any tensor
can be defined in the tensorial bundle @ E(M, @V, 7). Its elements is a map from
M to the fixed tensorial algebra ®V.

Usually the bases must meet some additional properties, as being orthonor-
mal, and we have an associated vector bundle.

A morphism between the vector bundles E; (M;,V;,7;),j = 1,2 is a couple
(£, f):

f:M1—>M2,F:E1—>E2

Vme M, : F (71'1 (m)fl) el (m (m) ™ 5w (f (m))fl)

fom =moF

A scalar product on a real vector bundle E(M,V, ) is a map defined on M
such that (m) is a bilinear symmetric, non degenerated form on V. It is defined
either by a 2nd order covariant tensor on the tensorial bundle @ E(M, @V, ), or
by a a 2 form on V such that the transition maps (or the change of trivilizations)
preserve the scalar product.

15.1.2 Principal fiber bundle

Definition 22 A principal (fiber) bundle P (M, G, ) is a fibered manifold,
with G a Lie group which acts freely on P on the right by an action p: Px G —
P ::p(p,g) such that the orbits of the action {p(p,g),9 € G} =71 (m).

Then an atlas of P is defined as follows :

the choice of a set of bijective maps : p, : Of — P :: w(pg (Mm)) = m which
are the gauge at each point

then

Pa: Oa X G — Pip=pa(m,ga) = p(Pa(m),ga) = 7 (p) =7 (pa) =m

This is equivalent to define a section p, (m) = @, (m, 1)

Then p(ga (m,g),h) = @a (m,gh), 7 (p(p,g)) =7 (p)

The transition maps are :

¥p € 771 (0 NO) Py (M) = p(Pa (M), gba (M),

P = ¢a (m.ga) = @b (M, g) = p(Pa (M), 9a) = p (Ps (M), ) = p(Pa (M) , Goa (M) g5)

9o = Gba (M) Gb & G = Goa (M) ™" - ga

This action is free and for p € 771 (m) the map p(p,.) : G — 71 (m) is a
diffeomorphism, so pg (p, g) is invertible.

The orbits of the action are the sets 71 (m).

The right action of G on a principal bundle P (M, G, ) does not depend on
the trivialization.

A change it/rivialization is a change of gauge :

p(m) — p(m)=p(p(m),s(m))
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p(p(m),g9)=p (p(m),§> =p(p(p(m),»x(m)),g) =p(p(m),»x(m)- g) <
g=sx(m) " g

A bundle of linear frames on a vector bundle E (M, V,r) is the set of its
linear bases. It has the structure of a principal bundle with base M and group

the group to go from one basis to another at the same point (it is included in
GL(V;V)).

15.1.3 Associated fiber bundles

Definition 23 A fiber bundle E(M,V,r) with atlas (Oa,Pa)yecs has a G-
bundle structure if there are :

- a Lie group G (on the same field as E)

- a left action of G on the standard fiber V : A\: G XV =V

- a family (gus)o pen of Maps : gap : (0a N Oy) — G

such that the transition maps read : ppq (M) (1) = A(gpa (M), u)

P = pa(m,uq) = @u(m, up) = up = A(goa(m), ta)
With a G bundle structure the changes of trivialization are given by the left
action of the group G

p—@up=g@u) =9 u)eu=A(x),u)

Notation 24 E = M xgV is a G-bundle with base M, standard fiber V and
left action of the group G

Definition 25 An associated bundle is a structure which consists of :
i) a principal bundle P(M,G,wp) with right action p: P x G — G
i1) a manifold V and a left action A : G x V. — V which is effective :
Vg,h e G,v eV :A(g,v) =A(h,v)=g=h
i11) an action of G on P X'V defined as :
A:Gx(PxV)—=PxV:Ag(pu)=(p(p,g),A(g7"u))
iv) the equivalence relation ~ on PxV : Vg € G : (p,u) ~ (p (p,g), A (g_l,u))
The associated bundle is the quotient set E = (P x V) [ ~
The projection g : E — M :: g ([p,u],_) = np (p)

Notation 26 P [V, \] is the associated bundle, with principal bundle P, fiber V
and action \: G xV =V

The elements of an associated bundle are classes of equivalence located at m.
It is equivalent to tell that the trivialization of P [V, ] is given by ¢g (m,u) =
(p (m),u) with the standard gauge p (m).

Because A is effective, A (.,u) is injective and A} (g,u) is invertible.

Ina Changg_gf/gauge in P :

p(m) = p(m) = p(p(m),%(m) = p(p(m).g) = p(p(m).§) & § =



A (e m) ™ iE) = w e = A (2 (m) )

For any fiber bundle E (M, V, 7) endowed with a G structure there is a unique
principal bundle Pg (M, G, 7m¢) such that E is the associated bundle Pg [G, A].

It is always possible, and practical, to work locally in the standard gauge
p (m) to express an element of an associated bundle.

A section of an associated bundle is a map S : M — V : (p(m),S (m)) ~

(p(p(m),u), A (u™t,S (m)))

Definition 27 An associated vector bundle is an associated bundle P [V, 7]
where (V,1) is a continuous representation of G on a Banach vector space V' on
the same field as P (M, G, )

So we have the equivalence relation on P x V : (p,u) ~ (p (p,g),r (g_l) u)
In a change of gauge in P :

p(m) — p(m) = p (B (m) , 2(m)) = (p (m) ,u) = (p (). (3¢ (m)) u)

Any vector bundle E (M,V,7) has the structure of an associated bundle
P[V,r] where P (M,G,wp) is the bundle of its linear frames and r the natural
action of the group G on V.

The adjoint bundle of a principal bundle P (M,G, ) is the associated
vector bundle P [T} G, Ad]

15.1.4 Clifford bundle

Let (V,r) any vector space on a field K, endowed with a symmetric form r
valued in K, which is not degenerated. Then one can define the Clifford bundle
ClL(V,r).

If E(M,V,n) is a vector bundle, then one can define similarly a Clifford
bundle E (M,Cl(V,r),n), through an orthonormal basis at each point. The
structure of the Clifford algebra can be real or complex. No relation between the
Clifford algebra and the tangent bundle T'M is assumed a priori. A morphism
between the Clifford bundles E; (M;,Cl(V;,r;),mj),j = 1,2is a couple (F, f) :

fIM1—>M2,FIE1—>E2

Ym e M, : F (71'1 (m)_l) el (m (m)~ " ima (f (m))_l)

fom =moF

where F' preserves the scalar product and the algebraic structure.

The restriction of E (M, CIl(V,r),n) to Spin (V,r) gives a principal bundle
P (M, Spin (V,r), ) with its natural right action. This is equivalent to define
a standard gauge p (z) =1 € CI(V,r) (z) with the natural right action p (z) =
p(P(z).9)=g(z).

The Clifford automorphisms on C1(V,r) are given by the adjoint map Ad,
with g € O (Cl(V,r)) = K x Spin (V,r). So that, if G C CI(V,r) is a group one
can define the associated Clifford bundle Pg [Cl(V,r), ] with the left action
Mg, Z) = AdyZ at m.
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15.2 Tangent bundle to fiber bundles
15.2.1 Fiber bundle

A fiber bundle E (M, V, ) is a manifold, its tangent bundle is a vector bundle
TE(TM,TV,Tr)

Any vector Y, € T,E of the fiber bundle E (M, V,7) has a unique decom-
position : Y, = ¢}, (M, va) (Ym>Yav) Where : yp, = 7' (p) Y}, € Ty M does not
depend on the trivialization. It can be uniquely written: ¥, = > 3 yfflam@ +
> y: Ov; with the basis, called a holonomic basis,

Oma = ¢, (Mm,yu) 0y, Ov; = ¢, (m,v) On; where dEg, On; are holonomic
bases of T,,,M, T,V

The coordinates of Y}, in this atlas are : (55, nt 2, y}J)

7' (p) Yo = X5 45,08s

Notation 28 9mg (lattin letter, greek indices) is the part of the basis on TE
induced by M

Notation 29 0Ov; (lattin letter, lattin indices) is the part of the basis on TE
induced by V.

Notation 30 0&s (greek letter, greek indices) is a holonomic basis on TM.
Notation 31 0; (greek letter, lattin indices) is a holonomic basis on TV .

The vertical space at p is : V,E = kern’(p) = {3, 4.0v;} .This is a
vector subspace of T, F, isomorphic to T,V, which does not depend on the
trivialization. The vertical bundle of a fiber bundle FE (M, V,r) is the vector
bundle : VE (M, TV,7r) : M x TV — VE :: ¢!, (m,v) y,

A vector field Y € X (TE) is projectable if n’ (p) (Y) € X (T'M)

15.2.2 Vector bundle

The tangent space to a vector bundle E(M, V, 7) has the vector bundle structure
: TE(TM,V x V,T'm). A vector v, of T,E at (m,v,,) reads :

Up = D nea VOma + > ;o  vie; (m) where Omg = ¢, (m,v) 8, so the
vertical bundle is equivalent to B : VE = {},.; vie; (m)}.

In a change of gauge :

ei(m) — & (m) = x(m)e; (m) = vy, =3, caV20MTo + > vie; (m) =
> aca vgOmq + D ier %Zévi (m)

Dier Vu€i = Dier Vu®i

15.2.3 Lie group

Action of a Lie group on a set
A left-action of G on F is a continuous map : A : G X E — FE such that :

Vp € E,Vg,g' € G:A(g,A(g,p)) =A(9-9".p);A(L,p)=p
A right-action of G on E is a continuous map : p: E x G — E such that :
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Vpe ENg. g €G:plp(p.g).9)=ppg -9);ppl)=p
If E is a manifold and A, p differentiable, we have the identities :

Ay (L,p) = Id; pp,(p, 1) = Id

Ay (9,p) = Ag(l AMgp)) Ry —ig =X, (9,0) A (1,p) Ly 1y
Py(p, 9) = py(p(p, 9), 1)L 'g—l( )—Pp(, )Py (p, DR, 1 (g)
/\’( P~ :/\;( LN (9,9) ;s (00, 9)) " = Ph(p(pog) g
(A, (9:2) =X, (97" A (g,p))

(Pp 7.9) " =p(p(p.g) .97

Fundamental vector fields

Notation 32 Let )\ be a differentiable action of the Lie group on the manifold
N. The fundamental vector fields are the vectors fields on N generated by
a vector u of the Lie algebra of G: (1 : T'G — T'N :: (1, (u) (p) = A (1,p) u

We have similarly for a right action : (g : TIG — TN = (g (u)(p) =
Py (0, 1) u

They have the following properties :

i) the maps (1, (g are linear

i) [Cr (u), ¢ (”)]x(TN) =—CL ([UvU}Tlc)

[Cr (v),Cr (U)]x(TN) =(r ([U> U]TIG)

i) ) (2, ) [pqCs (1) (0) = C1, (Adyu) (A (2, q))

Py (@, 2) |p=qCr (v) (@) = Cr (Ady-1u) (p (g, 2))

V) Co () = Ao (R (1)u,0) ,Cr (u) = po (L (1) 4, 0)

v) the fundamental vector fields span an integrable distribution over N,
whose leaves are the connected components of the orbits.

vi) The flow of the fundamental vector fields is :

(PCL(u) (tap) =A (eXp tuap)

q){L(u) (t’p) =p (pv exp t’LL)

Tangent bundle to a Lie group

Notation 33 L/ x is the derivative of L, (g) = a- g with respect to g, at g = x;
Lz € GL(T,G;ToG)

Rl x is the derivative of R, (g9) = g - a with respect to g, at g = x; Rz €
GL (T,G;ToG)

We havle the identities :
(Lgl) = Ligs (Ry1)
p’ (9)=r(@)p (1)L, g
o (9) R)L(X) = o (1) (X) p (9)
The ad301nt map is Ady, = Lyg 1o R’,ll = R',lg oLyl
The tangent bundle TG UgEG’T G of a Lie group is stlll a Lie group with
the actions :

-1
= R;—lg
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M:TGxTG — TG = M(Xy,Yy) = R, (9) Xy + L (9)Yn € TynG

S:TG — TG :: (X)) = —R;,l(l)oL;,l(g)Xg = —L;,l(g)oR;,l(g)Xg =
—Adgan S Tg—lG

Identity : X; =0, € G

It is isomorphic to the semi direct product group : TG ~ (T1G,+) xaq G
with the map Ad: G x T1G — TG

(9:5) x (¢, k') = (99 k + Adgr')

(9:8) " = (97", —Ady1)

Tangent bundle of a Lie group defined in a Clifford algebra
For any group G € CI the left invariant vector fields are Z (1) = exp 7T with
T e T1G
The tangent space at g € G to the tangent bundle TG is T,G = {g - T, T € T\ G}
The tangent bundle T'G is a group, isomorphic to the group product : TG ~
G X (TlG, +)
(9.5) x (¢',k") = (99", 5 + ')
(9.) x (1,0) = (g.)

15.2.4 Tangent bundle on a principal bundle

The fundamental vector fields on the principal fiber bundle P are the vector
fields on T'P defined, for any fixed x in T1G , by :

C(): M = VP C(r) (p) = pl (9, 1)

They belong to the vertical bundle 7’ (p) ¢ (k) (p) = 0, and span an integrable
distribution over P, whose leaves are the connected components of the orbits

VXY € TiG: [C(X) ¢ (V)lyp = ¢ (IX, Y] )

In a change of gauge in P :

p(z) = p(m)=p(p(m),x(m))

¢ (k) (p) = ¢ (Ad,-15) (p)

The charts of P (M, G, 7) are defined over an open cover by :

Vp e (00N O),pa (m,9) = p(Pa(m),9)

where p, € C, (O,, P) defines the gauge. So we assume that it is a differen-
tiable map and p;, (m) v, is a vector of Tp, () P.

A vector of T,P at p = ¢, (m, g) = p(Pa (M), g) is then :

Vp = 0 (Pa (M), 9) P, (M) U + 0y (Pa (M) , g) kg With kg € T,G

Py (Pa (M), 9) kg = py(p (Pa (M), 9), 1)L} 1 (9)kg = ¢ (L;ag (%g)) (p(Pa (M), 9))

A vector V, € T, P of the principal bundle P(M, G, ) can be written

Vo = Vi + C(5) (p(Pa (%), 9)) = 220 v 0ma + € (k) (p) where

5 € TG, 0me (p) = p), (Pa () ) Pl (1) 960 (8) (0) = ¢ (L 19 (15)) (0 (P () )

The right action of T'G on the tangent bundle reads:

Tp (((m, h), @' (m, h) vm + ¢ (vn) ), (9, (L)1) Kg))

= (p(p,9), %%, (m, hg) v + ¢ (Adg-1vn + ) (p (p, 9)))

Tp:TP xTG— TP ::Tp((p, 3, ve0ma (p) + (k) (p)), (3, Kx))

121



= (p(p, ), 20 vz Oma (p (D, ) + C (Ad, -1k + 55.) (p (P, %))
The tangent bundle T'P of a principal fiber bundle P (M, G, 7) is a principal

bundle TP (TM, TG, Tr).

The vertical bundle VP is :

a trivial vector bundle over P : VP(P,T1G,n) ~ P x T'G

a principal bundle over M with group TG : VP(M,TG, )

The vertical bundle can equivalently be defined as the bundle of the fun-
damental vector fields, that is the adjoint bundle P [T1G, Ad] : (p,¢ (k) (p)) ~
(p(p,5),C(Ad,—1k) (p (P, %))

Ina changﬂ(\)_f/ gauge in P : o
p(m) = p(m) = p(p(m),%(m) = p = p(p(m).g) = p(p(m).7) &

g=x(m) g
Vp = Vin + ¢ (k) (p) = Vin + ((Ad,.—1k) (p)

15.2.5 Associated bundle

The tangent bundle T'FE of the associated bundle E = P [V, A] is the associated
bundle TP [TV, T\ ~ TP xXp¢ TV
The left action of TG on TV is :
TA=MNXN):TGXTV =TV : TA((5¢, k) , (u,ov)) = (A (e, u), N (5, 55,) (u, vv))
The equivalence relation is :
((p,vp + ¢ (5) (p)) 5 (u,0v)) ~
((p (p,5) ,vp + C(Ad,, -1k + K, ) p (p,%0)) (/\ (%_1,u) SN (%_1, —Ad%a/ﬁﬂ) (u,vv)))
The projection is
7 (p) ((p, vp + € (5) (P)) , (w,0v)) = 7' (p) vp
The vertical bundle ker T'rg is generated by the fundamental vector fields :
(C (k) (p), =N, (1,9) k) VP X TV

16 Jets

In Differential Geometry one avoids as much as possible the coordinates ex-
pressions. But this is difficult when dealing with partial derivatives. The r-jet
formalism provides a convenient solution, which is an essential tools for differ-
ential equations.

16.1 Jets on a manifold

For any r differentiable map f € C, (M;N) between manifolds, the partial
derivatives M% at a point m are s symmetric linear maps from the tangent
space T, M to the tangent space T, N. As any linear map their expression in
holonomic bases is a set of scalars féluus, symmetric in the indices ag, ...
The relation of equivalence on C,. (M; N) :
f~ge fm)=g(m) = p,....%(m) = wﬁ%(m),s =
l..r,ar =1..dim M
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defines classes of equivalences of maps f,g which have the same value and
partial derivative at m up to the order r. They are characterized by the set of
scalars :

7" = (% 0, ER,s =lrap = 1.dim M,i = 1..dim N) € J;, (M,N),

zfnm% symmetric in the indices o, .. ,

The set Jy, (M, N), is a vector space. The z,,
symmetric tensors belonging to ©*T,, M* ® T),N.

A r jet with source m and target p is a set j;, , = (m,p,j") and more
generally a r jet is a map 5" (m) = (m,p (m),j" (m))

The r jet prolongation of f is the map :

J7f (m) = (m,f (m), geetiger (m) s = Lr,ap = L.dim M, i = 1..dimN)

A key point is that any map f has a r-jet prolongation, which is a r-jet,
but conversely in a r-jet there is a priori no relation between the zl, ., (m) :

they do not correspond necessarily to the derivatives of the same map f. The

i

distinction between W and z{, .

., are the components of

is useful : a differential equation is

N
a relation between components of a r-jet : L (m, z, mela) = 0 and a solution
is a map f of C, (M; N) such that L (m,f(m) , 85“18.5-%) = 0.

16.2 Jets on fiber bundles

Fiber bundles E (M, V,r) are manifolds, so we can implement the principle
above by taking as maps sections on E. They are defined by :

S:M — E:S(m)=pp(m,z(m))

and r-jets on E are defined by r—jets prolongations of z.

The coordinates of z (m) € V are 5,7 = 1...dim V in a chart {n'} = ¢y (z)
of V.

The partial derivatives 65‘1169-.7?-%6%
charts of M,V are scalars : 7, ..., With the condition that they are symmetric
in the indices aq,...as.

The r-jet prolongation J"E of the fiber bundle E (M,V,n) is the vector
bundle :

J'E (E, Jg (RdimM, V)O ,’R'T) with basis F, fiber the vector space :

Jg (RdimM,V)o = {ngln_as eR,s=1.ra,=1.dimM,i =1..dim V} and
projection : 7" : JTE — E.

So the map :

o7 (7TT)_1 (Og) — R™ x R™ x Jg (R™,R™), ::

n(57Z) = (€%, a,s =L 1 < ap < agpr <myi=1.n)

is a chart of J"FE as manifold and

(56‘7171',7731_'%, s=1.rl1<ap <agpy <m,i= 1..n) are the coordinates of
"z

A section on J"E is a map : j"p(m) = (p(m),n}, .. (m)) where 1’ are
coordinates in a chart of V.

are linear maps whose components in
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The key point is that an element of a jet are expressed through the coordi-
nates in the charts of the manifold V. The definition of the jet bundle is purely
local : the transition maps are not involved.

A section S on FE gives a section on J"E : J"S = (S (m), 85(1167265“ (m))

Two sections S, S’ belong to the same r—jet if the value of z, 2’ and their r
derivatives are equal.

Because J"E is a manifold, it has a tangent bundle T'J"E whose elements
are expressed simply by their components :

6" Z ={p(z),0m%, o €Rs=1l.rop =1.dimM,i=1.dimV}

The r-jet prolongation of a vector bundle (associated or not) E (M;V;7) is a
vector bundle. The holonomic basis of the vector bundle J" F is the set of vectors
{e, e, ap,=1...dimM,i =1..dimV,s = 0...r} localized at m € M. In a
change of basis in V' €% € ©,TM* ® V changes as a vector of V. So a
section can be denoted

JTz={z2(m),0z0y..0. (M), p =1...dimM,i =1...dimV,s = 0...r}

where

2(m) = X1, 2 (m) € (m) 0200, (m) = S 658, e (m)

and a section of J"E can be considered as a set of independent sections of
(the Zél...as must be symmetric in «;). For the r-jet prolongation of a section

A =

A section of a principal bundle P (M, G, ) reads : p(m) = p(p(m),o(m)).
The derivatives 0,0 = L _,0 (dok) where 0,5 € T1G so that a section of Jp
can be written : jlp = (p,d4k,a = 1...dim M) where §,~ are independent
sections of the adjoint bundle.

17 Connection on a fiber bundle

17.1 General fiber bundle

The tangent space T, E at any point p to a fiber bundle E (M, V, ) has a pre-
ferred subspace : the vertical space corresponding to the kernel of 7’ (p) , which
does not depend on the trivialization. And any vector v, can be decomposed be-
tween a part ¢!, (m, u) v, related to T,, M and another part ¢!, (m, u) v, related
to T,V . If this decomposition is unique for a given trivialization, it depends
on the trivialization. A connection is a geometric decomposition, independent
from the trivialization.

Definition 34 A connection on a fiber bundle E (M,V,x) is a I-form ® on
FE wvalued in the vertical bundle, which is a projection :
be AN (E;VE): TE—-VE: :®0d=0,o(TE)=VE

So ® acts on vectors of the tangent bundle TFE, and the result is in the
vertical bundle.

® has constant rank, and ker @ is a vector subbundle of T'F : the horizontal
bundle HE.
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The tangent bundle T'F is the direct sum of two vector bundles :

TE=HE®VE Npe E:T,E=H,E®V,E

VpE =ker'(p)

H,E = ker ®(p)

The horizontal bundle can be seen as displacements along the base M (m)
and the vertical bundle as displacements along V' (u). The key point here is that
the decomposition does not depend on the trivialization : it is purely geometric.

A connection ® on a fiber bundle E (M,V,n) with atlas (Oa,@a),ca is
uniquely defined by a family of maps (I'y),c 4 called the Christoffel forms
of the connection.

I,ecC (7‘(71 (0n); TM*® TV) >

P(p)vp = 2(p) (Vi + vu) = o (m, u) (0,04 + Lo (p) vm)

I is is a 1-form, defined on E (it depends on p), acting on vectors of T5. ) M
and valued in T, V. It must satisfies the condition in a change of gauge :

o — 3 ip=p(mu) =G (m,a) i = x (m,u)

['(p) = I'(p) = =x5 (m,u) + x;, (m, ) (T (p))

17.1.1 Covariant derivative

A connection acts on vectors of the tangent bundle T E, the covariant derivative
V associated to a connection ® acts on sections of the fiber bundle itself, this
is the map : V:X(F) — Ay (M;VE) = VS =50

The covariant derivative along a vector field y on M is a section VS of the
vertical bundle :

v, S(m) = ®(S(m)(S'(m)y) € X(VE) |

1.5 (m) = ¢ (2.0 (m)) : V, S(m) = 3, (9acr + (S (m))’,)y*0u,

VS is linear with respect to the vector field y :

VxiyS(m) =VxS(m)+ VyS(m),VixS(im) =EkVxS(m)

17.1.2 Horizontal form

The horizontal form of a connection ® on a fiber bundle £ (M, V,7) is the 1
form : x € Ay (E;HE) : x (p) = Idrg — @ (p)

XOX=X5
X(®) = 0;
VE = kerx;

X (p)vp = ¢ (z,u) (Vm, =T (p) V) € HpE

As we can see in the formula above the horizontal form involves only v,,, so
we can lift any object defined on T'M onto HFE by injecting v,, € T,, M in the
formula. The horizontal lift of a vector field on M is the map :

xg:X(TM)— X(HE) =

Y(p) = xu (p) (y (7 (p)) = ¢'(m,u) (y (m), =T (p) y ()

xu (p) (X) is a horizontal vector field on TFE, which is projectable on T'M
as X.

By lifting the tangent to a curve we can lift the curve itself through the
equation :
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O(P (c(t)) (G) = 2(P(c(t) (P'F) = VeuP(c(t) =0
If S is a section on E, y a vector field on M the map S’ (m)y € X (TE) and

S’ (m) y has a decomposition in a horizontal part x g (S) S’ (m)y and a vertical

part VS : 8" (m)y =V, S(m) + xu (5 (m)) (y (m))

Proof. 5" (m)y = ¢, (m,u (m))y+e¢;, (m,u(m))w' (m)y = ¢’ (m,u(m)) (y,u’ (m)y)
® (5 (m)) 5" (m)y = VyS(m) = @, (m,u(m)) (u' (m)y +T (S (m)) y)

= @y (z,u(m)) (v (m) +T (S (m)))y
u (S(m)) (y () = ¢ (m,u(m)) (y (m), =T (S (m))y (m))
V yS(m) + xm (S(m)) (y(m)) = ¢p(m,u(m))y + ¢ (m,u(m)u’ (m)y =
S"(m )y n

The curvature of a connection ® on the fiber bundle E (M, V, ) is the
2-form Q € Ay (E; VE) such that for any vector field X,Y on E :

QX,Y) = ®([xX,xY]rr) where x is the horizontal form of ®. Its local
components are given by the Maurer-Cartan formula :

P =Y, (—eri + [r,r}"v) ® du;
Q= Zaﬂ <78(1Ff3 + F{;@ﬂ‘%) dm® A dmP @ du;
The curvature is zero if one of the vector X,Y is vertical (because then

xX = 0) so the curvature is an horizontal form, valued in the vertical bundle.
The horizontal bundle is integrable if the curvature is null.

17.2 Connection on a vector bundle

A linear connection ® on a vector bundle is a connection such that its
Christoffel forms are linear with respect to the vector space structure of each
fiber. It can then be defined by maps with domain in M :

I'(m) =3, Th; (m)d€* @ e; (m) @ e’ (m)

(o (m, > e ule;)) (veOma +vie; (m)) =3, (v +2 0 Thj L (m )ufvm> e; (m)

In a change of gauge :

ei(m) — € (m) = (m)el( )ivpfzaeAvfﬁama+ZLelv e;(m) =
ZaeAv Oma + Zlel € (m)

I'(m) —T (m)=—x'(m)x(m)"" +T (m)

17.2.1 Covariant derivative

The covariant derivative of a section on E reads :

V:X(E) = A (M;E) = VX (m) =Y, (0o X" + XIT% (m))dE* @ e; (m)

Because the tangent bundle to a vector bundle is equivalent to E, the covari-
ant derivative along a vector field can be seen as another section of the vector
bundle: V, X (m) =3 ,(0aX" + XIT% (m))y*e; (m)

For any section S € X (E): VxS = £,,(x)5

It can be extended to any tensor defined on F :

VISeT)=(VS)®T+S®(VT)

IffeCi(M;R),XeX(TM),Y eX(E):VxfY=df (X)Y + fVxY
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17.2.2 Exterior covariant derivative

The exterior covariant derivative V. of r-forms w on M valued in the vector
bundle E (M,V,7) ,is amap : V. : A, (M; E) — A1 (M; E) given in a holo-
nomic basis by the formula : V,w =37, (dwi + (ZJ (D TiadE™) A wj)> ®
e; (m)

If we Ay (M;E): Vew = Vw (we have the usual covariant derivative of a
section on E)

Ve € A (M;R) Voo, € Ay (MG E) : Ve (pr Aws) = (dpy) Aws+(—=1)" g A
Vews

If feCu(N; M), @w €A (N; f*E) : Ve (f*w) = f* (Vew)

Ve (VX) = Y1apy RiapX7de* NdEP @ e; (z)

Ve(Vew)=RAw

where R is the Riemann curvature tensor

R= Z{a,@} Zij R;’aﬁdga A dgﬁ ®e’ (m)®e;(m)

i _ 9T i i Tk _Ti Tk
Rjop = 0l — 0pT5, + 34 (Fk(xrjﬁ - Fkﬂrja)

17.3 Connections on principal bundles

A connection on a principal bundle P (M, G, 7) is a 1-form ® on TP valued in
the vertical bundle V P, which is a projection :

® € Ay (P;VP): B(p)up = B(p) (ym + ¢ (r)) = C (K + T (p) ym) (p)

The connection form of the connection ® is the form on TP, valued in the
fixed vector space TG :

B (p): TP = TG @ (p) (V) = ¢ (3 (0) (%)) ()

A connection on a principal bundle P (M, G, ) is said to be principal if it
is equivariant under the right action of G :

Vge G,pe P:p(p,g9)" ®(p)=p,(p,9) ®(p)

< ®(p(p:9)Pp (2, 9) Yo = pp (0, 9) ®(p)Yp

p(p9), ®(p) = Ady—12(p) R R

The potential of the connection is : A (m) = ®(p (m)) = p*®. It is then

N

uniquely defined by a family (Aa) A of maps : Aa € M (Og; T1G) :
@ (p(p(m),9) (X5 vi0ms (0) + € (1) (8) = ¢ (1 + Ady1 A () yn ) (9)
In a change_\(_)i gauge in P :
p(m) —p(m) =p(p(m),x(m)) = A(m)
= A(m) = Ady (A (m) - L. 00X (m))

The fundamental vectors are invariant by a principal connection: VX €

TG : ®(p) (C(X) (p)) = C(X) (p) R
For any fixed £ € T1G along the fundamental vector field : £¢,)® =

o () o,
The covariant derivative of a section S = p(p(m),g(m))is:
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V,S (m) = ¢ (qu_l g (g’ + R (A (m)))) (S(m)) € X (VP)

The horizontal lift of a vector field on M is the map : xg : X (TM) —
X(HP) = X (p) (4) = @ (m, )y (m) — ¢ (Adys (Aa (m) y () ) (p)

The curvature form of the principal connection is the 2 form Qe (P;T1G)
such that : Q@ =( (ﬁ) . It has the following expression in an holonomic basis of
TP and basis (k;) of T'G

Qp(p(m),9)) ‘

=—Adg1 3> 08 <6(XA}3 + [Aa, AB}; G) dm®Adm”P @ k; € Ay (P;TLG)

The strength of the principal conne::tion is the 2 form F € Ay (M;T1G)

such that : F = —p (m)” Q. It has the following expression in an holonomic
basis of T'M and basis (;) of T1G :

Fm)=Y, <d21"‘ + Tag [Aurds] df“Ad€5> @ ki
In a change_\(_)i gauge in P : 1

p(m) —p(m) =p(p(m),x(m))

T(m) — f(m) = Adx(m)]:(m)

The covariant derivative of a section S € X (P) along a vector field y €
X (TM) is a fundamental vector field on TP : S(m) = p, (Pa (m),0 (m)) :

VyS = ¢ (L, (0) (o ) + B, () A(m) (9))) (S (m)
It is invariant in a change of gauge but its expression with a map o varies
the usual way for a section in a change of gauge.

17.4 Connection on associated bundles

A principal connection ® on a principal bundle P (M,G,n) induces on any
associated bundle E = P [V, ] a connection :
Y, = ZB Y2 Omp + Yo yov, € TE

@ (p) (v;) = (0,32, (v + X, (1.p) (3, Af (m) i) ) 00i) € VE
defined by the set of Christoffel forms : T's (p) = A} (1,p) (Aﬁ (m))

In a change of gauge in P :

p(m) — p(m)=p(p(m),s(m)) =T (p)
—T'(p) = =\ (x (M), 9) + N, (x (m),v)(T(P))
For a section S (m) = (p (m),S (m N(p(p 7)\(g71,3(m)))

)
V,5 = (p(m). 33, (925 + X, (1.8) (As (m) ))
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18 Categories

18.0.1 The category of Clifford bundles

Vector bundles F (M, V, ) with vector spaces V on the same field K and their
morphisms constitute a category.

Vector bundles such that the vector space is endowed with a symmetric 2
form r, and morphisms which preserves the scalar product constitute a subcat-
egory.

Similarly Clifford bundles E (M, ClI (V,r),n) with Clifford algebras on the
same field K and their morphisms constitute a category.

Real Clifford bundles Cl(R,p,q) on vector spaces of same dimension en-
dowed with a symmetric form of signature (p, q) are Clifford isomorphic : there
is a linear isomorphism, preserving both the scalar product and the algebraic
operations. Similarly complex Clifford algebras Cl(C,n) on complex vector
spaces of same dimension endowed with a symmetric form are Clifford iso-
morphic. So that we have the category CCI(R,p,q) of real Clifford bundles
E(M,Cl(R,p,q),n) and the category CCI(C,n) of complex Clifford bundles
E(M,Cl(C,n),n).

Any linear map F' € £ (V1;V2) between the vector spaces (Vj,r;) on the
same field, which preserves the scalar product r;, can be extended to a Clifford
morphism F € £ (Cl(Vi,r1);ClL(Va,r3)) between the Clifford algebras. As a
consequence there are functors :

between the category CV (R, p, q) of real vector bundles E (M, V, 1) endowed
with a scalar product of signature (p,q) and the linear maps which preserve
the scalar product on one hand, and the category CCI (R, p,q) of real Clifford
bundles FE (M, CI (R, p,q),n) with their Clifford morphisms on the other hand

between the category CV (C,n) of complex vector bundles E (M,V,r) en-
dowed with a scalar product and the linear maps which preserve the scalar
product on one hand, and the category CCI(C,n) of complex Clifford bundles
E(M,CIl(C,n),n) with their Clifford morphisms on the other hand.

There is a Clifford isomorphism C : Cl(R,p,q) — CI(C,p+ q) such that
C (Cl(R,p,q)) is a real form of C1(C,p+q) :

CL(C,p+q) = C(CL(R,p,q)) +iC (CL(R,p, q))

VZ eCl(C,p+q): Z=ReZ+ilmZ =C(Z1)+iC(Zs)

A Clifford morphism F' on CI(R,p,q) can be extended to a Clifford mor-
phism F on CI (C,p+q):

F:CI(R,p,q) — CI(R,p,q) is such that :

F(aZ+bZ"Y=aF (Z)+bF (Z');F(Z-Z')=F (Z)-F(Z),(F(Z),F (Z')) =
(2,2)

Define F (Re Z +iIm Z) = F (C (Z1) 4 iC (Z2)) = C (F (Z1))+iC (F (Z3)) =
C (F(C~! (Re2))) +iC (F (C~ (Im 2)))

The map F is complex linear :
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F((a+ib)ReZ +i(a+ib)ImZ)=F (aReZ —bIlm Z + i (aIm Z + bRe Z)) =
C(F(aReZ —bImZ))+iC (F (almZ 4+ bRe Z))
=aC (F(ReZ))—bC (F(ImZ)) + aiC (F (Im Z)) + biC (F (Re 2))
=(a+bi)C(F(ReZ))+i(a+ib)C(F(ImZ)) R
(a+b)(C(F(ReZ)+iC(F(ImZ)))=(a+bi)F(ReZ+ilmZ)
is an algebra morphism :
(Z-2')=F((ReZ +ilmZ) - (Re Z' +ilm Z"))
(ReZ-Re Z')+F (Re Z -ilm Z')+F (ilm Z - Re Z')+F (ilm Z - iTm Z')
(ReZ-ReZ')+iF (ReZ-ImZ')+iF (ImZ-ReZ') — F(Im Z - Im Z')
(F(ReZ -ReZ'))+iC (F(ReZ -ImZ"))+iC(F (ImZ -Re Z"))—C (F (Im Z - Im Z"))
C(F(ReZ) - FReZ"))+iC (F(ReZ) - F(ImZ')+iC(F(ImZ) - F(ReZ"))—
(ImZ)-F(ImZ"))
F

el

)

~

|
Q

Q
RNl

= OF (Re Z2)-CF (Re Z')+iCF (Re Z)-CF (Im Z')+iCF (Im Z)-CF (Re Z")—
CF(ImZ)-CF(ImZ')
= (CF(ReZ)+iCF(ImZ)) - CF(ReZ') +i(CF(ReZ)+iCF (Im %)) -
CF (Im Z')
=F(Z)-CF(ReZ')+ F(Z)-iCF(ImZ')=F (Z)-F(Z')
It preserves the scalar product :
F(2), F(Z’)>(C:< (ReZ +ilmZ), ﬁ(ReZ'+¢1mZ')>C
= (F(Re2),F(Re2")) +i(F(Re2),F(mZ')) +i(F(ImZ).F(Re2')) ~
(F(m2),F (im Z’)>C
=(C(F(Re2)), C( (Re 2)))c +i(C(F (Re Z)),C(F(ImZ')))¢
+i(C(F(mZ2)),C(F(ReZ')))c — (C(F(ImZ)),C(F(ImZ)))c
=(F(ReZ),F(ReZ))g+i(F (ReZ),F (ImZ')) p+i(F (Im Z) ,F (Re Z')) p—
(F(ImZ),F(ImZ"))
=(ReZ,ReZ')p+i(ReZ,ImZ")p+i(ImZ,ReZ'), — (ImZ,Im Z')
=(C(ReZ),C(ReZ'))o+i(C(ReZ),C(ImZ"))+i(C(ImZ),C (ReZ’))c—
(C(ImZ),C(ImZ"))e
g <Zv >(C

to any real Clifford bundle E (M,CIl (R, p,q),n) € CCL (R, p,q) one can as-
sociate a complex Clifford bundle E (M, Cl(C,p+ q),w) € CCI(C,p + q) such
that C (E (M,CIl(R,p,q), 7)) is a real form of E(M,CIl(C,p+q),)

to any real morphism in CCI (R, p, q) a complex morphism in CCl(C,p + q)

and there is a functor C' : CCI (R, p,q) — CCIL(C,p+q).

By product there is a functor between the category of real vector bundles
CV (R, p, q) and the category of complex Clifford bundles CC1(C,p+ q).

19 Symmetries on a manifold

19.1 Pull back and push forward of tensors fields
Let M, N be smooth manifolds, and f a differentiable map : f: M — N.
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The push forward of a Vector field y € X (TM ) by f is the linear map :

fe : X(TM) = X(TN) == fu (y (m)) (f (m)) =Y (f (m)) = f' (m) (y (m))

The pull back of a of a form A € X (TN*) by f is the linear map :

J* X (TN®) — X (TM*) 5 £ (A (m) (f (m) = A ( (m)) o f' (m)

If f is invertible we have similarly :

The pull back of a vector field Y € X (T'N) by f is the linear map :

f*:X(TN)—-X%X(TM)

P @) () =y (F ) = (F71 () (Y (n))

The push forward of a form A € X (T'M*) by f is the linear map :

fo : X(TM*) — X(TN*) =

fe A (m)) (f (m)) = A(n) = A (f~" (n)) o (f~" (1))

I [« alre linear maps, which are inverse of each other if f is invertible :

f* = (f*)_

By construct, if A € X (T'M*),Y € X(T'N) :

Fo ) (£ ) (f (m)) = A(f (m)) (Y (f (m))) = A(m)o (£~ (n))" ' (m) (y (m)) =
A(m) (y (m))

The operations hold for functions, considered as 0 forms.

Vector fields on a manifold have a structure of Lie algebra with the commu-
tator as bracket, and f* is a morphism of Lie algebra (it preserves the commu-
tator).

Smooth manifolds and differentiable maps constitute a category. With the
functor which associates to each manifold its tangent bundle, these maps f*, f,
defined with a unique f € Cy (M;N), can be extended to linear maps F*, F,
between the tensor bundles X (T M), X (RTN).

!

fo— fo€L(X(TM);X(TM)) ~ F,€L(X(@TM);X(2TM))

They are the inverse of each other, preserve the type of the tensors, the
product of tensors and the exterior product of forms, commute with the exterior
differential, and can be composed : (FoG)" =G* o F*;(FoG), = F*oG..

The change of charts ¢ — % in a manifold can be expressed as the push
forward (w o ga’l)* .

The components expression of F'*, F, is given by the product of the jacobians
and its inverse (Maths.1440).

19.2 Diffeomorphisms on a manifold

A diffeomorphism on a manifold M is a bijective map f : M — M such that
its derivative f’ is itself invertible. On a relatively compact 2 C M there is an
homeomorphism between diffeomorphisms and vector fields : diffeomorphisms
constitute a Lie group D (M), with Lie algebra the vector space of vector fields
endowed with the commutator as bracket.

A one parameter group on D (M) is a map

F:R->DM):F(r+71)=F(r)oF(r),F(0)=1Id

Its infinitesimal generator is a vector field X € X (T M) :

X (F(@,m))=F,0,mX(m)e XoF=FX
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The one parameter group generated by any vector field is defined by the dif-
ferential equation “L®y (1,m) |;—¢ = V (®v (6, m)). Then for 7 fixed @y (1,m)
defines a diffeomorphism :

fr: M — M : f;(m) = ®y (r,m) by taking the integral curve going
through m. The derivative f. (m) = ®{,,, (1, m).

So there is a close association between the Lie group D (M) of diffeomor-
phisms and its Lie algebra T1D (M) ~ X (T M) of vector fields, a one parameter
group of diffeomorphisms can be characterized by a vector field, which justifies
the common notation : ®y (1,m) = exp 7V (m).

The map : f, : X (T'M) — X (T M) preserves the commutator [f. X, f.Y] =
f+«[X,Y]. For any diffeomorphism f, it is an automorphism on the Lie algebra
of vector fields.

The vector field V' is transported by ®y (7,m) :

fra : X(TM) - X(TM) =

fre (V) =V V (f7 () = f7 (m) (V (m)) =V (fr (m))

The vector field V is eigen vector with eigen value 1 of the map fr. :
X(TM)— X(TM). But it is not the unique one with this property :

VIVeX(TM): [V,W]=0& @), (W)=W

We have the identities :

Oy (1,Dy (7',m)) = Py (7 + 7', m)

(b/\/m (T+7'm)= (I)/Vm (1, ®v (7',m)) o q>/\/m (7', m)

=, (7', @y (1,m)) o @, (T,m)

= (P/Vm (07 m) =1Id= (‘P/Vm (T7 Py (_7—7 m)) ° q%/m, (_T7 m)

= (I)l\/m (=7, @y (1,m)) 0 (I)/Vm (r,m)

B, (=7, By (1,m)) = (B4, (1,m) 7

(I)/Vm (1, @v (—=7,m)) = (I)Q/'m (-, m)71

The flow of a vector field on a relatively compact domain is complete, and
we can define the operations :

The push forward of a vector field y € X (T'M) by f is the linear map :

fe : X(TM) - X(TM) =

fo (5 (m)) By (r,m)) = Y (By (r,m)) = By, (r,m) (y ()

The pull back of a form A € X (T'M*) by f is the linear map :

fFX(TM*) - X (TM*) =

7" (M@ (7,m)) (m) = A (m) = A (@ (7, m)) o &}, (7,m)

The pull back of a vector field y € X (T'M) by f is the linear map :

[ :X(TM)—-X(TM) =

1 (5 (M) By (—7,m)) = Y (By (—7,m)) = Bl (—7,m) (3 (m))

The push forward of a form A € X (T'M*) by f is the linear map :

fo 1 X(TM*) - X(TM*) =

1. A (m) @y (r,m)) = A(@y (r,m)) = A(m) o B, (~7, Dy (r,m))

These operations can be extended to the tensor bundle with the same prop-
erties as above.

If f is a diffeomorphism and V' a vector field : f o ®s«y = @y o f and for
two vector fields : 2 (®y (7,.), W) |r=0 = v (7,.), [V, W]

The following are equivalent :
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V,W] =0
Sy W =W
Dy (1, Pw (s,m)) = Pw (s, Py (1,m))

19.3 Lie derivative of a tensor field

The Lie derivative of a tensor field T" along a vector V is then the tensor field :
£yT (m) = 2= (v (1,.), T) (m) |0

—lim, o 2 (v (,.), T (B (7,.))) (m) — T (m))

— lim, o (T (m) — by (-7,.), T (@ (~7,.)) (m))

The Lie derivative is a derivation on the Lie algebra of tensors fields, which
preserves the type (order, symmetric or antisymmetric) of the tensor, is linear
with respect to the vector field V', commutes with the contraction and exter-
nal differentiation of tensors, follows the Leibnitz rule with the tensorial or
external product of tensors. Its computation is done using the previous rules
(Maths.4.3.3).

For vector fields :

Liyw) =Lvolw — Lwo Ly =Ly, Lw]

19.4 Symmetries of tensors and diffeomorphisms

Let f be a diffeomorphism on M, then we can say that the tensor 7" is symmetric
with respect to f if :

F. (T (m) (] (m) = T (f (m)) & F* (T (£~ (m)))) (m) = T (£~ (m)

Then : T'(f (m)) = (F'(m))g T (m) the tensor at f(m) is the image of the
tensor at m, by the linear map F' deduced from the derivative f'(m).

Because of the relation between diffeomorphisms and vector fields, the same
relation happens with the one parameter groups along an integral curve. So we
have a symmetry for a vector field V' along an integral curve of y if :

Vr (@, (7.9), (V (m) = @, (r.m) V (m) = V (&, (r,m))

We have : @}, (—7,.) £vT = 78% (D} (—7,.) T) |r=0 so the simplest test of
the existence of a symmetry is through the Lie derivative. A tensor field T is
symmetric * by the flow of a vector field y iff £,7 = 0. Then T (®, (1,m)) =

(@, (T, m)]®TMT(m). The value of the tensor at ®, (7,m) on the integral

/

ym (T7 m) extended to

curve is the image of its value at m by the linear map ®
tensors.

£,T =0 (Dy(7,")), (T) =Toy (1,") & T (D, (r,m)) = [®),, (T,m)] T (m)

T M

_ Conversely the transport of a tensor T" along an integral curve is the tensor
T (1) defined by the conditions £,T = 0,7(0) = T. This is similar to the
transport of tensors by covariant derivative.

3it is said “invariant” in Mathematics, but as this may cause confusion we will say sym-
metric
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Because there is always an integral curve going through a point, if £,7" =0
the value of the map T': M — ®T M is closely linked to the vector field y.

Time translation : this is the transport by the vector field cgg.

m =, (ct,x) = m(T) = o (ct + cT,2) = ey (T, 0 (ct, T))

@, (1o (ctya) = 1

S0

V(o (ct,2)) = V(9o (c(t+7),2)) = Peey, (7,00 (ct,2)) V =V (o (c(t +7) )

19.5 Lie derivative of a section of a fiber bundle*

i) The Lie derivative of a section X € X (FE) along a vector field W € X (TE)
is defined as for any other manifold by the section

LwX (p) = 4= (2w (.7), X (p)) |r=0

—lim, o L (X (®w (r.p)) — X (@ (—7.p)))) € X (E)

The flow of a projectable vector field W € X (TE) on any fiber bundle
E (M,V,n) is a fibered manifold morphism :

T P)W(p) =Y (7 (p) € Tnp) M

L Oy (7,p) |r=0 = W (2w (0,p))

7 (Qw (7,p)) = @y (7,7 (p))

ii) If E is a fiber bundle, S a section, Y a vector field on TE projectable on
y on T'M, the map :

Fy :X(E) = X(E) : Fy (m,7) = Oy (1,5 (®, (—7,m))) is fiber preserving
s (Fy (m, 7)) =m
Proof. Zn (Fy (m,7))|r=6 = ' (Fy (m,0)) & (2y (1,8 (D, (—7,m)))) |r=g =

=7’ (Fy (m,0))

X (Y (@y (0,5 (@, (~0,m))) = & (@y (6,5 (@, (~0,m))) §" (@, (~0,m)) y (~0,m)))

but :

' (Fy (m,0)) Y (®y (0,5 (®y (=0,m)))) = 7' (Fy (m,0))Y (Fy (m,0)) =y (7 (Fy (m,0)))

35 (@y (0,8 (2 (=0,m))) S (@, (—0,m)) y ((—0,m)))

= 50y (1,5 (Py (-7,m))) lr=6 = Y (@y (0, S (D, (=0, m))))

thus : V6 : a%ﬂ (Fy (m, 7)) |r=¢ = 0 = w(Fy (m,7)) ==
7(S(m))=m m

The image by Fy of a section is another section on E, which is “deformed” ac-
cording to the parameter 7. When 7 varies Fy (m,7) moves in the fiber 71 (m)
starting at S (m) for 7 = 0.

The Lie derivative of the section S along Y (Maths.1930 and Kolar p.377)
is then defined as follows :

£y (Fy (m,7) = 2By (m,s) oy = 20y (5,5 (@, (=s,m) |.r

This is a vertical vector (because one stays in the same fiber), it belongs to
the vertical bundle VE at the point Fy (m,T).

If F is a vector bundle £y S is a section of the vector bundle.

If Y is vertical £y S =Y (9).

L£yS=0&V0:5(®,(0,m)) =Py (6,5 (m))

(Fy (m,0)) =

4These results, inspired by Kolar, are new.
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Proof. i) if £S5 =0: then V7 : Fy (m,7) =S (m).
S (®y (0,m)) = FY( y (0,m),7) = @y (1,5 (P (=7, (6,m))))
= @y (7,5 (@, (0 — 7,m)))

r=0:5(a, (0 m)):@Y(G,S(%(O,m))):@Y(G,S(m))

ii) if VO : S( v (0,m)) = @y (0,5 (m)

By (m,7) = @y (1,5(®y (=7,m))) = @y (1, Py (-7, 5 (m))) = 5(m) =
Ly (m,s)|s=r =0 m

Then the sectlon S changes along Y as the morphism @y : S (@, (6, m)) =
Dy (0,5 (m)) . The value of the section is closely linked to the projectable vector
field Y and we say that the section S is symmetric with respect to Y.

If there is a connection ® on F with horizontal lift x g :

S'(x)y = VyS(x) +xu (S (2)) (y (x))

Take Y = S’ (z) y, it is projectable on y.

LyS=4£v,55+ £yy) = VoS + Lyp)d

LyS=0&V0:5(2,(0,m)) =y (0,5(m)) & VyS+ Ly, ,S=0

iii) The Lie derivative of a section of a principal bundle along a fundamental
vector field is £¢(x)S = ¢ (X) (5)

20 Distributions on a manifold

A r dimensional distribution (no rapport with linear functionals) on a manifold
isamap: D: M — (TM)" such that D (m) is a r dimensional vector subspace
of T,, M. A connected submanifold L of M is an integral of D if Ym € M :
D (m) =T, L. A distribution is integrable if 3(L;),.; submanifolds of M such
that Vm € M : 3 € I : D(m) = T,,L;. A map f € Cy (M; M) is a morphism
for D if f/ (m) D (m) C D (f (m)). A vector field is the generator of a morphism
for D if its flow is a morphism for D.

D is integrable if (alternate propositions) :

for each vector field V' such that Vm € M : V (m) C D (m) the flow of V is
a morphism for D

there is a family V' = (V;),.; € X (T'M) which generates D and such that
Vi,j: ViVl eV

If A\ € Ay (TM;V) such that ker A has a constant finite dimension, then it is
a distribution, which is integrable if Vu,v € ker A : d\ (u,v) =0

So a function on M such that dimker f'(m) = Ct has the integrable distri-
bution f (m) = Ct.

The fundamental vector fields over a principal bundle span an integrable
distribution whose leaves are the connected components of the orbits : VX, Y €

TG [C(X),¢(V)] = C (X, Y])
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21 Isometries

21.1 Isometries

The metric is the physical part of the geometry of the universe. It is de-
fined everywhere. It is a tensor, whose expression depends on the chart and
varies from one point to another. A symmetry is then a diffeomorphism :
f : M — M called isometry which preserves the metric : Yu,v € T,,M :

g (f (m)) (f (m)u, f' (m)v) = g(m) (u,v) & go f= fug t
With the matrix [J] of [f/ (m)] in a chart : ([J (m)]*l) lg(m)][J (m)] " =

lg ( (m))] & [g (f (m))] = [K (m)]" [g (m)] [K (m)] with [ (m)] ™" = [K (m)].

The image of an orthonormal basis is an orthonormal basis. As any diffeo-
morphism they transport tensors and in this operation the coordinates of tensors
in an orthonormal basis are conserved. As a consequence an isometry preserves
the scalar product of forms : G, (A, ) does not depend on the basis, expressed
in an orthonormal basis it is a simple expression which is preserved by f’(m).
Thus the Hodge dual of F*\ is the image of the Hodge dual : * (F*)\) = F* (x)).
An isometry preserves the scalar product (F, K) of scalar forms as well as the
volume form 4.

The isometries are a subgroup of diffeomorphisms and its Lie algebra are
the Killing vector fields, vector fields V' on TM such that their flow f(m) =
Oy (7,m) is an isometry. There is a bijective correspondance between one pa-
rameter groups of isometries and Killing vector fields. The transport along a
Killing vector field preserves the scalar product.

The condition is ;

£vg =0 a,5=0.3: 50 V710905 + 6] 10.V] + 19 105V] =0

Vectors of a Killing field have a constant length :

£y (g(V,V)) = £vg(V,V) +2g (£4V,V) =0

If V;,i = 1...p are Killing vector fields,V = Y7, a;V; with fixed scalars is
a Killing vector field. V' = 0 corresponds to the isometry f(m) = m. As a
consequence if a Killing vector field is null at a point, it is null everywhere,
and if the vector fields (V;),_; 5 are linearly independent at a point, they are
linearly independent everywhere, and conversely, if they are linearly dependent
at some point, they are linearly dependent everywhere. Using the condition
above it is easy to see that the space of Killing vector fields on a manifold of
dimension n is at most @ dimensional.

With the identity : Ly,w) = Lv o Lw — £w o Ly = [Lv, Lw] if V,IW are
Killing vectors, then [V, W] is a Killing vector. The vector space K of Killing
vectors defines an integrable distribution : 3 (K;),.; submanifolds of M such
that Ym € M,3i € I :VV € K : V(m) € T,,K;. For 2 points m,m’ € M the
relation of equivalence m ~ m/ & (m € K;) & (m’ € K;) defines a partition of
M, called a folliation, whose connected components are the leaves. If 2 points
m,m’ belong to the same leave ¢ then all Killing vector fields are tangent to K;
at m and m/. The manifold M and the domain §2 are path connected, then the
leaves are path connected (Maths.570). The integral curves of Killing vector
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fields are Killing curves, there are infinitely many Killing curves going through
a given point. For any 2 points m,m’ € K; there is a Killing curve going from
m to m/.

If there is a Killing curve joining m, m’, that is 3V € K : m’ = &y (1,m) =
YA > 0 : AV € K the vector field AV joins m,m’ : m' = @,y (%, m) and
g(A\V,AV) = A2g(V,V) = Ct. So there is a Killing vector field joining m,m’
with a given length g (V,V) > 0.

21.2 Isometries as Clifford morphims

A linear map which preserves the scalar product on vector spaces can be ex-
tended to a Clifford morphism. An isometry on M can be extended to a Clifford
isomorphism on Pgy :

£ maps m — f (m)

f"(m) maps T,,, M — T(,,,yM and preserves the scalar product, so there is a
Clifford morphism f (m) : C1(R,3,1) — CI(R,3,1) such that f (m) = f' (m).
(Maths.494).

Fm) (Fa(m)) = 3, [F )] By (f (m)

A Clifford isomorphism which preserves the vector space spanned by (Ej)j?:o
can be written as Adg where S is the product of at most 4 vectors : it is either
the scalar multiple of a fixed vector, or an element of Spin (3,1). There is a

section S € X (P¢q) such that :

F(m) (Fa (m) = 32, [Ads(somy] 1 B (f ()

A real automorphism F' on Pg; can be extended to a real automorphism F
on P (see Categories) :

F(ReZ+ilmZ) = F(C(Z)+iC(Zy)) = C(F (%)) +iC(F(Zy)) =
C(F(C7'(ReZ))) +iC (F (C~' (Im 2)))

Fand I preserves the scalar product.

F preserves the transposition : take a vector of the basis at m : g4, ...~ €a,

F((ear a,)') = F (2ay - o) = F (2,) o F (20) = (F (ay) - o F (ea,))’

F(2') = (F (2))'

and so does F' which, then preserves the hermitian product :

cC (ﬁ(Rez+i1mZ)) = CC(C(F(2)) +iC (F (Z2))) = C(F(Z1)) —
iC (F (Z2) = F (CC(2)) . A A A

(F(2):Fz)), =(cc(F@2).Fz)) =(Fcc@).F@) =
(CC(2) aZQCl =(Z,Z')y

Indeed F' (m) (Z) = AdC(S(m))Z

So, with the isometry f we can define a Clifford bundle isomorphism (f, F)
on Pco
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f:M—-M
F:Po — Po: F(m)(Z) = F (m) (foil Z°F, (m))

= et [Adesramy]y Z0Fa (f (m))

f
Mo m - f(m)
| !
T™ ej(m) — fr(m)ej (m)
1 !
PC Fa (

m) —  Adc(ssim)y)) (Fa(m))
F

Now, if we have a section Z € X (P¢) we can define its pull back :

F*d: x <Pc~>;f x <Pg> P (f (m)) (m) = Sotey [Adeqsony]y 2° (f () Fy (m)
and its push forward :
F.: X (Pc) = X(Pg) = Fu (S (m)) (f (m)) = Xu5_1 [Ades(romy ]y 2° (m) Fa (f (m))

21.3 One parameter group of isometries

A one parameter group of isometries is defined by the flow of a Killing vector
field V, it defines a one parameter group of morphisms on P :
fo: M =M fr (m) = By (r,m)
F.:Pc— Pc: Fr (m) (2}1‘;1 Z°F, (m)) =Y et [Ado(s@y (ramy) |y Z0Fa (®v (7,m))
where C (S (®v (7,m))) is given by &%, (1,m).
Because we have a semi-group : Fr4p, (m) = Fj, (Fr (m))
Ado(s(@y (r+h,m))) = Ades(@y (hm))) © Ado(s @y (rm))
by derivating at h =0
i Adc(s(y (renam) =0 = ad (C (V) = Adgs) 0 ad (C (V)
Using : %Adexp +7 = Adexp r7 0 adT we deduce :

C (S (@y (r,m))) = exprC (V) - C (S (m)) (112)

With V = vgeg + v where vg € R, v € R3 the components of V in the tetrad
C (V) =iveeo+v
(0, v0,v,0,0,0,0,0) - (0, ), v/, 0,0,0,0,0)
= (A, Vo, V,W, R, X0, X, B) = (vovf, + v*',0,0,v90" — vjv, —j (v)2',0,0,0)
C(V)-C (V)= (-v}+v",0,0,0,0,0,0,0)
If V is future oriented : —v¢ + v'v’ = (V,V) < 0:
expTV = cos T, + SinM&V = (cos T lhy Sinﬂ%vo, Sinﬂﬁv, 0,0,0,0, 0) with
o = /v3 — vtv
If —v3 +0l' =(V,V)=0:exptV =1
If V = v (vector in Q3 (t) :
exp TV = cosh Ty, + SMLTHe Y — (cosh Ty, SBRTH 40 Sin];w” v,0,0,0,0, 0)

Ho Ho
with g, = Vot
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Adc(s@y (r+hm))) = Adexp rc(vyAde(sm))
Adexp TC(V) = €Xp Tad (C (V)>

The vector V is tranported along the curve :
) (rm) (S5 VI (m)e; () = V (@ (r.m)
S is such that : V7 : V(®y (1,m)) = Adg@, (rm)V (m) by taking the

restriction of Adg (g, (,m)) to the space generated by (g;),_, 5 in Cl(3,1)

V ((I)V (T, m)) = Adcxp TVAdS(m)V (m)

At Vm, 7 =0:V (m) = Adgm)V (m)

The vector V is eigen vector of Adg with eigen value 1, which can be written
Adg(m)V(m) = V(m) &S V=v.S

This is a necessary condition for V, but V is not the only vector which is

transported by ®y .

If exp7V = 1 then the components of V in the tetrad of Po are constant

along an integral curve originating at m.

S is either the multiple of a vector S or S € Spin (3,1).

i) If S is the multiple of a vector S: S = sgeg + s

S-v=VvV.§
Using the rules for the procuct in C1(3,1) :
S V=V-S&

(—sovo — §'v,0,0, sov — vos, —7j (5) v,0,0,0)

= (—vgsg — v's,0,0,v98 — sov, —j (v) 5,0,0,0)

Sov — Vs = vgs — s = 0

—j(s)v=—Fj(v)s=0=>s= v

gives : S = A (voeg +v) = AV

The vector V is such that (V,V) = Ct = v'v — v and (S,S) = X2 (V, V).

The map Ads = Adv

for

But, because V=1 = V/(V, V), this solution requires that (V, V') # 0.

ii) If S € Spin (3,1): S (m) = [a,0,0,w,7,0,0,b] ,a,b € R,w,r € R3

wir = —ab

a? —b? —ww+rir=1

Using the formulas for the product in C1 (3,1) : we get the necessary relations
S,V

S(m)-V=V-S(m)

<~

avy + wtv = voa — viw

av+vow +j (r)v =va —vow + 7 (v) 7

bvg — rtv = —vgb — vir
—bv+vor — j (w)v =bv +ver + j (v)w
whv =0

vow + 7 (r)v =0

b’UOZO

bv =0
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V£A0=0b=0

wir = —ab =0

a2 - —wtw+rtr=1=a? —wtw +rtr

So S (m) is the product of a spatial rotation and a translation, such that :
S =[a,0,0,w,7,0,0,0]

wlo =0
vow + j (r)v =0
wir =0

a? —wlw+rir=1

C (la,vo, v, w,r, 0, x,b]) = (a,ivg, v, iw,r, xg, iz, ib)

C(S) =(a,0,0,iw,r,0,0,0)

where w, r are defined by ®/,,, (0,m) : these parameters are not given by the
components of V' but must be compatible with V. Usually S has a 2 dimensional
eigen space with eigen value 1.

If vg = ¢ then

w=—1j(r)v

S (m) on CI(3,1) is necessarily the product of a spatial rotation and a trans-
lation, defined by V' = ceg + v with the components v of v in the tetrad, and a
parameter r which can be seen as a polarisation :

The matrix of the adjoint map Ad¢(s(m)) is then :

1 0 0 0 0
0 [Ny (10, V) 0 0 0
[Ados)] g6 = | O 0 [M]gys (W, R) 0 0
0 0 0 Vs (X0.X) 0
0 0 0 0 1
where [N],[M] are the matrices, acting on the vector subspaces
(0, V%, V,0,0,0,0,0),(0,0,0,0,0, Xy, X,0),(0,0,0, W, R,0,0,0)
[N (Uo,v)]4><4 =[N (xo,x)]4><4
PR 0 it (a—j ()
AL TR b WY
[M (w,)]gy6 = L6
+2{ aj (r)+j(r)j(r) —j(w)j(w) i(r'w+aj (w) + 7 (r) j (w) + 7 (w) j (r))
i (r'w +aj (w) + 5 (w) j (r) + 5 (r) j (w)) aj (r)+j(r)j(r) —j(w)j(w)

In the holonomic basis of the chart the map f* is expressed, in coordinates,
through the jacobian [J] = [®},,, (T,m)] :

(bV (T’ m)
M m — <I>V (7‘, m)
! !
TM  9¢s (m) - Oy, (1,m) (985 (m))
! !
P €j (m) ;’ AdC(S(f(m))) (Ej (m))
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The tetrad which defines P¢ is transported as another orthonormal basis in
P -
Dy, (7m) (2 (m)) = B, (7,m) (oo P (m) 965 (m))
= Ym0 [ (r,m)] P (m) 05 (@ (r,m))
= Sk [Ads(@y mm)] s 25 (@1 (7,m)) = kg [Ads(@y (rmy] s Ligeo PL (@v (7,m)) 0
S8 o [ (rom)l] P (m) = 55 [Ads @y )] P (@ (7,m)
523 o 1 (rom)[5 P (m) P (m) = 323 i [Ads(ay rmp)]; P (B (7,m)) P (m)
[ ()l = S5 [Ads(ay rmp] | PE (@v (r,m)) PY (m)

so the matrix [J] is related to the restriction of [Ads(q)v(f)m))] to the space

spanned by (¢; )?:0

[J (1,m)] = [P (®v (1,m))] [Ads(@y (r,m))] [P (m)] (113)
At 7=0:[J(0,m)] = [P (m)] [Adsm)] [P’ (m)]

141



Part VII
BIBLIOGRAPHY

JC.Dutailly Mathematics for theoretical Physics (2016) Amazon E-Book

J.C Dutailly Theoretical Physics (2016) Amazon

J.C.Dutailly Clifford Algebras (2018) Hal 018 265 551

I.Kolar, P.Michor, J.Slovak Natural operations in differential geometry (1991)
Springer-Verlag

142



