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Abstract 

Recent work has conjectured that, under general boundary conditions, non-equilibrium Renormalization 

Group flows are likely to end up on strange attractors. If this conjecture is true, effective field theories must 

necessarily reflect the properties of these attractors. We start from the observation that, seemingly disparate 

concepts such as the Berry phase, gauge potentials and the curvature tensor of General Relativity (GR), 

share a common geometric foundation. Developing further, we posit that the dynamics of gauge and 

gravitational fields may be derived from the global attributes of strange attractors. The motivation behind 

this ansatz is that the Navier-Stokes equations bridge the gap between fluid turbulence, on the one hand, 

and the mathematics of GR and gauge theory, on the other.   
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1. Introduction 

We have recently found that, under general boundary conditions, non-equilibrium 

Renormalization Group flows are prone to evolve to strange attractors [1, 2]. It is known 

that these attractors provide realistic models for the onset of chaos in nonlinear dynamics, 

as well as for the transition to turbulence in fluids described by the Navier-Stokes 

equations [3, 4]. Here we develop the idea that, seemingly disparate concepts of quantum 

physics and classical field theory – namely, the Berry phase, gauge potentials and the 
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connection coefficients of General Relativity (GR) – share a common ground with fluid 

turbulence and its roots in the geometry of strange attractors.     

2. Berry phase in quantum physics 

A quantum system adiabatically transported around a closed path C in the space of 

external parameters acquires a non-vanishing phase (Berry phase, BP in short). Since BP 

is exclusively path-dependent, it provides key insights into the geometric structure of 

quantum mechanics and QFT. The BP concept is closely tied to holonomy, that is, the 

extent to which some of variables change as other variables or parameters defining a 

system return to their initial values [5, 6].  

Consider a quantum system described by the time-independent Hamiltonian ( )H t , whose 

associated eigenstate is ( )t  and which is embedded in a slowly changing environment.   

After a periodic evolution of the environmental parameters ( t t T  ), the eigenstate 

returns to itself, apart from a phase angle, 

 ( ) (0)it e     (1) 

If   denotes the eigenvalue of ( )t , a generalization of the phase angle T   in units 

of 1  is given by the “dynamical phase” 

 
0 0

( ) ( ) ( ) ( )
T T

d t dt t H t t dt        (2) 

 Berry has shown that there is a time-independent (but contour dependent) supplemental 

“geometric phase” entering the phase angle, namely, 
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 ( )d C      (3) 

where 

 ( )
C

C i dr      (4) 

The dynamical phase d  encodes information about the duration associated with the 

cyclic evolution of the complex vector ( )t  . By contrast, (4) encodes information about 

the geometry of the environment where the transport takes place.  

3. The geometry of gauge and gravitational fields 

The gauge field concept may be built from a straightforward geometric interpretation [7, 

8]. Consider the parallel transport of a complex vector   round a closed rectangular 

loop. The difference between the value of  at the starting point (
0

 ) and at the end 

point 
0 f

  is given by 

 0f ig S F

           (5) 

in which S denotes the area enclosed by the rectangle and the strength of the gauge 

field is 

 ,F A A ig A A      
         (6) 

Echoing the formation of the Berry phase, the effect of parallel transport is to induce a 

non-vanishing rotation of   in internal space proportional to the strength of the gauge 
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field. Likewise, the curvature tensor of GR may be motivated through similar arguments. 

Taking a vector V  on a round trip by parallel transport, the difference between the initial 

and final components of the vector amounts to 

 
1

2
V R V S   

     (7) 

This equation faithfully replicates (5) and signals the presence of a gravitational field, via 

the curvature tensor R
 .  The geometric analogy between gauge theory and General 

Relativity is captured in the table below. 

Gauge Theory General Relativity 

Gauge transformation Coordinate transformation 

Gauge group 
Group of coordinate 

transformations 

Gauge potential A  Connection coefficient 

  

Field strength F   Curvature tensor R

   

Comparison between the geometry of gauge and gravitational fields. 

4. The geometry of turbulence in fluid dynamics 

…text to follow refs. [9-13] … 

5. Conclusions and outlook 

…text to follow… 
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