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The Hilbert Book Model Project survey 
by Hans van Leunen 
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Summary 

This survey treats the Hilbert Book Model Project. The project concerns a well-founded, purely 

mathematical model of physical reality. The project relies on the conviction that physical reality owns 

its own kind of mathematics and that this mathematics guides and restricts the extension of the 

foundation to more complicated levels of the structure and the behavior of physical reality. This 

results in a model that more and more resembles the physical reality that humans can observe.  

1 The initiator of the project 
The Hilbert Book Model Project is an ongoing project. Hans van Leunen is the initiator of this project. 

The initiator was born in the Netherlands in 1941. He will not live forever. This project will contain his 

scientific inheritance. 

The project is introduced in a Wikiversity project. In the opinion of the initiator, a Wikiversity project 

is a perfect way of introducing new science. It especially serves the needs of independent or retired 

scientific authors. 

.The initiator maintains a ResearchGate project that considers the Hilbert Book Model Project. 

The ResearchGate site supports a flexible way of discussing scientific subjects. 

The initiator has generated some documents that contain highlights as excerpts of the project, 

and he stored these papers on his personal e-print 

archive http://vixra.org/author/j_a_j_van_leunen . 

The website contains most documents both in pdf as well as in docx format. None of these 

documents claims copyright. Everybody is free to use the content of these papers. 

1.1 Trustworthiness 
Introducing new science always introduces controversial and unorthodox text. The Hilbert Book 

Model Project is an ongoing enterprise. Its content is dynamic and is revised regularly. 

The content of this project is not peer-reviewed. It is the task of the author to ensure the correctness 

of what he writes. In the vision of the author, the reader is responsible for checking the validity of 

what he/she reads. The peer review process cannot cope with the dynamics of revisions and 

extensions that becomes possible via publishing in freely accessible e-print archives. In comparison to 

openly accessible publication on the internet, the peer review process is a rather slow process. In 

addition, it inhibits the usage of revision services, such as offered by vixra.org and by arxiv.org/ 

Reviewers are always biased, and they are never omniscient. The peer review process is expensive 

and often poses barriers to the renewal of science. 

One way to check the validity of the text is to bring parts of the text to open scientific discussion sites 

such as ResearchGate. 

The initiator challenges everybody to disprove the statements made in this report. He 
promises a fine bottle of XO cognac to anyone that finds a significant flaw in the presented 
theories. 

https://en.wikiversity.org/wiki/Hilbert_Book_Model_Project
https://www.researchgate.net/project/The-Hilbert-Book-Model-Project
https://www.researchgate.net/
http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/
http://vixra.org/author/j_a_j_van_leunen
https://arxiv.org/
https://www.researchgate.net/project/The-Hilbert-Book-Model-Project
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This challenge stands already for several years. Up to so far, nobody claimed the bottle. 

1.2 The author 
Hans took the Eindhoven HTS in chemistry from 1957-1960. 

After his military service in 1060-1963, Hans started at the THE which is now called Technical 

University Eindhoven (TUE) for a study in applied physics. 

Hans finished this study in 1970 and then joined Philips Elcoma EOD in the development of image 

intensifier tubes. Later this became a department of Philips Medical Systems division. 

In 1987 Hans switched to an internal software house. In 1995 Hans joined the Semiconductor division 

of Philips. In this period Hans designed a system for modular software generation. 

In 2001 Hans retired. 

From 1983 until 2006 Hans owned a software company "Technische en Wetenschappelijke 

Programmatuur" (TWP). 

A private website treats my current activities. 

I store my papers at a freely accessible e-print archive.  

To investigate the foundations and the lower levels of physical reality, Hans started in 2009 a 

personal research project that in 2011 got its current name "The Hilbert Book Model Project." 

The Hilbert Book Model is a purely mathematical unorthodox and controversial model of the 

foundations and the lower levels of the structure of physical reality. 

1.3 Early encounters 
I am born with a deep curiosity about my living environment. When I became aware of this, I was 

astonished why this environment appeared to be so complicated, and at the same time, it behaved in 

such a coherent way. In my childhood, I had no clue. Later some unique experiences offered me 

some indications. After my retirement, I started in 2009 a personal research project to discover and 

formulate some of the clues. The “Hilbert Book Model” is the name of my personal research project.  

My interest in the structure and phenomena of physical reality started in the third year of my physics 

study when the configuration of quantum mechanics confronted me for the first time with its special 

approach. The fact that its methodology differed fundamentally from the way that physicists did 

classical mechanics astonished me. So, I asked my very wise lecturer on what origin this difference is 

based. His answer was that the superposition principle caused this difference. I was not very happy 

with this answer because the superposition principle was indeed part of the methodology of 

quantum mechanics, but in those days, I did not comprehend how that could present the main cause 

of the difference between the two methodologies. I decided to dive into literature, and after some 

search, I encountered the booklet of Peter Mittelsteadt, “Philosophische Probleme der modernen 

Physik” (1963). This booklet contained a chapter about quantum logic and that appeared to me to 

contain a more appropriate answer. Later, this appeared a far too quick conclusion. In 1936 Garrett 

Birkhoff and John von Neumann published a paper that described their discovery of what they called 

“quantum logic.” Quantum logic is since then in mathematical terminology known as an 

orthomodular lattice. The relational structure of this lattice is to a large extent quite like the 

relational structure of classical logic. That is why the duo gave their discovery the name “quantum 

logic.” This name was an unlucky choice because no good reason exists to consider the orthomodular 

lattice as a system of logical propositions. In the same paper, the duo indicated that the set of closed 

http://www.e-physics.eu/#_Challenge
http://www.e-physics.eu/
http://vixra.org/author/j_a_j_van_leunen
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subspaces of a separable Hilbert space has exactly the relational structure of an orthomodular lattice. 

John von Neumann long doubted between Hilbert spaces and projective geometries. In the end, he 

selected Hilbert spaces as the best platform for developing quantum physical theories. That appears 

to be the reason why quantum physicists prefer Hilbert spaces as a realm in which they do their 

modeling of quantum physical systems. Another habit of quantum physicists also intrigued me. My 

lecturer thought me that all observable quantum physical quantities are eigenvalues of Hermitian 

operators. Hermitian operators feature real eigenvalues. When I looked around, I saw a world that 

had a structure that configures from a three-dimensional spatial domain and a one-dimensional and 

thus, scalar time domain. In the quantum physics of that time, no operator represents the time 

domain, and no operator was used to deliver the spatial domain in a compact fashion. After some 

trials, I discovered a four-dimensional number system that could provide an appropriate normal 

operator with an eigenspace that represented the full four-dimensional representation of my living 

environment. At that moment, I had not yet heard from quaternions, but an assistant professor 

quickly told me about the discovery of Rowan Hamilton that happened more than a century earlier. 

Quaternions appear to be the number system of choice for offering the structure of physical reality 

its powerful capabilities.  

The introductory paper of Birkhoff and von Neumann already mentioned quaternions. Much later 

Maria Pia Solèr offered a hard prove that Hilbert spaces can only cope with members of a division 

ring. Quaternions form the most extensive associative division ring. To my astonishment, I quickly 

discovered that physicists preferred a spacetime structure that features a Minkowski signature 

instead of the Euclidean signature of the quaternions. The devised Hilbert Book Model shows that in 

physical reality, both structures appear in parallel. Observers only see the spacetime structure. 

Physics is a science that focusses on observable information. My university, the TUE, targeted applied 

physics, and there was not much time nor support for diving deep into the fundamentals of quantum 

physics. After my study, I started a career in the high-tech industry where I joined the development 

of image intensifier devices. There followed my confrontation with optics and with the actual 

behavior of elementary particles. See: http://www.ephysics.eu/#_What_image_intensifiers reveal.  

In the second part of my career, I devoted my time to establish a better way of generating software. I 

saw how the industry was very successful in the modular construction of hardware. The software was 

still developed as a monolithic system. My experiences in this trial are reported in “Story of a War 

Against Software Complexity”;  http://vixra.org/abs/1101.0061, and “Managing the Software 

Generation Process”; http://vixra.org/abs/1101.0062.  It taught me the power of modular design and 

modular construction. 

Only after my retirement, I got enough time to dive deep into the foundations of physical reality. In 

2009 after the recovery of severe disease, I started my personal research project that in 2011 got its 

current name “The Hilbert Book Model.” For the rest of his life, the author takes the freedom to 

upgrade the related papers at a steady rate. 

 

 

   

http://vixra.org/abs/1101.0061
http://vixra.org/abs/1101.0062
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2 Intention 
Theoretical physics still contains unresolved subjects. These deficiencies of the theory are caused by 

the way that physics was developed and by the attitude of the physicists that designed the current 

theory. Scientists take great care to secure the trustworthiness of their work, which ends in the 

publication of the results. They take measures to prevent that their publications get intermingled 

with badly prepared publications or even worse, with descriptions of fantasies. For that reason, they 

invented the scientific method. In applied physics, the scientific method founds on observations. 

Applied physics flourishes because the descriptions of observations help to explore these findings, 

especially when formulas extend the usability of the observations beyond direct observation. In 

theoretical physics, this is not always possible because not all aspects of physical reality are 

observable. The only way of resolving this blockade is to start from a proper foundation that can be 

extended via trustworthy methods that rely on deduction. This approach can only be successful if the 

deduction process is guided and restricted such that the extensions of the foundation still describe 

physical reality. Thus, if a mathematical deduction is applied, then mathematics must guide and 

restrict this process such that a mathematically consistent extension of the model is again a valid 

model of physical reality. After a series of development steps, this approach must lead to a structure 

and behavior of the model that more and more conforms to the reality that we can observe. 

This guidance and restriction are not self-evident. On the other hand, we know that when we 

investigate deeper, the structure becomes simpler and easier comprehensible. So, finally, we come 

to a fundamental structure that can be considered as a suitable foundation. The way back to more 

complicated levels of the structure cannot be selected freely. Mathematics must pose restrictions 

onto the extension of the fundamental structure. This happens to be true for a foundation that was 

discovered about eighty years ago by two scholars. They called their discovery quantum logic. The 

scholar duo selected the name of this relational structure because its relational structure resembled 

closely the relational structure of the already known classical logic. Garrett Birkhoff was an expert in 

relational structures. These are sets that precisely define what relations are tolerated between the 

elements of the set. Mathematicians call these relational structures lattices, and they classified 

quantum logic as an orthomodular lattice. John von Neumann was a broadly oriented scientist that 

together with others was searching for a platform that was suitable for the modeling of quantum 

mechanical systems. He long doubted between two modeling platforms. One was a projective 

geometry, and the other was a Hilbert space. Finally, he selected Hilbert spaces. In their introductory 

paper, the duo showed that quantum logic emerges into a separable Hilbert space. The set of closed 

subspaces inside a separable Hilbert space has exactly the relational structure of an orthomodular 

lattice. The union of these subspaces equals the Hilbert space. A separable Hilbert space applies an 

underlying vector space, and between every pair of vectors, it defines an inner product. This inner 

product can only apply numbers that are taken from an associative division ring. In a division ring, 

every non-zero member owns a unique inverse. Only three suitable division rings exist. These are the 

real numbers, the complex numbers, and the quaternions. Depending on their dimension these 

number systems exist in several versions that differ in the way that Cartesian and polar coordinate 

systems sequence their members. 

In the Hilbert space, operators exist that can map the Hilbert space onto itself. In this way, the 

operator can map some vectors along themselves. The inner product of a normalized vector with 

such a map produces an eigenvalue. This turns the vector into an eigenvector. Together the 

eigenvalues of an operator form its eigenspace. This story indicates that mathematics guides and 

restricts the extension of the selected foundation into more complicated levels of the structure. It 

shows that the scholar duo started a promising development project. 

https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Quantum_logic
https://en.wikipedia.org/wiki/Complemented_lattice#Orthomodular_lattices
https://en.wikipedia.org/wiki/Projective_geometry
https://en.wikipedia.org/wiki/Projective_geometry
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Inner_product_space
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However, this initial development was not pursued much further. Axiomatic models of physical 

reality are not popular. Most physicists mistrust this approach. Probably these physicists consider it 

naïve to suspect that an axiomatic foundation can be discovered that like the way that a seed evolves 

in a certain type of plant, will evolve into the model of the physical reality that we can observe. 

Most quantum physicists decided to take another route that much more followed the line of the 

physical version of the scientific method. As could be suspected this route gets hampered by the fact 

that not every facet of physical reality can be verified by suitable experiments. 

Mainstream quantum physics took the route of quantum field theory, which diversified into quantum 

electrodynamics and quantum chromodynamics. It bases on the principle of least action, the 

Lagrangian equation and the path integral. However, none of these theories apply a proper 

foundation. 

In contrast, the Hilbert Book Model Project intends to provide a purely and self-consistent 

mathematical model of physical reality. It uses the orthomodular lattice as its axiomatic foundation 

and applies some general characteristics of reality as guiding lines. An important ingredient is the 

modular design of most of the discrete objects that exist in the universe. Another difference is that 

the Hilbert Book Model relies on the control of coherence and binding by stochastic processes that 

own a characteristic function instead of the weak and strong forces and the force carriers that QFT, 

QED, and QCD apply.  

Crucial to the Hilbert Book Model is that reality applies quaternionic Hilbert spaces as structured 

read-only archives of the dynamic geometric data of the discrete objects that exist in the model. The 

model stores these data before they can be accessed by observers. This fact makes it possible to 

interpret the model as the creator of the universe. 

  

https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Quantum_electrodynamics
https://en.wikipedia.org/wiki/Quantum_electrodynamics
https://en.wikipedia.org/wiki/Quantum_chromodynamics
https://en.wikipedia.org/wiki/Principle_of_least_action
https://en.wikipedia.org/wiki/Lagrangian_(field_theory)
https://en.wikipedia.org/wiki/Path_integral_formulation
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3 The Hilbert Book Base Model 
The Hilbert Book Model Project deviates considerably from the mainstream approaches. It tries to 

stay inside a purely mathematical model that can be deduced from the selected foundation. First, it 

designs a base model that is configured from a huge set of quaternionic separable Hilbert spaces that 

all share the same underlying vector space. One of these separable Hilbert spaces takes a special role 

and acts as a background platform. It has an infinite dimension, and it owns a unique non-separable 

Hilbert space that embeds its separable companion. Together these companion Hilbert spaces form 

the background platform of the base model. A reference operator manages the private parameter 

space of each separable Hilbert space. The elements of the version of the number system that the 

Hilbert space uses for specifying its inner products constitute this parameter space. These private 

parameter spaces float with their geometric center over the private parameter space of the 

background platform. Via the applied coordinate systems, the parameter spaces determine the 

symmetry of the corresponding Hilbert space. An elementary module resides on each floating 

separable Hilbert space. The eigenspace of a dedicated footprint operator archives the complete life 

story of this elementary module. After sequencing the real parts of these eigenvalues, the archive 

tells the life story of the point-like object as an ongoing hopping path that recurrently regenerates a 

coherent hop landing location swarm. The location density distribution that describes the swarm 

equals the square of the modulus of what physicists would call the wavefunction of the elementary 

module. Mainstream quantum physics calls the elementary modules elementary particles. They 

behave as elementary modules, but mainstream physics does not exploit that interpretation. In 

contrast, the Hilbert Book Model Project exploits the modular design of the model. 

In fact, the sequencing defines a subspace of the underlying vector space that scans as a function of 

progression over the whole model. This scanning window divides the model into a historic part, a 

window that represents the current static status quo, and a future part. In this way, the dynamic 

model resembles the paging of a book in which each page tells a universe-wide story of what 

currently happens in this continuum. This explains the name of the Hilbert Book Model. Together 

with the requirement that all applied separable Hilbert spaces share the same vector space the fact 

that a window scans the Hilbert Book Base Model as a function of a progression parameter results in 

the fact that these quaternionic separable Hilbert spaces share the same real number based 

separable Hilbert space. After sequencing the eigenvalues, the eigenspace of the reference operator 

of this Hilbert space acts as a model wide proper time clock. 

In contrast to the Hilbert Book Model, most other physical theories apply only a single Hilbert space 

that applies complex numbers for defining its inner product, or they apply a Fock space, which is a 

tensor product of complex number based Hilbert spaces. A tensor product of quaternionic Hilbert 

spaces results in a real number based Hilbert space. In the Hilbert Book Base Model, the quaternionic 

separable Hilbert spaces share the same real number based Hilbert space. 

The coherence of the hop landing location swarm that configures the footprint of an elementary 

module is ensured by the fact that the mechanism that generates the hop landing locations is a 

stochastic process that owns a characteristic function. This characteristic function is the Fourier 

transform of the location density distribution of the hop landing location swarm. The mechanism 

reflects the effect of the ongoing embedding of the separable Hilbert space of the elementary 

module into the background non-separable Hilbert space. A continuum eigenspace of a dedicated 

operator registers the embedding of the hop landings of all elementary modules into this continuum. 

The continuum corresponds to the dynamic field that physicists call the universe. This field acts as 

the living space of all discrete objects that exist in the universe.   

https://en.wikipedia.org/wiki/Fock_space
https://arxiv.org/pdf/1101.5690.pdf
https://arxiv.org/pdf/1101.5690.pdf
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4 Modeling dynamic fields and discrete sets 
The eigenspace of a dedicated footprint operator in a quaternionic separable Hilbert space can 

represent the dynamic geometric data of the point-like object that resides on this Hilbert space. The 

eigenspace of operators in a quaternionic non-separable Hilbert space can, in addition, represent the 

description of a dynamic continuum. We already met the eigenspace of the reference operator, 

which represents the private parameter space of the Hilbert space. In the separable Hilbert space 

this eigenspace is countable and contains only the rational values of the version of the quaternionic 

number system that the separable Hilbert space can apply as eigenvalues. In the non-separable 

Hilbert space, the eigenspace of the reference operator also contains all the limits of the congruent 

series of rational values. Consequently, this eigenspace is no longer countable. In each of the applied 

Hilbert spaces, it is possible to use the reference operator to define a category of newly defined 

operators by taking for each eigenvector of the reference operator a new eigenvalue that equals the 

target value of a selected quaternionic function for the parameter value that equals the 

corresponding eigenvalue of the reference operator. In the quaternionic separable Hilbert space the 

new eigenspace represents the sampled field that is described by the selected quaternionic function. 

In the quaternionic non-separable Hilbert space the new eigenspace represents the full continuum 

that is described by the selected quaternionic function. Continuum eigenspaces can represent the 

mathematical equivalent of a dynamic physical field. The private parameter space of a quaternionic 

Hilbert space represents a flat field. The dynamics of a field can be described by quaternionic 

differential equations. 

Quaternionic second order partial differential equations describe the interaction between point-like 

actuators and a dynamic field. Physical fields differ from mathematical fields by the fact that the 

value of the physical field is represented in physical units. All basic fields obey the same quaternionic 

differential and integral equations. The basic fields differ in their start and boundary conditions. 

4.1 Quaternionic differential calculus 
The first order partial differential equations divide the change of a field in five different parts that 

each represent a new field. We will represent the field change operator by a quaternionic nabla 

operator. This operator behaves as a quaternionic multiplier. 

A quaternion can store a time-stamp in its real part and a three-dimensional spatial location in its 

imaginary part. The quaternionic nabla  acts as a quaternionic multiplying operator. Quaternionic 

multiplication obeys the equation  

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = − + +     (4.1.1) 

The   sign indicates the freedom of choice of the handedness of the product rule that exists when 

selecting a version of the quaternionic number system. The first order partial differential follows 

from 

 , , , r
x y z

    
 = =  +  

    
  (4.1.2) 

The spatial nabla  is well-known as the del operator and is treated in detail in Wikipedia. 

 ( ) ,r r r r r        


 
=  = +  + =  −  +  +    

 
  (4.1.3) 

https://en.wikipedia.org/wiki/Del
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The differential   describes the change of field  . The five separate terms in the first order 

partial differential have a separate physical meaning. All basic fields feature this decomposition. The 

terms may represent new fields. 

 ,r r r  =  −    (4.1.4) 

 
r r E B   =  +  = −    (4.1.5) 

f  is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

The conjugate of the quaternionic nabla operator defines another type of field change. 

 *

r =  −   (4.1.6) 

 ( )* ,r r r r r        


 
=  = −  + =  +  +  −   

 
  (4.1.7) 

 

4.2 Field excitations 
Field excitations are solutions of second order partial differential equations.  

One of the second order partial differential equations results from combining the two first-order 

partial differential equations  =  and * =  . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
  (4.2.1) 

Integration over the time domain results in the Poisson equation 

 , =    (4.2.2) 

Under isotropic conditions, a very special solution of this equation is the Green’s function
1

'q q−
  of 

the affected field. This solution is the spatial Dirac ( )q   pulse response of the field under strict 

isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (4.2.3) 
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( )

( )3

'1 1
, , , 4 '

' ' '

q q
q q

q q q q q q


−
     = −  = −

− − −
  (4.2.4) 

Under these conditions, the dynamic spherical pulse response of the field is a solution of a special 

form of the equation (4.2.1)  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (4.2.5) 

Here ( )   is a step function and ( )q  is a Dirac pulse response. After the instant ' , this solution 

is described by 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (4.2.6) 

The normalized vector n  can be interpreted as the spin of the solution. The spherical pulse response 

acts either as an expanding or as a contracting spherical shock front. Over time this pulse response 

integrates into the Green’s function. This means that the expanding pulse injects the volume of the 

Green’s function into the field. Subsequently, the front spreads this volume over the field. The 

contracting shock front collects the volume of the Green’s function and sucks it out of the field. The 

± sign in equation (4.2.5) selects between injection and subtraction. 

Apart from the spherical pulse response equation (4.2.5) supports a one-dimensional pulse response 

that acts as a one-dimensional shock front. This solution is described by 

 ( )( )' 'f q q c n  = −  −   (4.2.7) 

Here, the normalized vector n can be interpreted as the polarization of the solution. Shock fronts 

only occur in one and three dimensions. A pulse response can also occur in two dimensions, but in 

that case, the pulse response is a complicated vibration that looks like the result of a throw of a stone 

in the middle of a pond. 

Equations (4.2.1) and (4.2.2) show that the operators 
2

2




and ,   are valid second order partial 

differential operators. These operators combine in the quaternionic equivalent of the wave equation. 

 
2

2
, 



 
= −   

 
   (4.2.8) 

This equation also offers one-dimensional and three-dimensional shock fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
  (4.2.9) 

 ( )( )' 'f q q c  = −  −   (4.2.10) 

https://en.wikipedia.org/wiki/Wave_equation
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These pulse responses do not contain the normed vector n . Apart from pulse responses, the wave 

equation offers waves as its solutions. 

By splitting the field into the time-dependent part ( )T  and a location dependent part, ( )A q , the 

homogeneous version of the wave equation can be transformed into the Helmholtz equation 

 
2

2

2
,


  




=   = −


   (4.2.11) 

 ( , ) ( ) ( )q A q T  =    (4.2.12) 

 
2

2

2

1 1
,

T
A

T A





=   = −


   (4.2.13) 

 
2, A A  +    (4.2.14) 

The time-dependent part ( )T   depends on initial conditions, or it indicates the switch of the 

oscillation mode. The switch of the oscillation mode means that temporarily the oscillation is 

stopped and instead an object is emitted or absorbed that compensates the difference in potential 

energy. The location-dependent part of the field ( )A q  describes the possible oscillation modes of 

the field and depends on boundary conditions.  The oscillations have a binding effect. They keep the 

moving objects within a bounded region. See 

https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation#Hyperbolic_system_and_con

servation_laws. 

For three-dimensional isotropic spherical conditions, the solutions have the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (4.2.15) 

Here 
lj  and 

ly  are the spherical Bessel functions, and 
m

lY  are the spherical harmonics. These 

solutions play a role in the spectra of atomic modules. 

A more general solution is a superposition of these basic types. 

  

https://en.wikipedia.org/wiki/Helmholtz_equation
https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation#Hyperbolic_system_and_conservation_laws
https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation#Hyperbolic_system_and_conservation_laws
https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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5 Photons 

5.1 Photon structure 
Photons are one-dimensional objects that are strings of equidistant energy packages, such that the 

string obeys the Einstein-Planck relation 

 E h=   (5.1.1) 

The energy packages are implemented by one-dimensional shock fronts that possess a polarization 

vector. 

5.2 One-dimensional pulse responses 
One-dimensional pulse responses that act as one-dimensional shock fronts and possess a polarization 

vector are solutions of the equation (4.2.5) and are described by the equation (4.2.7). During travel, 

the front ( )f q  keeps its shape and its amplitude. So also, during long-range trips, the shock front 

does not lose its integrity. The one-dimensional pulse response represents an energy package that 

travels with speed c through its carrier field. The energy of the package has a standard value. 

5.3 Light 
Light is a dynamic spatial distribution of photons. Often the location density distribution of photons 

owns a Fourier transform. Thus, light may show wave behavior, but photons are one-dimensional 

particles, that feature a private frequency and energy. 

5.4 Optics 
Optics is the science of imaging distributions of particles that can be characterized by a location 

density distribution and a corresponding Fourier transform of that location density distribution. 

Another name for the location density distribution is point spread function (PSF). Another name for 

the Fourier transform of the PSF is the optical transfer function (OTF). Apart from a location density 

distribution, the swarm of the particles is also characterized by an angular distribution and by an 

energy distribution. In case if photons the energy distribution is a chromatic distribution. 

A linearly operating imaging device can be characterized by its point spread function or alternatively 

by its OTF. The PTF represents the blur that is introduced by the imaging device. For a homogeneous 

distribution of particle properties, the OTF of a chain of linearly operating imaging devices equals the 

product of the OTF’s of the separate devices. 

  

https://en.wikipedia.org/wiki/Optical_transfer_function
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6 Modular design and construction 
The discrete objects that exist in the universe show a modular design. In modular configurations, 

elementary particles behave as elementary modules. Together they constitute all modules that exist 

in the universe. Some modules constitute modular systems. 

Also, photons show a modular structure. 

6.1 Elementary modules 

 Symmetry-related charge 
Elementary modules are very complicated objects that reside on a private platform, which possesses 

some of the characteristic properties of the elementary module. These properties establish the type 

of the elementary module. 

Elementary modules reside on a private Hilbert space, which uses a selected version of the 

quaternionic number system to specify its inner products. Consequently, the operators in this Hilbert 

space apply members of this version to specify its eigenvalues. The eigenspace of this operator 

reflects the properties of this version. Thus, the eigenspace of the reference operator reflects the 

symmetry of the Hilbert space. Its geometric center floats over the background parameter space. The 

symmetry is defined relative to the symmetry of the background platform. Mathematics can 

compare these differences if the axes of the Cartesian coordinate systems in these parameter spaces 

are parallel to each other. The model applies the Stokes theorem and the Gauss theorem to 

determine the effect of the symmetry differences. The only freedoms that are left are the locations 

of the geometric centers of the parameter spaces and the way that the elements of the versions of 

the number systems are sequenced along the axes. These restrictions reduce the list of symmetry 

differences to a short list. It means that the elementary modules exist in a small number of different 

symmetry related categories. The symmetry difference is represented by a symmetry-related charge 

that resides at the geometric center of the private parameter space. The opposed restrictions that 

determine the allowable versions of the quaternionic number system restrict the list of values of 

symmetry-related charges to 3, 2, 1,0, 1, 2, 3− − − + + + . The isotropic symmetry differences are 

represented by 3,0, 3− +   

 The symmetry-related charges correspond to symmetry-related fields. At the location of the charge, 

a source or a sink generates a corresponding potential.  

The anisotropic differences spread over the three coordinate axes and are indicated by 

corresponding RGB color charges. If we extend this distinguishing to the real axis of the parameter 

spaces, then the anti-color charges add to the three RGB color charges. Further, the product rule of 

the quaternions introduces diversity in the handiness of the version of the number system. The polar 

coordinate system also allows the polar angle and the azimuth to run up or down. The range of the 

polar angle is π radians. The range of the azimuth is 2π radians. This freedom of choice adds to the 

freedom that is left by the Cartesian coordinate system. 

The first conclusion is that elementary modules exist in a short list of categories that differ in their 

symmetry-related properties, in their angular range properties, and in their arithmetic properties. 

  

https://en.wikipedia.org/wiki/Stokes%27_theorem
https://en.wikipedia.org/wiki/Divergence_theorem
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6.2 Modular configuration 
The Elementary modules can combine into composed modules. Some modules combine into 

modular systems. However, not all modules can compose with arbitrary other modules. For example, 

symmetry-related charges that have the same sign will repel each other, while symmetry-related 

charges with a different sign will attract. Composition applies internal oscillation of the components 

of the module. This is explained in the next section. Only elementary modules with the proper 

angular symmetry can take part in the modular composition process. These elementary modules are 

called fermions. The other elementary modules are called bosons. Fermions cannot share the same 

oscillation mode and cannot share the same angular properties, such as spin. The binding via internal 

oscillation must be supported by the attraction that is caused by deformation of the embedding field. 

The anisotropic elementary modules cannot themselves deform the embedding field. They must first 

combine into colorless hadrons before their combination can deform the embedding field. Physicists 

call this phenomenon color confinement.  

The hop landings of isotropic elementary modules can produce spherical pulse responses that 

deform the embedding field. Similarly. the hop landings of hadrons can produce such spherical pulse 

responses. 
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6.3 Stochastic control 
For each elementary module, a private stochastic process generates the hop landing locations in the 

ongoing hopping path that recurrently regenerates the coherent hop landing location swarm that 

constitutes the footprint of the elementary module. Only for isotropic elementary modules, the hop 

landings can deform the embedding field. The footprints of anisotropic elementary modules must 

first combine into colorless hadrons before these footprints can deform the embedding field. This 

phenomenon is known as color confinement. 

The type of stochastic process that generates the footprint of elementary modules owns a 

characteristic function that equals the Fourier transform of the location density distribution of the 

coherent hop landing location swarm. It is possible to interpret the stochastic process as the 

combination of a spatial Poisson point process in ℝ3. The intensity function of this process is 

implemented by a spatial point spread function that equals the location density distribution of the 

generated hop landing location swarm. The eigenspace of the footprint operator archives the target 

values of a quaternionic function, whose spatial part describes the point spread function. A cyclic 

random distribution describes the real parts of these target values. After sequencing these real parts, 

the eigenspace describes the ongoing hopping path of the elementary module. 

The location density distribution can be interpreted as a detection probability density distribution. If 

it has a Fourier transform, then a kind of uncertainty principle exists between the standard deviation 

of the detection probability density distribution and the standard deviation of the modulus of this 

Fourier transform.  If the standard deviation of the modulus of this Fourier transform increases, then 

the standard deviation of the detection probability density distribution decreases.  

A second type of stochastic process controls composed modules. This process also owns a 

characteristic function. This characteristic function is a dynamic superposition of the characteristic 

functions of the components of the module. The superposition coefficients act as displacement 

generators. In this way, these coefficients control the internal positions of the components. Inside 

atoms, these components perform their own oscillation mode. All modules attach an extra 

displacement generator to their characteristic function. This displacement generator determines the 

location of the full module. 

This analysis tells that the characteristic functions, which reside in Fourier space define the 

constitution of the module.   In Fourier space spatial locality has no meaning. It means that the 

components of a module can be far apart. The phenomenon is known as entanglement. Only the 

attracting influences of potentials can keep components closely together. 

  

https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Quantum_entanglement


15 
 

6.4 Benefits of modular design and construction 
Modular design hides relations that are only relevant inside the module from the outside of the 

module. In this way, the modular design reduces the relational complexity of the construction of 

composed modules. This is further improved by the possibility to gather relations in standard 

interfaces. This standardization promotes the reusability of modules. The fact that composed 

modules can be generated from lower level modules has an enormously beneficial effect on the 

reduction of the relational complexity of the modular composition process. 

Modular design is preparation for modular construction. The creator has prepared the universe for 

modular construction, which is a very efficient way of generating new objects. However, modular 

configuration of objects involves the availability of modules that can be joined to become higher 

level modules or modular systems. This means that enough resources must be available at the 

proper place and the proper time. The generation of a module out of composing modules makes 

sense when the new module has a profitable functionality. An advantage can be that the new 

module or modular system has a better chance of survival in a competitive environment. In that case, 

stochastic modular design can easily win from monolithic design. Therefore, evolution can evolve 

with a pure stochastic modular design. However, as soon as intelligent species are generated as 

modular systems, then these individuals can take part in the control of evolution by intelligent 

modular design. Intelligent modular design and construction occur much faster. 

 Modular hierarchy 
The modular hierarchy starts with elementary modules. Elementary modules exist in several types 

that differ in their basic properties. 

These basic properties are their symmetry-related charge, their spin, and their regeneration cycle. 

 Compound modules 
Compound modules are composed-modules for which the geometric centers of the platforms of the 

components coincide. The charges of the platforms of the elementary modules establish the binding 

of the corresponding platforms. Physicists and chemists call these compound modules atoms or 

atomic ions. 

In free compound modules, the symmetry-related charges do not take part in the oscillations. The 

targets of the private stochastic processes of the elementary modules oscillate. This means that the 

hopping path of the elementary module folds around the oscillation path and the hop landing 

location swarm gets smeared along the oscillation path. The oscillation path is a solution of the 

Helmholtz equation. Each fermion must use a different oscillation mode. A change of the oscillation 

mode goes together with the emission or the absorption of a photon. The center of emission 

coincides with the geometrical center of the compound module. During the emission or absorption, 

the oscillation mode and the hopping path halt, such that the emitted photon does not lose its 

integrity. Since all photons share the same emission duration, that duration must coincide with the 

regeneration cycle of the hop landing location swarm. Absorption cannot be interpreted so easily. In 

fact, it can only be comprehended as a time-reversed emission act. Otherwise, the absorption would 

require an incredible aiming precision for the photon.  

The type of stochastic process that controls the binding of components appears to be responsible for 

the absorption and emission of photons and the change of oscillation modes. If photons arrive with 

too low energy, then the energy is spent on the kinetic energy of the common platform. If photons 

arrive with too high energy, then the energy is distributed over the available oscillation modes, and 

the rest is spent on the kinetic energy of the common platform. The process must somehow archive 
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the modes of the components. It can apply the private platform of the components for that purpose. 

Most probably the current value of the dynamic superposition coefficient is stored in the eigenspace 

of a special superposition operator. 

 Molecules 
Molecules are conglomerates of compound modules that each keep their private geometrical center. 

However, electron oscillations are shared among the compound modules. Together with the 

symmetry-related charges, this binds the compound modules. 

 Consciousness and intelligence 
In the Hilbert Book Model, all modules are considered to act as observers. That does not mean that 

these modules react to the perceived information in a conscious or intelligent way. In the hierarchy 

of modular systems, compared to intelligence, consciousness already enters at lower levels of 

complexity. However, consciousness cannot be attributed to non-living modular systems. Primitive 

life forms have primitive degrees of consciousness. 

Intelligent species show self-reflection and can create strategies that guard their type-community or 

their social-community. Conscious species can also develop such guarding measures, but that is 

usually a result of trial and error instead of a developed strategy. The strategy is then inherited via 

genes. 

For intelligent species, the modular design strategy of the creator can be an inspiration [3]. 

• Modular design is superior to monolithic design. 

• Modular construction works economically with resources. 

• It is advantageous to have access to a large number and a large diversity of suitable modules. 

• Create module-type communities. 

• Type communities survive far longer than the corresponding individual modules. 

• Members must guard their module type community. 

• Type communities may inherit the culture of their members. 

• Modular systems must care about the type communities on which they depend. 

• Modular systems must care about their living environment. 

• Darwin’s statement that the fittest individual will survive must be exchanged for the 

statement that the module-type community survives that cares best for its members, its 

resources and its environment.  
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7 Gravitation 

7.1 A deforming field excitation 
A spherical pulse response is a solution of a homogeneous second order partial differential equation 

that was triggered by an isotropic pulse. The corresponding field equation and the solution 

corresponding solution are repeated here. 

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (7.1.1) 

Here the ± sign represents time inversion. 
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The spherical pulse response integrates over time into the Green’s function of the field. The Green’s 

function is a solution of the Poisson equation.  

 , =    (7.1.3) 

The Green’s function occupies some volume.  
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 (7.1.4) 

This means that locally the pulse pumps some volume into the field, or it subtracts volume out of the 

field. The selection between injection and subtraction depends on the sign in the step function in the 

equation (7.1.1). The dynamics of the spherical pulse response shows that the injected volume 

quickly spreads over the field. In the case of volume subtraction, the front first collects the volume 

and finally subtracts it at the trigger location. Gravitation considers the case in which the pulse 

response injects volume into the field. 

Thus, locally and temporarily, the pulse deforms the field, and the injected volume persistently 

expands the field. 

This paper postulates that the spherical pulse response is the only field excitation that temporarily 

deforms the field, while the injected volume persistently expands the field. 

 The effect of the spherical pulse response is so tiny and so temporarily that no instrument can ever 

measure the effect of a single spherical pulse response in isolation. However, when recurrently 

regenerated in huge numbers in dense and coherent swarms the pulse responses can cause a 

significant and persistent deformation that instruments can detect. This is achieved by the stochastic 

processes that generate the footprint of elementary modules. 

The spherical pulse responses are straightforward candidates for what physicists call dark matter 

objects. A halo of these objects can cause gravitational lensing. 

7.2 Gravitation potential 
The gravitation potential that an elementary module causes can be approached by the convolution of 

the Green’s function of the field and the location density distribution of the hop landing location 

swarm. This approximation is influenced by the fact that the deformations, which are due to the 
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individual pulse responses quickly fade away. Further, the density of the location distribution affects 

the efficiency of the deformation. 

The Green’s function describes the result of a point-like pulse whose response has a mass of its own. 

We know how to compute the mass of a distribution of point masses. At some distance of the center 

of the swarm, the gravitation potential can be approximated by  

 ( )
Gm

g r
r

  (7.2.1) 

where m is the mass of the particle and r equals the distance to the center. Here we omit the physical 

units. G is the gravitational constant. More exactly, the gravitation potential of the elementary 

module can be approximated by taking the convolution of the location density distribution of the hop 

landing location swarm. If we do this for example for a Gaussian location density distribution, then 

the convolution results in 

 
( )

( )
ERF r

g r Gm
r

  (7.2.2) 

 

Where ( )ERF r  is the well-known error function. Here the gravitation potential is a perfectly 

smooth function that at some distance from the center equals the approximated gravitation 

potential that was described above in equation (7.2.1). The convolution only offers an approximation 

because this computation does not account for the influence if the density of the swarm and it does 

not compensate for the fact that the deformation by the individual pulse responses quickly fades 

away. Thus, the exact result depends on the duration of the recurrence cycle of the swarm. 

In the example, the distribution might have a higher amplitude. 

This might explain why some elementary module types exist in three generations. 

 

 

7.3 Regeneration 
The generation of the hopping path is an ongoing process. The generated hop landing location 

swarm contains a huge number of elements. Each elementary module type is controlled by a 

corresponding type of stochastic process. For the stochastic process, only the Fourier transform of 

the location density distribution of the swarm is important. Consequently, for a selected type of 

elementary module, it does not matter at what instant of the regeneration of the hop landing 

location swarm the location density distribution is determined. Thus, even when different types are 

bonded into composed modules, there is no need to synchronize the regeneration cycles of different 

https://en.wikipedia.org/wiki/Center_of_mass
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types. This freedom also means that the number of elements in a hop landing location swarm may 

differ between elementary module types. This means that the strength of the deformation of the 

embedding field can differ between elementary module types. The strength of deformation relates 

to the mass of the elementary modules according to formula (7.2.1). 

The requirement for regeneration introduces a great mystery. All generated mass appears to dilute 

away and must be recurrently regenerated. This fact conflicts with the conservation laws of 

mainstream physics. The deformation work done by the stochastic processes vanishes completely. 

What results is the ongoing expansion of the field. Thus, these processes must keep generating the 

particle to which they belong. 

Only the ongoing embedding of the content that is archived in the floating platform into the 

embedding field can explain the activity of the stochastic process. This supposes that at the instant of 

creation, the creator already archived the dynamic geometric data of his creatures into the 

eigenspaces of the footprint operators. These data consist of a scalar time-stamp and a three-

dimensional spatial location. The quaternionic eigenvalues act as storage bins.  

After the instant of creation, the creator left his creation alone. The set of floating separable Hilbert 

spaces, together with the background Hilbert space act as a read-only repository. After sequencing 

the time-stamps, the stochastic processes read the storage bins and trigger the embedding of the 

location into the embedding field. 

7.4 Inertia 
The relation between inertia and mass is complicated. It assumes that a field exists that tries to 

compensate for the change of the field when its vector part suddenly changes with time.  

This special field supports the hop landing location swarm that resides on the floating platform. It 

reflects the activity of the stochastic process, and it floats with the platform over the background 

platform. It is characterized by a mass value and by the uniform velocity of the platform with respect 

to the background platform. The real part conforms to the deformation that the stochastic process 

causes. The imaginary part conforms to the moving deformation. The main characteristic of this field 

is that it tries to keep its overall change zero. We call  the deformation field. 

The first order change of a field contains five terms. Mathematically, the statement that in first 

approximation nothing in the field  changes indicates that locally, the first order partial differential 

  will be equal to zero. 

 , 0r r r r      =  =  −  + +  =  (7.4.1) 

The terms that are still eligible for change must together be equal to zero. These terms are. 

 0r r  + =  (7.4.2) 

In the following text plays  the role of the vector field and r plays the role of the scalar 

gravitational potential of the considered object. We approximate this potential by using formula 

(7.2.1). 
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The new field ,
m

v
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considers a uniformly moving mass as a normal situation. It is a 

combination of the scalar potential 
m

r
 and the uniform speed v .  

If this object accelerates, then the new field ,
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v
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 tries to counteract the change of the field v  by 

compensating this with an equivalent change of the real part 
m

r
 of the new field. This equivalent 

change is the gradient of the real part of the field. 
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This generated vector field acts on masses that appear in its realm. 

Thus, if two masses 1m  and 2m  exist in each other’s neighborhood, then any disturbance of the 

situation will cause the gravitational force 
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−
 (7.4.4) 

The disturbance by the ongoing expansion of the field suffices to put the gravitational force into 

action. The description also holds when the field  describes a conglomerate of platforms and m

represents the mass of the conglomerate. 

In compound modules such as ions and atoms, the field   of a component oscillates with the 

deformation rather than with the platform. 

 

Inertia bases mainly on the definition of mass that applies to the region outside the sphere where the 

gravitation potential behaves as the Green’s function of the field. There the formula 
r

m

r
 = applies. 

Further, it bases in the intention of modules to keep the gravitation potential inside the mentioned 

sphere constant. At least that holds when this potential is averaged over the regeneration period. In 

that case, the overall change  of the deformation field equals zero. Next, the definition of the 

deformation field supposes that the swarm which causes the deformation moves as one unit. 

Further, the fact is used that the solutions of the homogeneous second order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is presented by smooth dips is 

obviously false. The story that is represented in this paper shows the deformations as local 

extensions of the field, which represents the universe. In both sketches, the deformations elongate 

the information path, but none of the sketches explain why two masses attract each other. The 

above explanation founds on the habit of the stochastic process to recurrently regenerate the same 

time average of the gravitation potential, even when that averaged potential moves uniformly. 

Without the described habit of the stochastic processes, inertia would not exist. 
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Similar tricks can be used to explain the electrical force from the fact that the electrical field is 

produced by sources and sinks that can be described by the Green’s function.  
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8 Black holes 

8.1 Geometry 
Black holes are regions of the field that are encapsulated by a surface that cannot be passed by 

spherical shock fronts. Only the shock fronts that locate at the border of the region can add volume 

to the region. Thus, the increase of the volume of that region is restricted by the surface of the 

encapsulation. This differs from free space, where stochastic processes can inject volume anywhere. 

Black holes represent the most efficient packaging of volume that stochastic processes can achieve. 

Black holes are characterized by a Schwarzschild radius. It is the radius where the escape speed of 

massive objects equals light speed. The gravitational energy U  of a massive object with mass m  in 

a gravitation field of an object with mass M  is 

 
GMm

U
r

= −  (8.1.1) 

 

The escape velocity follows from the initial energy 2½mv of the object with mass m  and velocity 𝑣. 
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This results in  
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Due to the kinetic energy equivalence 21

2
h mv = ,this means for photons 
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The frequency 𝜈 of the photon changes with the radius r   

 0
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 = −  (8.1.5) 

 

This formula describes the gravitational redshift of photons. The radius at which the frequency 𝜈 has 

reduced to zero is the Schwarzschild radius sr   
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8.2 The border of the black hole 
For a non-rotating neutral black hole, photons cannot pass the sphere with the Schwarzschild radius 

sr .  

At the Schwarzschild radius, the escape velocity of massive objects equals the light speed. 

It also means that one-dimensional shock fronts and spherical shock fronts cannot escape the 

sphere. 

Spherical shock fronts can only add volume to the black hole when their actuator hovers over the 

region of the black hole. The injection increases the Schwarzschild radius. The injection also increases 

the mass M . An increase in the Schwarzschild radius means an increase in the volume of this sphere. 

This is like the injection of volume into the volume of the field that occurs via the pulses that 

generate the elementary modules. However, in this case, the volume stays within the Schwarzschild 

sphere. In both cases, the volume of the field expands.  

The HBM postulates that the geometric center of an elementary module cannot enter the region of 

the black hole. This means that part of the active region of the stochastic process that produces the 

footprint of the elementary module can hover over the region of the black hole. In this overlap 

region, the pulses can inject volume into the black hole. Otherwise, no stochastic process could inject 

volume into the black hole. 

The Schwarzschild sphere contains unstructured volume. No modules exist within that sphere. 

The Bekenstein bound relates the Schwarzschild black hole to its entropy. 
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This indicates that the entropy S is proportional to the area of the black hole. This only holds for the 

entropy at the border of the black hole.  

9 In the beginning 
Before the stochastic processes started their action, the volume content of the universe was 
empty. It could be represented by a flat field. In the beginning, a huge number of these processes 
started their triggering of the dynamic field that represents the universe. From that moment on the 
universe started expanding. This did not happen at a single point. Instead, it happened at a huge 
number of locations that were distributed all over the spatial part of the parameter space of the 
quaternionic function that describes the dynamic field. 

 

Close to the begin of time, all distances were equal to the distances in the flat parameter space. 
Soon, these islands were uplifted with volume that was emitted at nearby locations. This flooding 
created growing distances between used locations. After some time, all parameter space 
locations were reached by the generated shock waves. From that moment on the universe 
started acting as an everywhere expanded continuum that contained deformations which in 
advance were very small. Where these deformations grew, the distances grew faster than in the 
environment. A uniform expansion appears the rule and local deformations form the exception. 
Deformations make the information path longer and give the idea that time ticks slower in the 
deformed and expanded regions. This corresponds with the gravitational red-shift of photons. 
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Composed modules only started to be generated after the presence of enough elementary 
modules. The generation of photons that reflected the signatures of atoms only started after the 
presence of these compound modules. 
 
 
This picture differs considerably from the popular scene of the big bang that started at a single 
location. 
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10 Life of an elementary module 
An elementary module is a complicated construct. First, the particle resides on a private quaternionic 

separable Hilbert space that uses a selected version of the quaternionic number system to specify 

the inner products of pairs of Hilbert vectors and the eigenvalues of operators. The vectors belong to 

an underlying vector space. All elementary modules share the same underlying vector space. The 

selected version of the number system determines the private parameter space, which is managed 

by a dedicated reference operator. The coordinate systems that sequence the elements of the 

parameter space determine the symmetry of the Hilbert space and the elementary module inherits 

this symmetry. The private parameter space floats over a background parameter space that belongs 

to a background platform. The background platform is a separable Hilbert space that also applies the 

same underlying vector space. The difference in symmetry between the private parameter space and 

the background parameter space gives rise to a symmetry related (electric) charge and a related 

color charge. The electric charge raises a corresponding symmetry related field. The corresponding 

source or drain locates at the geometric center of the private parameter space. 

The eigenspace of a dedicated footprint operator contains the dynamic geometric data that after 

sequencing of the time-stamps form the complete life-story of the elementary module. A subspace of 

the underlying vector space acts as a window that scans over the private Hilbert space as a function 

of a progression parameter that corresponds with the archived time-stamps. This subspace 

synchronizes all elementary modules that exist in the model. 

Elementary modules are elementary modules, and together these elementary modules form all 

modules and modular systems that exist in the universe. 

The complicated structure of elementary modules indicates that these particles never die. This does 

not exclude the possibility that elementary modules can zigzag over the progression parameter. 

Observers will perceive the progression reflection instants as pair creation and pair annihilation 

events. The zigzag will only become apparent in the creator’s view. Thus, only the footprint of the 

elementary module is recurrently recreated. Its platform persists. 

A private stochastic process will recurrently regenerate the footprint of the elementary module in a 

cyclic fashion. During a cycle, the hopping path of the elementary module will have formed a 

coherent hop landing location swarm. A location density distribution describes this swarm. This 

location density distribution equals the Fourier transform of the characteristic function of the 

stochastic process that generates the hop landing locations. The location density distribution also 

equals the squared modulus of the wavefunction of the particle. This stochastic process mimics the 

mechanism that the creator applied when he created the elementary module. The stochastic process 

also represents the embedding of the eigenspace of the footprint operator into the continuum 

eigenspace of an operator that resides in the non-separable companion of the background platform. 

This continuum eigenspace represents the universe. 

The differences between the symmetry of the private parameter space and the background 

parameter space give rise to symmetry-related charges that locate at the geometric center of the 

private parameter space. These charges give rise to symmetry-related fields. Via the geometric 

center of the platform, these symmetry related fields couple to the field that represents the 

universe. 

The kinetic energy of the platform is obtained from the effects of one-dimensional shock fronts. In 

many cases, these energy packages are combined in photons. 
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11 Relational structures 

11.1 Lattice 
A lattice is a set of elements , , ,...a b c  that is closed for the connections   and  . These 

connections obey: 

• The set is partially ordered.  
o This means that with each pair of elements ,a b belongs an element c , such that 

a c andb c .  

• The set is a  half lattice.  
o This means that with each pair of elements ,a b an element c  exists, such that 

c a b=  .  
• The set is a   half lattice. 

o This means that with each pair of elements ,a b an element c exists, such that

c a b=  .  
• The set is a lattice. 

o This means that the set is both a   half lattice and a   half lattice. 
 

The following relations hold in a lattice:  

 a b b a =   (11.1.1) 

 ( ) ( )a b c a b c  =    (11.1.2) 

 ( )a a b a  =  (11.1.3) 

 a b b a =   (11.1.4) 

 ( ) ( )a b c a b c  =    (11.1.5) 

 ( )a a b a  =  (11.1.6) 

The lattice has a partial order inclusion  : 

 a b a b a   =  (11.1.7) 

11.2 Lattice types 
A complementary lattice contains two elements n and e ,and with each element a it contains a 

complementary element 'a  

such that: 

 'a a n =  (11.2.1) 

 a n n =  (11.2.2) 

 a e a =  (11.2.3) 

 'a a e =  (11.2.4) 

 a e e =  (11.2.5) 
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 a n a =  (11.2.6) 

An orthocomplemented lattice contains two elements n and e  ,and with each element a, it contains 

an element "a  such that: 

 ''a a e =  (11.2.7) 

 "a a n =  (11.2.8) 

 ( )
"

"a a=  (11.2.9) 

 " "a b b a    (11.2.10) 

e  is the unity element; n is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 ( ) ( ) ( )a b c a b a c  =     (11.2.11) 

 ( ) ( ) ( )a b c a b a c  =     (11.2.12) 

A modular lattice supports: 

 ( ) ( ) ( )( )a b a c a b a c   =     (11.2.13) 

A weak modular lattice supports instead: 

There exists an element d  such that 

 ( ) ( ) ( )a c a b c a b c d c    =      (11.2.14) 

where d obeys: 

 ( )a b d d  =  (11.2.15) 

 a d n =  (11.2.16) 

 b d n =  (11.2.17) 

 ( ) ( )a g and b g d g     (11.2.18) 

In an atomic lattice holds  

     p L x L x p x n      =  (11.2.19) 

     ( ) ( ) ( )( ) a L x L a x a p x a or x a p        = =     (11.2.20) 

p  is an atom 

11.3 Well known lattices 
Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice. 



28 
 

Quantum logic has the structure of an orthocomplemented weakly modular and atomic lattice.  

It is also called an orthomodular lattice. 

Both lattices are atomic lattices. 

12 Quaternions 
Hilbert spaces can only cope with number systems whose members form a divisions ring. 

Quaternionic number systems represent the most versatile division ring. Quaternionic number 

systems exist in many versions that differ in the way that coordinate systems can sequence them. 

Quaternions can store a combination of a scalar time-stamp and a three-dimensional spatial location. 

Thus, they are ideally suited as storage bins for dynamic geometric data.  

In this paper, we represent quaternion q  by a one-dimensional real part 
rq  and a three-dimensional 

imaginary part q  . The summation is commutative and associative 

The following quaternionic multiplication rule describes most of the arithmetic properties of the 

quaternions. 

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = − + +     (12.1.1) 

The   sign indicates the freedom of choice of the handedness of the product rule that exists when 

selecting a version of the quaternionic number system. 

A quaternionic conjugation exists 

 

 * *( )r rq q q q q= + = −   (12.1.2) 

 ( )
* * *ab b a=   (12.1.3) 

The norm q  equals 

 2 ,rq q q q= +   (12.1.4) 

 

 1

2

1 q
q

q q

− = =   (12.1.5) 

 exp
q

q q q
q



 
=   

 
  (12.1.6) 

q

q
 is the spatial direction of q  . 

A quaternion and its inverse can rotate a part of a third quaternion. The imaginary part of the rotated 

quaternion that is perpendicular to the imaginary part of the first quaternion is rotated over an angle 

that is twice the angle of the argument   between the real part and the imaginary part of the first 



29 
 

quaternion. This makes it possible to shift the imaginary part of the third quaternion to a different 

dimension. For that reason, must / 4 = . 

Each quaternion c  can be written as a product of two complex numbers a  and b  of which the 

imaginary base vectors are perpendicular 

 
( )( )

( ) ( )
2

1 2

1 2 1 2 1 3

r r

r r r r r

c a a i b b j

a b a b i a b j a b k c c i c j c k

= + +

= + + + + + = + + +
  (12.1.7) 

Where k i j=    

  

 

13 Quaternionic Hilbert spaces 

Around the turn of the nineteenth century into the twentieth century David Hilbert and others 
developed the type of vector space that later got Hilbert's name. 

The Hilbert space is a particular vector space because it defines an inner product for every pair of 
its member vectors. 

That inner product can take values of a number system for which every non-zero member owns a 
unique inverse. This requirement brands the number system as a division ring. 

Only three suitable division rings existː 

• The real numbers 
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• The complex numbers 

• The quaternions 

Hilbert spaces cannot cope with bi-quaternions or octonions 

13.1 Bra's and ket's 

Paul Dirac introduced a handy formulation for the inner product that applies a bra and a ket. 

The bra f   is a covariant vector, and the ket g   is a contravariant vector. The inner product 

|f g  acts as a metric. 

For bra vectors hold 

 f g g f f g+ = + = +   (13.1.1) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (13.1.2) 

For ket vectors hold  

 f g g f f g+ = + = +   (13.1.3) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (13.1.4) 

For the inner product holds 

 
*

| |f g g f=   (13.1.5) 

For quaternionic numbers  and    hold 

 ( )
* *| | | |f g g f g f f g   = = =   (13.1.6) 

 

 | |f g f g =   (13.1.7) 

 ( ) ( )
** *| | | |f g f g f g f g     + = + = +   (13.1.8) 

Thus 

 f   (13.1.9) 

 
*f f =   (13.1.10) 

 g g =   (13.1.11) 

We made a choice. Another possibility would be f f =  and 
*g g =   

In mathematics a topological space is called separable if it contains a countable dense subset; 

that is, there exists a sequence  
0i

i i
f

=

=
  of elements of the space such that every 

nonempty open subset of the space contains at least one element of the sequence. 

https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Dense_set
https://en.wikiversity.org/wiki/Sequences_and_series
https://en.wikipedia.org/wiki/Open_set
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Its values on this countable dense subset determine every continuous function on the separable 
space ℌ. 

The Hilbert space ℌ is separable. That means that a countable row of elements  nf exists 

that spans the whole space. 

If ( )| ,m nf f m n=  [1 if n=m; otherwise 0], then   nf is an orthonormal base of Hilbert 

space ℌ. 

A ket base  k  of ℌ is a minimal set of ket vectors k  that span the full Hilbert space ℌ. 

Any ket vector 
f

 in ℌ can be written as a linear combination of elements of  k . 

 |
k

f k k f=    (13.1.12) 

A bra base  b  of ℌ† is a minimal set of bra vectors b  that span the full Hilbert space ℌ†. 

Any bra vector 
f

 in  ℌ† can be written as a linear combination of elements of  b . 

 |
b

f f b b=    (13.1.13) 

Usually, a base selects vectors such that their norm equals 1. Such a base is called an 
orthonormal base 

13.2 Operators 

Operators act on a subset of the elements of the Hilbert space. 

An operator L  is linear when for all vectors 
f

  and 
g

  for which L  is defined and for all 

quaternionic numbers   and   

 ( ) ( )L f L g L f L g L f g L f g       + = + = + = +   (13.2.1) 

The operator B  is colinear when for all vectors f   for which B  is defined and for all 

quaternionic numbers there exists a quaternionic number   such that 

 1 1B f B f B f  − −=    (13.2.2) 

If a  is an eigenvector of the operator A with quaternionic eigenvalue ,  

 A a a =   (13.2.3) 

then a  is an eigenvector of A  with quaternionic eigenvalue 
1 −

. 

 
1A a A a a a     −= = =   (13.2.4) 

†A   is the adjoint of the normal operator A  

 
*

† †| | |f Ag fA g g A f= =   (13.2.5) 

https://en.wikipedia.org/wiki/Continuous_function
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 ††A A=   (13.2.6) 

 ( )
† † †A B A B+ = +

  (13.2.7) 

 ( )
† † †AB B A=

  (13.2.8) 

If
†A A=  then A  is a self-adjoint operator. 

A linear operator L is normal if
†LL exists and

† †LL L L=   

For the normal operator N holds 

 † †| | |Nf Ng NN f g f NN g= =   (13.2.9) 

  

Thus 

 rN N N= +
  (13.2.10) 

 
†

rN N N= −
  (13.2.11) 

 

†

2
r

N N
N

+
=

  (13.2.12) 

 

†

2

N N
N

−
=

  (13.2.13) 

 

2† † ,r rNN N N N N N N N= = + =
  (13.2.14) 

rN
 is the Hermitian part of N . 

N  is the anti-Hermitian part of N . 

For two normal operators A  and B  holds 

 ,r r r rAB A B A B A B AB A B= − + +     (13.2.15) 

For a unitary transformationU holds 

 | |Uf Ug f g=   (13.2.16) 

The closure of separable Hilbert space ℌ means that converging rows of vectors of ℌ converge to 
a vector in ℌ. 

 Operator construction 

f g  is a constructed operator.  

 ( )
†

g f f g=   (13.2.17) 
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For the orthonormal base  iq consisting of eigenvectors of the reference operator holds 

 |n m nmq q =   (13.2.18) 

The reverse bra-ket method enables the definition of new operators that are defined by quaternionic 

functions. 

  
1

(| )|
N

i

i i iqg F h g hq F q
=

=    (13.2.19) 

The symbol F is used both for the operator F and the quaternionic function ( )F q .  This enables the 

shorthand 

 ( )i i iF q F q q   (13.2.20) 

It is evident that 

 ( )† *

i i iF q F q q   (13.2.21) 

For reference operatorR holds 

 i i iq q q=R   (13.2.22) 

If  iq  consists of all rational values of the version of the quaternionic number system thatH

applies then the eigenspace of R represents the private parameter space of the separable 

Hilbert spaceH . It is also the parameter space of the function ( )F q that defines the operator F in 

the formula (13.2.20). 

13.3 Non-separable Hilbert space 

Every infinite dimensional separable Hilbert spaceHowns a unique non-separable companion 

Hilbert space . This is achieved by the closure of the eigenspaces of the reference operator 

and the defined operators. In this procedure, on many occasions, the notion of the dimension of 
subspaces loses its sense. 

Gelfand triple and Rigged Hilbert space are other names for the general non-separable Hilbert 
spaces. 

In the non-separable Hilbert space, for operators with continuum eigenspaces, the reverse bra-

ket method turns from a summation into an integration. 

 ( ) | | qg dF q F qh g h Vd     (13.3.1) 

Here we omitted the enumerating subscripts that were used in the countable base of the separable 

Hilbert space. 

The shorthand for the operator F is now  

 ( )F q F q q   (13.3.2) 

For eigenvectors 
q

 the function ( )F q defines as 
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 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (13.3.3) 

The reference operator that provides the continuum background parameter space as its 

eigenspace follows from 

  |g h g h dq q q Vd     (13.3.4) 

The corresponding shorthand is  

 q q q   (13.3.5) 

The reference operator is a special kind of defined operator. Via the quaternionic functions that 

specify defined operators, it becomes clear that every infinite dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be considered to embed its 

separable companion. 

The reverse bracket method combines Hilbert space operator technology with quaternionic function 

theory and indirectly with quaternionic differential and integral technology. 

14 Quaternionic differential calculus 

14.1 Field equations 

Maxwell equations apply the three-dimensional nabla operator in combination with a time 
derivative that applies coordinate time. The Maxwell equations derive from results of experiments. 
For that reason, those equations contain physical units. 

In this treatment, the quaternionic partial differential equations apply the quaternionic nabla. The 
equations do not derive from the results of experiments. Instead, the formulas apply the fact that 
the quaternionic nabla behaves as a quaternionic multiplying operator. The corresponding 
formulas do not contain physical units. This approach generates essential differences between 
Maxwell field equations and quaternionic partial differential equations. 

The quaternionic partial differential equations form a complete and self-consistent set. They use 
the properties of the three-dimensional spatial nabla.  

The corresponding formulas are taken from Bo Thidé's EMTF book., section Appendix F4.  

Another online resource is Vector calculus identities. 

 The quaternionic differential equations play in a Euclidean setting that is formed by a continuum 

quaternionic parameter space and a quaternionic target space. The parameter space is the 

eigenspace of the reference operator of a quaternionic non-separable Hilbert space. The target space 

is eigenspace of a defined operator that resides in that same Hilbert space. The defined operator is 

specified by a quaternionic function that completely defines the field. Each basic field owns a private 

defining quaternionic function. All basic fields that are treated in this chapter are defined in this way. 

Physical field theories tend to use a non-Euclidean setting, which is known as spacetime setting. This 

is because observers can only perceive in spacetime format. Thus, Maxwell equations use coordinate 

time, where the quaternionic differential equations use proper time. In both settings, the observed 

event is presented in Euclidean format. The hyperbolic Lorentz transform converts the Euclidean 

format to the perceived spacetime format. Chapter 8 treats the Lorentz transform. The Lorentz 

transform introduces time dilation and length contraction. Quaternionic differential calculus 

describes the interaction between discrete objects and the continuum at the location where 

events occur. Converting the results of this calculus by the Lorentz transform will describe the 

https://www.calvin.edu/~pribeiro/courses/engr315/EMFT_Book.pdf
https://en.wikipedia.org/wiki/Vector_calculus_identities
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information that the observers perceive. Observers perceive in spacetime format. This format 

features a Minkowski signature. The Lorentz transform converts from the Euclidean storage 

format at the situation of the observed event to the perceived spacetime format. Apart from this 

coordinate transformation, the perceived scene is influenced by the fact that the retrieved 

information travels through a field that can be deformed and acts as the living space for both the 

observed event and the observer. Consequently, the information path deforms with its carrier field 

and this affects the transferred information. In this chapter, we only treat what happens at the 

observed event. So, we ignore the Lorentz coordinate transform, and we are not affected by the 

deformations of the information path.  

The Hilbert Book Model archives all dynamic geometric data of all discrete creatures that exist in the 

model in eigenspaces of separable Hilbert spaces whose private parameter spaces float over the 

background parameter space, which is the private parameter space of the non-separable Hilbert 

space. For example, elementary particles reside on a private floating platform that is implemented by 

a private separable Hilbert space. 

Quantum physicists use Hilbert spaces for the modeling of their theory. However, most quantum 
physicists apply complex-number based Hilbert spaces. Quaternionic quantum mechanics 
appears to represent a natural choice. Quaternionic Hilbert spaces store the dynamic geometric 
data in the Euclidean format in quaternionic eigenvalues that consists of a real scalar valued 
time-stamp and a spatial, three-dimensional location. 

In the Hilbert Book Model, the instant of storage of the event data is irrelevant if it coincides with 
or precedes the stored time stamp. Thus, the model can store all data at an instant, which 
precedes all stored timestamp values. This impersonates the Hilbert Book Model as a creator of 
the universe in which the observable events and the observers exist. On the other hand, it is 
possible to place the instant of archival of the event at the instant of the event itself. It will then 
coincide with the archived time-stamp. In both interpretations, after sequencing the time-stamps, 
the repository tells the life story of the discrete objects that are archived in the model. This story 
describes the ongoing embedding of the separable Hilbert spaces into the non-separable Hilbert 
space. For each floating separable Hilbert space this embedding occurs step by step and is 
controlled by a private stochastic process, which owns a characteristic function. The result is a 
stochastic hopping path that walks through the private parameter space of the platform. A 
coherent recurrently regenerated hop landing location swarm characterizes the corresponding 
elementary object. 

Elementary particles are elementary modules. Together they constitute all other modules that 
occur in the model. Some modules constitute modular systems. A dedicated stochastic process 
controls the binding of the components of the module. This process owns a characteristic function 
that equals a dynamic superposition of the characteristic functions of the stochastic processes 
that control the components. Thus, superposition occurs in Fourier space. The superposition 
coefficients act as gauge factors that implement displacement generators, which control the 
internal locations of the components. In other words, the superposition coefficients may install 
internal oscillations of the components. These oscillations are described by differential equations. 

14.2 Fields 
In the Hilbert Book Model fields are eigenspaces of operators that reside in the non-separable 

Hilbert space. Continuous or mostly continuous functions define these operators, and apart from 

some discrepant regions, their eigenspaces are continuums. These regions might reduce to 

single discrepant point-like artifacts. The parameter space of these functions is constituted by a 

version of the quaternionic number system. Consequently, the real number valued coefficients of 

these parameters are mutually independent, and the differential change can be expressed in 

terms of a linear combination of partial differentials. Now the total differential change df of field 

f equals 
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f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (14.2.1) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
 are quaternions. 

The quaternionic nabla   assumes the special condition that partial differentials direct along 

the axes of the Cartesian coordinate system. Thus 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (14.2.2) 

The Hilbert Book Model assumes that the quaternionic fields are moderately changing, such that 

only first and second order partial differential equations describe the model. These equations can 

describe fields of which the continuity gets disrupted by point-like artifacts. Warps, clamps and 

Green's functions describe the reaction of the field on such disruptions. 

14.3 Field equations 

Generalized field equations hold for all basic fields. Generalized field equations fit best in a 
quaternionic setting. 

Quaternions consist of a real number valued scalar part and a three-dimensional spatial vector 
that represents the imaginary part. 

The multiplication rule of quaternions indicates that several independent parts constitute the 
product. 

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = − + +    (14.3.1) 

The   indicates that quaternions exist in right-handed and left-handed versions. 

The formula can be used to check the completeness of a set of equations that follow from the 
application of the product rule. 

We define the quaternionic nabla as 

 , , , r
x y z

    
  =  +  

    
  (14.3.2) 

 , ,
x y z

   
   

   
  (14.3.3) 

 
r




 


  (14.3.4) 

 ( ) ,r r r r r r          


 
= + =  = +  + =  −  +  +    

 
  (14.3.5) 

 ,r r r  =  −    (14.3.6) 

 r r E B   =  +  = −    (14.3.7) 

Further, 
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r  is the gradient of 
r   

,  is the divergence of    

  is the curl of   

The change   divides into five terms that each has a separate meaning. That is why these terms in 

Maxwell equations get different names and symbols. Every basic field offers these terms! 

 
r rE  = − −   (14.3.8) 

 B =    (14.3.9) 

It is also possible to construct higher order equations. For example 

 
rJ B E=  −   (14.3.10) 

The equation (14.3.6) has no equivalent in Maxwell's equations. Instead, its right part is used as a 

gauge. 

Two special second-order partial differential equations use the terms 

2

2








 and ,     

 
2

2
, 



 
= −   

 
  (14.3.11) 

 
2

2
, 



 
= +   

 
  (14.3.12) 

The equation (14.3.11) is the quaternionic equivalent of the wave equation. 

The equation (14.3.12) can be divided into two first-order partial differential equations. 

 ( )( )( ) ( )* * * ,r r r r r      =  =   =  =  +  − + =   +     (14.3.13) 

This composes from * =   and  =    

2

2
,




−  


 is the quaternionic equivalent of d’Alembert’s operator . 

The operator 
2

2
,




+  


 does not yet have an accepted name. 

The Poisson equation equals 

 , =     (14.3.14) 

A very special solution of this equation is the Green’s function
1

'q q−
  of the affected field  
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( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (14.3.15) 

 
( )

( )3

'1 1
, , , 4 '

' ' '

q q
q q

q q q q q q


−
     = −   = −

− − −
  (14.3.16) 

The spatial integral over Green’s function is a volume. 

(14.3.11) offers a dynamic equivalent of the Green’s function, which is a spherical shock front. It can 

be written as 

 
( )( )' '

'

f q q c

q q

 


− − −
=

−
  (14.3.17) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q c  = − − −   (14.3.18) 

The equation (14.3.11) is famous for its wave type solutions 

 ( ), exp 2r r x      =   = =   (14.3.19) 

Periodic harmonic actuators cause the appearance of waves, 

The Helmholtz equation considers the quaternionic function that defines the field separable. 

 ( ) ( ) ( ),r rq q A q T q =   (14.3.20) 

 2
,

r r
A T

k
A T

   
= = −   (14.3.21) 

 2, A k A  = −   (14.3.22) 

 2

r rT k T  = −   (14.3.23) 

For three-dimensional isotropic spherical conditions, the solutions have the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (14.3.24) 

Here 
lj  and 

ly  are the spherical Bessel functions, and 
m

lY  are the spherical harmonics. These 

solutions play a role in the spectra of atomic modules. 

A more general solution is a superposition of these basic types. 

(14.3.12) offers a dynamic equivalent of the Green’s function, which is a spherical shock front. It can 

be written as 

 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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( )( )' '

'

f q q c

q q

 


− + −
=

−
  (14.3.25) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q c  = − + −   (14.3.26) 

Equation (14.3.12) offers no waves as part of its solutions. 

During travel, the amplitude and the lateral direction 
f

f
 of the one-dimensional shock fronts are 

fixed. The longitudinal direction is along 
'

'

q q

q q

−

−
.  

The shock fronts that are triggered by point-like actuators are the tiniest field excitations that exist. 

The actuator must fulfill significant restricting requirements. For example, a perfectly isotropic 

actuator must trigger the spherical shock front. The actuator can be a quaternion that belongs to 

another version of the quaternionic number system than the version, which the background platform 

applies. The symmetry break must be isotropic. Electrons fulfill this requirement. Neutrinos do not 

break the symmetry but have other reasons why they cause a valid trigger. Quarks break symmetry, 

but not in an isotropic way. 

15 Line, surface and volume integrals 

15.1 Line integrals 
The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (15.1.1) 

15.2 Surface integrals 
With respect to a local part of a closed boundary that is oriented perpendicular to vector n  the 

partial differentials relate as 

 , ,r rn n n n        = −  +   = − +     (15.2.1) 

This is exploited in the surface-volume integral equations that are known as Stokes and Gauss 

theorems.  

 dV n dS  =    (15.2.2) 

 , ,dV n dS  =    (15.2.3) 

 dV n dS  =     (15.2.4) 

 
r rdV n dS  =    (15.2.5) 
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This result turns terms in the differential continuity equation into a set of corresponding integral 

balance equations. 

The method also applies to other partial differential equations. For example 

 ( ) ( ), , , ,n n n n       =   −      = −   (15.2.6) 

 ( )     , ,
V S S

dV dS dS    =   −       (15.2.7) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (15.2.8) 

15.3 Derivation of physical laws 
The quaternionic equivalents of Ampère's law are 

 
r rJ B E J n B E  =     =    (15.3.1) 

 , , ,r

S C S

B n dS B dl J E n dS = = +      (15.3.2) 

The quaternionic equivalents of Faraday's law are: 

 ( ) ( )r r r rB E B n E  =   = −   =   = −   (15.3.3) 

 , , ,r

c S S

E dl E n dS B n dS=  = −      (15.3.4) 

 ( ) rJ B E v  =  − =  − =   (15.3.5) 

 ( ), , ,r

S C S

n dS dl v n dS    = = +      (15.3.6) 

The equations (15.3.4) and (15.3.6) enable the derivation of the Lorentz force. 

 rE B = −   (15.3.7) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +     (15.3.8) 

The Leibniz integral equation states 

 

( )
( )

( ) ( ) ( ) ( ) ( )
( )( )0 0

0

0 0 0 0 0

,

, , ,

S

S C

d
X n dS

dt

X X v n dS v X dl



 



    = +  − 



 
  (15.3.9) 

With X B=   and 
, 0B =

  follows 

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
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( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

0 0

0 0

0 0 0

0 0 0

, , ,

, ,

B

S S C

C C

d d
B n dS B n dS v B dl

d d

E dl v B dl

  

 

   
 

  


= = − 

= − − 

  

 
  (15.3.10) 

The electromotive force (EMF)    equals 

 

 

( )

( )

( )
( )

( ) ( )
( )

00

0 0

0

0 0 0

,

, ,

B

C

C C

F d
dl

q d

E dl v B dl

 

 






  

=


= = −

= + 



 

  (15.3.11) 

 F qE qv B= +    (15.3.12) 

16 Polar coordinates 
In polar coordinates, the nabla delivers different formulas. 

In pure spherical conditions, the Laplacian reduces to: 

 2

2

1
, r

r r r




  
  =  

  
  (16.1.1) 

The Green’s function blurs the location density distribution of the hop landing location swarm of 
an elementary particle. If the location density distribution has the form of a Gaussian distribution, 
then the blurred function is the convolution of this location density distribution and the Green’s 
function. The Gaussian distribution is 

 ( )
( )

2

3 2

1
exp

22

r
r

 

 
= − 

 
  (16.1.2) 

The shape of the deformation of the field for this example is given by: 

 ( )
2

4

r
ERF

r
r





 
− 

 =T   (16.1.3) 

In this function, every trace of the singularity of the Green’s function has disappeared. It is due to 
the distribution and the huge number of participating hop locations. This shape is just an 
example. Such extra potentials add a local contribution to the field that acts as the living space of 
modules and modular systems. The shown extra contribution is due to the local elementary 
module that the swarm represents. Together, a myriad of such bumps constitutes the living 
space. 

17 Material penetrating field 

17.1 Field equations 

Basic fields can penetrate homogeneous regions of the material. Within these regions, the fields 
get crumpled. Consequently, the average speed of warps, clamps, and waves diminish or these 

https://en.wikipedia.org/wiki/Electromotive_force
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vibrations just get dampened away. The basic field that we consider here is a smoothed 

version     of the original field    that penetrates the material. 

 
r r E B   =  +  = −    (17.1.1) 

 rr   =  +  = − C B   (17.1.2) 

The first order partial differential equation does not change much. The separate terms in the first 
order differential equations must be corrected by a material-dependent factor and extra material 
dependent terms appear. 

These extra terms correspond to polarization P and magnetization M of the material, and the 
factors concern the permittivity   and the permeability   of the material. This results in 

corrections in the E and the B  field and the average speed of warps and waves reduces from 1 

to 
1


. 

 D P= +E   (17.1.3) 

 
1

H M


= −B   (17.1.4) 

 ,b P = −    (17.1.5) 

 ,f D = −    (17.1.6) 

 
b rJ M P=  +   (17.1.7) 

 f rJ H D=  −   (17.1.8) 

 
1

, b f  


=  = +E   (17.1.9) 

 
1

r b fJ J J


 
=   +B- E=   (17.1.10) 

 ( ) ( )
1

D P H M 


= − − +E-B=   (17.1.11) 

The subscript 
b
signifies bounded. The subscript f signifies free. 

The homogeneous second order partial differential equations hold for the smoothed field .   

  2 , 0r r v      =   (17.1.12) 

17.2 Pointing vector 

The Poynting vector represents the directional energy flux density (the rate of energy transfer 
per unit area) of a basic field. The quaternionic equivalent of the Poynting vector is defined as: 

 S E H=    (17.2.1) 
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u  is the electromagnetic energy density for linear, nondispersive materials, given by 

 
, ,

2

E B B H
u

+
=   (17.2.2) 

 , ,f

u
S J E




= −  −


  (17.2.3) 

18 Lorentz transform 

The shock fronts move with speed c . In the quaternionic setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (18.1.1) 

Swarms of clamp triggers move with lower speed v  . 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (18.1.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v , then 

 ( ) ( )' cosh sinhct ct x = −   (18.1.3) 

 ( ) ( )' cosh sinhx x ct = −   (18.1.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (18.1.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (18.1.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (18.1.7) 

This is a hyperbolic transformation that relates two coordinate systems. 

This transformation can concern two platforms P  and 'P  on which swarms reside and that move 
with uniform relative speed . 

However, it can also concern the storage location P that contains a timestamp  and spatial 

location  , ,x y z and platform 'P  that has coordinate time t and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two individual platforms on which the private swarms 
of individual elementary particles reside. 

It also relates the stored data of an elementary particle and the observed format of these data for 
the elementary particle that moves with speed  relative to the background parameter space. 

The Lorentz transform converts a Euclidean coordinate system consisting of a location  , ,x y z

and proper time stamps  into the perceived coordinate system that consists of the spacetime 
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coordinates  ', ', ', 'x y z ct in which 't plays the role of proper time. The uniform velocity v  

causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

 

 

 

 

 


	1 The initiator of the project
	1.1 Trustworthiness
	1.2 The author
	1.3 Early encounters

	2 Intention
	3 The Hilbert Book Base Model
	4 Modeling dynamic fields and discrete sets
	4.1 Quaternionic differential calculus
	4.2 Field excitations

	5 Photons
	5.1 Photon structure
	5.2 One-dimensional pulse responses
	5.3 Light
	5.4 Optics

	6 Modular design and construction
	6.1 Elementary modules
	6.1.1 Symmetry-related charge

	6.2 Modular configuration
	6.3 Stochastic control
	6.4 Benefits of modular design and construction
	6.4.1 Modular hierarchy
	6.4.2 Compound modules
	6.4.3 Molecules
	6.4.4 Consciousness and intelligence


	7 Gravitation
	7.1 A deforming field excitation
	7.2 Gravitation potential
	7.3 Regeneration
	7.4 Inertia

	8 Black holes
	8.1 Geometry
	8.2 The border of the black hole

	9 In the beginning
	10 Life of an elementary module
	11 Relational structures
	11.1 Lattice
	11.2 Lattice types
	11.3 Well known lattices

	12 Quaternions
	13 Quaternionic Hilbert spaces
	13.1 Bra's and ket's
	13.2 Operators
	13.2.1 Operator construction

	13.3 Non-separable Hilbert space

	14 Quaternionic differential calculus
	14.1 Field equations
	14.2 Fields
	14.3 Field equations

	15 Line, surface and volume integrals
	15.1 Line integrals
	15.2 Surface integrals
	15.3 Derivation of physical laws

	16 Polar coordinates
	17 Material penetrating field
	17.1 Field equations
	17.2 Pointing vector

	18 Lorentz transform

