Performance Measurement of Multi-Agent

Systems

Muhammad Mohiuddin
University of Passau

Passau, Germany

mohiud01@gw.uni-passai.de

Abstract - A multi-agent system can greatly
increase performance and reliability of a system due
to several reasons like distributed nature,

responsiveness to environment, and the ability for
reuse. These characteristics are associated with
multi-agent systems due to their flexible and
intelligent nature. All these capabilities do not
come without challenges. One of the biggest
challenges that arises due to the dynamic behavior
of multi-agent systems is the difficulty to quantify
their reliability and dependability, or in other

words performance.

This article discusses agents and multi-agent
systems, their classification according design
parameters, multiple methods of performance

quantization, and factors which affect them.

Keywords: Software Agent, Multi-agent Systems, Agent

architecture, Performance Analysis, Performance

Parameters

1. INTRODUCTION
A. Agent

Researchers in the field of artificial intelligence have so far
failed to agree on a consensus definition of the word
“Agent” [1]. Two of the most regarded definitions are
presented from Russel [2] and FIPA [3]. Russel and Norvig
have defined and agent as an entity, which could perceive
the environment utilizing the sensors it can access. These
agents can then make decisions autonomously or in

conjunction with other agents present and can affect that
environment by using actuators.

FIPA defined agent as an agent is the fundamental actor
in a domain. It combines one or more service capabilities
into a unified and integrated execution model which can
include access to external software, human users and
communication facilities. These two definitions although
agreed and highly regarded, still have not been able to
develop a consensus. The first and foremost reason for this
is due to the universality of the word Agent. It cannot be
owned by a single community. Secondly, the agents can be
present in many physical forms which vary from robots to
computer networks. Thirdly, the application domain of the
agent is vastly varied, and it is impossible to generalize.
Researchers have used terms like softbots (software
agents), knowbots (Knowledge agents), taskbots (task-
based agents) based on the application domain where the
agents were employed [4]. These definitions provided do not
cover the entire range of characteristics that an agent
should possess. It can be distinguished from expert systems
and distributed controllers. Some important traits that
differentiate an agent from simple controllers are as follows:

Situatedness: This refers to the interaction of an agent with
the environment using sensors and the resultant actions of
the actuators. Environment in which an agent is present is
an integral part of its design. All the inputs are received
directly as a consequence of the agent’s interactions with
its environment. The agent’s directly act upon the
environment through the actuators and do not serve merely
as a meta level advisor. This attribute makes differentiates

it from expert systems in which the decision-making node

mailto:mohiud01@gw.uni-passau.de

or entity suggests for changes through a middle agent and
does not directly influence the environment.

Autonomy: This can be defined as the ability of an agent
to choose its actions independently without external
intervention by other agents in the network (case of multi-
agent systems) or human interference. These attributes
protect the internal states of agent from external influence.
It isolates the agent from instability caused by external
disturbances [5,6].

Inferential capability: The ability of an agent to work on
abstract goal specifications such as deducing an observation
by generalizing the information. This could be done by
utilizing relevant contents of available information [5,6].

Responsiveness: The ability to perceive the condition of
environment and respond to it in a timely fashion to take
account of any changes in the environment. This latter
property is of critical importance in real-time applications
[5,6].

Pro-activeness: Agent must exhibit a good response to
opportunistic behavior. This is to enhance actions that are
goal-directed rather than just being responsive to a specific
change in environment. It must have the ability to adapt
to any changes in the dynamic environment [5,6].

Social behavior: Even though the agent’s decision must be
free from external intervention, it must still be able to
interact with the external sources when the need arises to
achieve a specific goal. It must also be able to share this
knowledge and help other agents (MAS) solve a specific
problem. That are agents must be able to learn from the
experience of other communicating entities which may be
other network or statistical

human, agents in the

controllers [5,6].

Some other properties that are associated with the agents

include mobility, temporal continuity, collaborative
behavior etc. Based on whether a computing entity can
satisfy all or a few of the above properties, agents could be
further specified as exhibiting either weak or a strong
agency.

It is however extremely difficult to characterize agents
based only on these properties. It must also be based on
the complexity involved in the design, the function which

is to be performed and rationality which is exhibited.

Abilities \
Go alsfPrcfcrcnc-::S_\‘

Prior Knowledge ————®

Observations

. 4
Past Experiences 7

Figure 1 Agent and its interaction with environment
(Wikimedia)

B. Distributed Artificial Intelligence
Distributed or Decentralized Artificial Intelligence (DAT) is
a sub field of Artificial Intelligence. It is a predecessor to
the multi-agent systems. It has gained importance recently,
due to its ability to solve complex real-world problems.
Along with multi-agent systems, it has two other branches,
parallel Al and distributed solving. Multi-agent system is
different from the other two, due to the involvement of
agents strategies and

(autonomous interconnection).

Meanwhile, parallel Al is concerned about speed of
operation and computational efficiency of an application.
And distributed problem-solving focuses on predefined
connection schemes to achieve

strategies and

decentralization [7][24].

C. Multi-Agent System

A Multi-Agent System (MAS) is an extension of the agent
technology where a group of loosely connected autonomous
agents act in an environment. These agents can either have
a common goal, or they can have their local goals.
Depending on the scope of goal, they may cooperate or
compete, and decide whether to share or not share their
local knowledge with each other. Whatever the case, there
is always a coordination mechanism working in the system
between agents.

Multi-agent systems have been widely adopted in many
application domains because of the offered advantages.
Some of the benefits available by using MAS technology in
large systems [7,8] are

1. An increase in the speed and efficiency of the

operation due to parallel computation and

asynchronous operation.

2. A graceful degradation of the system when one or
more of the agents fail. It thereby increases the
reliability and robustness of the system.

3. Scalability and flexibility- Agents can be added as
and when necessary.

4. Reduced cost: This is because individual agents
cost much less than a centralized architecture.

5. Reusability-Agents have a modular structure and
they can be easily replaced in other systems or be

upgraded more easily than a monolithic system.

Though multi-agent systems have features that are more
beneficial than single agent systems, they also present some
critical challenges. Some of the challenges are highlighted
in the following section.

Environment: In a multi-agent system, the action of an
agent not only modifies its own environment but also that
of its neighbors. This necessitates that each agent must
predict the action of the other agents to decide the optimal
action that would be goal directed. This type of concurrent
learning could result in non-stable behavior and can
possibly cause chaos. The problem is further complicated,
if the environment is dynamic. Then each agent needs to
differentiate between the effects caused due to other agent
actions and variations in environment itself.

Perception: In a distributed multi-agent system, the agents
are scattered all over the environment. Each agent has a
limited sensing capability because of the limited range and
coverage of the sensors connected to it. This limits the view
available to each of the agents in the environment.
Therefore, decisions based on the partial observations made
by each of the agents could be sub-optimal and achieving
a global solution by this means becomes intractable.

Abstraction: In agent system, it is assumed that an agent
knows its entire action space and mapping of the state
space to action space could be done by experience. In MAS,
every agent does not experience all the states. To create a
map, it must be able to learn from the experience of other
agents with similar capabilities or decision-making powers.
In the case of cooperating agents with similar goals, this
can be done easily by creating communication between the
agents. In case of competing agents, it is not possible to
share the information as each of the agents tries to increase
its own chance of winning. It is therefore essential to

quantify how much of the local information and the
capabilities of other agent must be known to create an
improved modelling of the environment.

Conflict resolution: Conflicts stem from the lack of global
view available to each of the agents. An action selected by
an agent to modify a specific internal state may be bad for
another agent. Under these circumstances, information on
the constraints, action preferences and goal priorities of
agents must be shared between to improve cooperation. A
major problem is knowing when to communicate this
information and to which of the agents.

Inference: A single agent system inference could be easily
drawn by mapping the State Space to the Action Space
based on trial and error methods. However, in MAS, this is
difficult as the environment is being modified by multiple
agents that may or may not be interacting with each other.
Further, the MAS might consist of heterogenecous agents,
that is agents having different goals and capabilities. These
may be not cooperating and competing with each other.
Identifying a suitable inference mechanism in accordance of
the capabilities of each agent is crucial in achieving global
optimal solution. It is not necessary to use multi-agent
systems f or all applications. Some specific application
domains which may require interaction with different
people or organizations having conflicting or common goals
can be able to utilize the advantages presented by MAS in
its design.

Artificial
Intelligence

—

Distributed
Artificial
Intelligence
—
[[|
Multi-Agent

Systems

Distributed

Problem Solving bazalid AL

Software Agents

Figure 2 Classification of MAS inside Al

2. DESIGN OF MULTI-AGENT
SYSTEMS

MAS can be classified based on different design parameters
[9-13]. Here we will discuss only two.

Multi-agent systems can be heterogeneous or homogeneous,
depending of the type of agents involved. If all agents in a
system are similar, in terms of their capabilities and
functionalities (or perform similar tasks), then a system is
called homogenous system [14]. Otherwise, a system whose
agents are different in terms of capabilities and
functionalities is called a heterogenous system [15].
Secondly, multi-agent systems can be classified based on
their communication architectures as mesh or hierarchical.
In a mesh, all agents can communicate with all other agents
in a system. While, hierarchical system is more layered.
And an agent can only connect with some certain agents

(usually a parent and children).

sensor -
’ knowledge
] model
reasoning
' rationality
effector -
= = u
- - LY ,
. - F
- . ~ ’
- ~ #

mesh structure hierarchical structure

Figure 3 Examples of multi-agent coordination [24]

3. PERFORMANCE

A. Performance Indicators

1. Computational Efficiency: Amount of time and
resources an agent requires to perform all its
assigned tasks.

2. Coordination Mechanism: Organizational

structure in which agents have organized

themselves. This also includes computational and
communication costs involved.

3. Rationality model: Capability of optimization and
evaluation techniques an agent employs.

Data

manipulation capabilities of an agent.

4. Knowledge model: organization and

These parameters which are used to quantify the above-
mentioned indicators are discussed in the next section.

B. Performance Parameters

In this section a number of parameters associated with the
performance of a MAS are mentioned. These parameters
are directly or indirectly associated with the performance
of a MAS. These parameters are identified from the general
architecture and implementation of a MAS [16, 17].

A. Number of Agents: Number of agents in a MAS
directly affects its performance. This factor is also
directly linked with the agents’ communication
mechanism and the overall complexity of a MAS.
If the number of agents is too high, then the
complexity of a system increases, and it requires
additional effort to maintain the same performance
levels.

B. Optimizations: Agents employ several optimization
techniques. These optimizations can be local, but
still affect the performance of other agents and the
system, depending on the level of coordination and
its mechanism.

C. Active Time of Agent: When an agent is executing
the logic of its assigned responsibilities, it is said
to be in Active State. The amount of time an agent
spends in this state is a good parameter to
calculate its performance. This time during which
an agent is active is also called computational time.

D. Active Memory of Agent: The amount of memory

fulfill its

responsibilities is also a good measure of an agent’s

an agent requires to assigned
performance. Active memory is the sum of all
memory allocations an agent has made for objects
utilized during the active state.

E. Status of Agent: An agent can be in any of several
states during the lifetime of its operation i.e.

Active state, Wait state etc. The number of times

an agent shifts from one state to another, can have
an effect on its performance. Poor performance will
be delivered if an agent requires too many state
shifts, to carry out a task.

Coordination between Agents: Coordination
between agents means, how efficiently the agents,
which are part of a multi-agent system, can break
down a global assigned task into smaller local tasks
among themselves. This also includes how the
agents communicate among themselves, while the
local tasks are being executed. Influence of this
parameter on performance increases even further,
in a homogenous system. As, all agents have same
capabilities and functionalities, and division of
responsibilities becomes a bigger challenge [18].
Communication Mechanism: Multi-agent system’s
performance is affected by the communication
mechanisms it employs. Communication
mechanism includes protocols, techniques and
schemes used to enable communication not only
between the master and agents, but also between
agents. Length of messages, overhead or number of
physical machines involved can all have an effect.
System Management Mechanism: In a multi-agent
system, a global state must be maintained. This
global state is used to keep record of individual
agent’s states, roles, progress and status of task
execution. Also, some global properties like work
completed, work remaining, progress of work
through time and the percentage of active agents
in the entire system. All these tasks can seriously
affect the performance of a system, depending on
the amount of overhead involved in these
management tasks.

Reliance and Subordination between Agents: In a
MAS not everything is parallelizable, and all
agents are not completely independent and
autonomous. The non-parallel tasks (or reliance of
one agent on another agent’s output) can affect the
performance of a system in a critical manner.
Mostly, these bottlenecks

involvement of global state even during the

arise due to the

execution of a parallelized task. For example, in
this scenario, one or several agents must shift to
Wait state,

until another weaker agent has

task. These

dependencies can be analyzed during runtime,

completed a segment of their
using a management system, or during design time

using static analysis [19].

4. PERFORMANCE TESTING

Performance testing means to guarantee correctness and
throughput of a MAS, for all environments and workloads
it is designed for.

A. Techniques

Testing techniques used in the field of software engineering
in general can also be applied to test and guarantee the
validity and correctness of a MAS. These testing techniques
which can be used in the domain of MAS are listed below
[20-23]:

Theorem proving

Model checking

Static Analysis

Testing

FU B W b=

Runtime Monitoring

Out of the above 5 techniques, the one which is most
important for MAS is runtime monitoring.

Theorem proving: It is a formal technique to guarantee
validity of a state or states under all defined conditions.
For this purpose, specialized logic must be designed for all
states. This is a rather difficult approach, to the dynamic
and open environment nature of MAS. This approach is
rarely used except during the development of safety critical
systems.

Model checking: 1t is also a formal technique used during
the development of MAS. These tests guarantee that a
tested property holds in all possible states. In other words,
all states and state transitions of a system are modeled.
The coverage of these tests depend on how much system
model has been properly defined. Complete test coverage is
guaranteed for completely modeled system. Although,
completely modeling a MAS is practically very difficult.
Primarily, due to its flexible behavior and open
environment nature. For model checking a language called
MABLE can be used, which allows to generate Promela
models. These Promela models can then be checked using

SPIN.

Promela Models

Kripke Structure

) Property Holds
e Counter Example

Specification

Figure 4 Basic flow of Model Checking

Static Analysis: It is used to analyze the source code of the
MAS without executing it. The main target of this testing
technique is the data and logic flow of the system. Static
analysis has a very low coverage, because of the distributed
and autonomous nature of MAS. Despite of low coverage,
it is still used extensively, because it is a highly automated
process, and often integrated right into the compilers.

Testing: Standard software testing techniques are also used
in the domain of MAS. These include unit testing,
integration testing and instrumentation testing.

Runtime monitoring: It is a popular technique used for
testing MAS. This technique involves several approaches to
monitor and evaluate the behavior of a MAS at runtime.
The main reason of its popularity is its flexibility and ease
due to its simulated

of use, compatibility with

environments or simulation software.

e One of the approaches is the use of conditional
statements or asserts inside the source code. When
these conditional statements are executed, they
determine whether the output of the program is
valid. If condition holds true then the normal

execution of the program can continue, otherwise the

program enters a recovery mode, or simply crashes
to indicate a failure. The problem of this approach
is it is highly local, it’s difficult to validate the global

or other agent’s state. And in a MAS, validating

individual agent does not guarantee the validity of
the system.

e Another

analysis. In this approach, all individual agents are

runtime monitoring approach is log

responsible to write their current state to a log file,
at prespecified events. This log file can then be used
to analyze the occurrences of events, or even to

visualize the complete flow of execution.

The advantage of log analysis over conditional statements
is that it is compatible with distributed systems. As the log
files of an individual agent can also be analyzed by
comparing it to the log files of other agents. Furthermore,
third party statistical tools like R can also be readily used.

5. CONCLUSION

This paper discussed an actively researched topic of multi-
agent systems, with a focus on its performance issues. Basic
notions related to the topic were also explained, like
software agents, multi-agent systems, artificial intelligence
and distributed artificial intelligence.

Factors and indicators which affect the performance of a
MAS were also discussed, along with the techniques used
to test and validate them.

6. REFERENCES

[1] Nwana,H. S.,Software Agents: An Overview, Knowledge
Engineering Review, vol. 11, no 3, Sept. 1996, pp. 1-40.

[2] Russell S and Norvig P: ‘Artificial intelligence: a modern
approach’; Prentice Hall (1995)

[3] FIPA Agent Management Specification, 2004.
http://www.fipa.org/specs/fipa00023

[4] Nwana. H, “Software agents: An overview,” Knowledge
and Engineering Review, vol. 11, no. 3, 1996

[5] Jennings, N.R., Sycara, K. and Wooldridge, M. (1998)
A Roadmap of Agent Research
International ~Autonomous
Systems, 1, 7-38.

[6] Franklin, S. and Graesser, A. (1997) Is It an Agent, or
Just a Program? A Taxonomy for Autonomous Agents, In:
Miiller, J.P., Wooldridge, M.J. and Jennings, N.R., Eds.,
Intelligent Agents III Agent Theories, Architectures, and

and Develo-pment.

Agents and Multi-Agent

Languages, Springer, Berlin Heidelberg, 21-35.

http://www.fipa.org/specs/fipa00023/

[7] Nikos Vlassis, “A Concise introduction to multiagent
distributed
intelligence,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, 1% edition, 2007
[8] Andreas S. “Multi-Agent
Investigation of the Advantages of Making Organizations
Explicit”, 2010

[9] P.Stone and M.Veloso, “Multiagent systems: A survey

systems and artificial

Jensen, Systems: An

from the machine learning perspective,” Autonomous
Robotics, vol. 8, no.3 , pp. 1-56, Jul 2000

[10] Ren,Z and Anumba, C.J, “ Learning in multi-agent
systems: a case study of construction claim negotiation,”
Advanced Engineering Informatics, vol. 16, no. 4, pp. 265-
275, 2002

[11] Goldman, C.V, “Learning in multi-agent systems,” In
Proceedings of the Thirteenth National Conference on
Artificial and the Eighth
Applications of Artificial Intelligence Conference, vol. 2, pp.
1363, 1996

[12] Eduardo Alonso, Mark D’Inverno, Daniel Kudenko,
Michael Luck and Jason Noble, “Learning in multi-agent

Intelligence Innovative

systems,” The Knowledge Engineering Review, vol.13, no.
3, pp. 277-284, 2001

[13] Bergenti, Federico and Ricci, Alessandro, “Three
approaches to the coordination of multiagent systems,” In
Proceedings of the 2002 ACM Symposium on Applied
Computing, pp. 367-373, Mar 2002

[14] Tien C.Hsia and Michael Soderstrand, “Development

of a micro robot system for playing
soccer games,” In Proceedings of the Micro-Robot World
Cup Soccer Tournament, pp. 149-152, 1996
[15) Lynne E.Parker, “Heterogeneous multi-robot

cooperation,” PhD Thesis, Massachusetts Institute of
Technology, 1994

[16] Hillol Kargupta, Ilker Harnzaoglu, Brian Stafford:
Scalable, Distributed Data Mining Using an Agent Based
Architecture, Proceedings of High-Performance
Computing, 1997.

[17] Kasper Hallenborg: Core Design Pattern for Efficient
Multi-Agent Architecture,
"Information Science and Computing", pp 29-36, 2004.

[18] Y. Cao, W. Yu, W. Ren and G. Chen, "An Overview
of Recent Progress in the Study of Distributed Multi-Agent
Coordination," in IEEFE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 427-438, Feb. 2013. doi:
10.1109/TT1.2012.2219061

[19] Hannoun M., Sichman J.S., Boissier O., Sayettat C.
(1998) Dependence Relations Between Roles in a Multi-
Agent System. In: Sichman J.S., Conte R., Gilbert N. (eds)

International Book Series

Multi-Agent Systems and Agent-Based Simulation. MABS
1998. Lecture Notes in Computer Science, vol 1534.
Springer, Berlin, Heidelberg

[20] Wooldridge and Michael, An introduction to multi
agent systems, John Wiley & Sons Ltd, 2002

[21] Wooldridge, Michael, Michael Fischer, Marc-Philippe
Huget and Simon Parsons,

Model checking multi-agent systems with Mable,

first
conference on autonomous agents and multiagent systems
(aamas "02:)

[22] Ou-Yang C., Juan YC., Li C. (2009) Applying Petri
Net to Analyze a Multi-Agent System Feasibility - a

In Proceedings of the international joint

Process Mining Approach. In: Chou SY., Trappey A.,
Pokojski J., Smith S. (eds)
Competitive Enterprise, Economy and Ecology. Advanced

Global Perspective for

Concurrent Engineering. Springer, London
[23] Margaris, A.I. Int J Parallel Prog (2009) 37: 195.
https://doi.org/10.1007/s10766-009-0093-x

[24] Parasumanna Gokulan, Balaji & Srinivasan, D.
(2010). An Introduction to Multi-Agent Systems.
10.1007/978-3-642-14435-6_ 1.

https://doi.org/10.1007/s10766-009-0093-x

