

The principle, communication efficiency and

privacy issues of federated learning
Hakan Uzuner

University of Passau

Passau, Germany

uzuner01@gw.uni-passau.de

Abstract—Standard machine learning approaches require a

huge amount of training data to be stored centralized in order

to feed the learning algorithms. Keeping and using data

centralized brings many negative aspects with it. Those aspects
can be inefficient communication between the centralized data

center and the clients producing the data, privacy issues and

quick usability of the profits and results of the training. Google’s

new approach, federated learning, on the other hand tackles all

these problems. The training data is kept decentralized at the
client’s devices while communicating only with small updates of

the common model. This method allows for optimizations of

communication, keeping the privacy of users involved in the

process and providing quick usability of the model’s process. In

this paper I will explain how the federated learning principle
works. Further on, I will give a small insight on optimization

possibilities of communication efficiency as well as on privacy

issues involved in machine learning processes and how those can

be solved using federated learning principles. Additionally, I

will show the connection between the federated learning concept

and organic computing.

Keywords—federated learning, machine learning, organic

computing, optimization, communication, efficiency, privacy

I. INTRODUCTION

This paper is based on already published research in the

fields of federated learning, distributed optimization and
machine learning in general. It is intended to be an overview

of the principle, capabilities and problems of federated

learning. Therefore, I am not claiming any of this work for
myself. A brief summary of some of the current available

literature in this field will be given in Chapter II.

Since the beginning of machine learning, developers must

deal with one major problem: how to manage the huge amount
of training data? Traditional approaches gather data and keep

it in a central database. On this centralized data one can run a
learning algorithm using a single, powerful computer. In

contrary, federated learning decentralizes the training data by

leaving it distributed on the devices it is gathered from. Instead
of running an algorithm on one single huge database of

training data, federated learning uses a system consisting of a
model and updates of that model. The common model is

delivered to each client, every single one of which calculates
its own update. Those updates are collected by the server or

cloud, where a new common model is calculated and

propagated to the clients. Federated learning was first
introduced by research scientists working for google, but in

the meantime much more literature is available on this topic.
In Chapter II. I will give an overview of federated learning

related publications. In Chapter III. the model of federated
learning will be shown. After the basic operating principle,

some problems regarding communication optimizations and

update methods must be addressed as they are crucial for the
whole process to function efficiently enough to be profitable.

Afterwards, I will give a short insight on more complex
communication efficiency problems and privacy issues in

Chapter IV. of this paper. Finally, I will show the connection

of federated learning with organic computation.

II. LITERATURE REVIEW

Federated learning is a field in which various research was

already published. But not only papers on federated learning,

but also optimization in machine learning processes in general
are applicable to this field. Here I will shortly review literature

used by me in the following Chapters.

A. Model

The basic principle of federated learning is well explained
by McMahan et al. in [1][2]. They explain what federated

learning is and what concepts and methods are used, like
Stochastic Gradient Descent (SGD). The finite-sum problem,

which is the general form of the optimization problem,
Gradient Descend and Stochastic Gradient Descent can be

very well studied in [1][3]. The modification of the SGD, the

FederatedSGD, and the Federated Average method are

defined and described in [1].

B. Communication Efficiency

Communication Efficiency, in detail s tructured and

sketched updates, are well explained in [6]. The basic
principles used here are mostly from other sources, such as the

effect of random rotation on quantization in [7].

C. Privacy Issues

Privacy issues are mostly addressed in a machine learning
context in general. There are many methods and concepts

available. Research as in [8][9][10] shows that there are many
aspects and possibilities to keep training data and

communication private. Some security aspects are also to be

addressed, as in [11].

D. Organic Computing

A quick overview of Organic Computing is given in [13].

A much more detailed and deep view can be obtained by

reading [12].

III. MODEL

A. Principle of federated learning

Federated learning brings advantages in three major

aspects: the value and privacy of the collected data and the

communication and calculation efficiency of the training.

The value of the gathered data depends on the use case.

As federated learning is designed for many clients such as
mobile phones, use cases like image classification or language

models are common. McMahan et al. [1] state that real-world
data is to be preferred over proxy data of a data center as it

gives a more realistic picture of the real environment. For
example, instead of using standard and uniform language

corpora like Wikipedia or images from Flickr, it is much better

to train with actual words typed by users in their everyday life.

After explaining the general principle of how federated
learning works, we will focus on the communication and

calculation efficiency of the training method and the

privacy of the collected data.

Fig. 1. Updating the model in federated learning. (Source: [2])

Using Fig. 1, the basic working principle of federated
learning is explained as follows: Clients such as mobile

phones download the common model and calculate their own
specific update based on their local training data (A). Those

updates are then sent to the cloud or server, where they

immediately get averaged (B). Afterwards, the averaged
update is applied to the common model, generating a new,

updated common model (C). This model is again sent to the
clients, which closes the circle and completes one round. After

that a new round can start, repeating the steps. This procedure
inherently preserves privacy of the training data because it

keeps the data local at the clients while contributing only small

updates to the learning system. Because of the immediate
averaging on the server, even the single updates of the clients

are not stored locally on the cloud. Even though this is a good
starting point, the privacy aspect still is not quite done and has

to be considered in some other points we will come to later in
this paper. Also, both communication and calculation

efficiency profit vastly from this principle. Many traditional

approaches need as much processing power as possible to run
on one huge pile of data. Whereas in federated learning the

training data is already processed by the collecting nodes, for
example mobile phones. Modern devices possess powerful

enough hardware to cope with the calculations needed for
most of the learning algorithms. There are even many

situations where those devices stand idle with practically
unlimited energy and Wi-Fi sources for a long time, e. g. while

charging at night. Those cases provide an excellent time for

resolving the problem of calculation expenditure by
delegating it to the many clients instead of running it all at

once on one single computer. There is also a communication
efficiency aspect inherent in federated learning due to the

principle of communicating updates instead of training data.
However, this alone is not a certainty for efficient

communication. Many more measures can be considered to

improve and adapt the updates to ensure efficient

communication.

B. Federated Optimization

Federated optimization describes four key properties to

differentiate it from other distributed optimization problems.
The key properties are as follows: Non-IID, Unbalanced,

Massively distributed and Limited communication. In the

following, I will explain those keys briefly.

Non-IID In distributed optimization algorithms, an IID
assumption is made. This means that the centralized training

data is evenly distributed to the clients. This way all clients
have roughly the same data. A more realistic approach is the

Non-IID assumption. The gathered data on a client is usually
highly dependent on the underlying user. Users mostly act in

their unique and very own way, so we cannot just assume that

their data is equal. This means that the data of one client, with
a very high probability, cannot be representative of the overall

distribution [1][3].

Unbalanced The method of gathering training data in

federated learning usually consists of collecting it from many
clients which act independently. It is obvious that those clients

work at unregulated and individual intervals . Therefore, they
will provide different amounts of data with utmost certainty

[1][3].

Massively distributed It has to be assumed that the
number of participating clients is much bigger than the

average amount of training data they contribute [1][3].

Limited communication Similarly to having an

unbalanced amount of local training data because of
uncontrolled environments, different clients also tend to be

offline or on slow connections [1]. This aspect gets

particularly interesting when it comes to upload updates

efficiently on slow connections.

Those key properties are very important for the federating
learning setting. A lot of optimization and efficiency can be

done by handling those. However, this shall not be the further
topic on this paper. Instead, in the following I will describe the

mathematical background to minimize the amount of data

used in updates delivered from the clients to the server.

C. Finite-sum problem

To solve those update optimization problems, we have to

view them in a mathematical context. Most of the optimization

problems can be seen as a finite-sum problem as described in

[1][3] in the form of

min
𝑤∈ℝ𝑑

𝑓(𝑤) where 𝑓(𝑤) ≝
1

𝑛
 ∑ 𝑓𝑖 (𝑤)

𝑛
𝑖=1 . (1)

This is a general formula, which can solve many problems

depending on 𝑓𝑖 (𝑤) . Suppose we have a set of input pairs
{𝑥 𝑖 ,𝑦𝑖 } 𝑖=1

𝑛 , we can use the general formula e.g. for linear

regression [3]:

𝑓𝑖 (𝑤) =
1

2
(𝑥 𝑖

𝑇𝑤 −𝑦𝑖)
2, 𝑦𝑖 𝜖 ℝ

D. (Stochastic) Gradient Descend and FederatedSGD

To find the minimum of a problem like (1), it is common
to use the optimization algorithm Stochastic Gradient Descent

(SGD) or variations of it [1][3]. In this section I will explain
what the Gradient Descent (GD) and the SGD are, referring to

the descriptions of Konečný et al. [3]. Then we will learn
about the adaption of SGD by McMahan et al. [1] defining the

FederatedSGD (FedSGD).

The Gradient Descent generally is used to find the

minimum of a function. The algorithm is an iterative process

which takes the direction of the negative Gradient to approach

a local minimum. The iteration is as follows:

𝑤 𝑡+1 = 𝑤 𝑡 − ℎ𝑡∇𝑓(𝑤
𝑡),

where 𝑤 is a point in the graph, ℎ𝑡 > 0 is a stepsize
parameter and t is the current iteration [3]. The Gradient,

∇𝑓(𝑤 𝑡), is subtracted to reach the minimum or added to

reach the maximum. As the finite-sum problem tries to find
the minimum, we are subtracting here. The GD can be used

for smooth functions, whereas the Subgradient Descend can

be used for non-smooth functions [3]; however, this will not
be a subject here. As already mentioned, in federated

learning we have to deal with a vast amount of data, which
would make the iteration process slow and inefficient.

Although there are some ideas from Polyak and Nesterov to
accelerate this process, a big amount of data still cannot be

handled efficiently [3].

The Stochastic Gradient Descent is not that different

from the GD:

𝑤 𝑡+1 = 𝑤 𝑡 − ℎ𝑡∇𝑓𝑖𝑡
(𝑤 𝑡),

where 𝑤 is a point in the graph, ℎ𝑡 > 0 is a stepsize
parameter and t is the current iteration [3]. In each iteration

there will be a function chosen at random with 𝑖𝑡 𝜖 {1, 2, … , 𝑛}
in iteration t. This can be done because the update direction is
an unbiased estimate of the gradient [3]. This method mostly

benefits from great efficiency when it comes to a huge amount
of data to process. There is a method called Random

Reshuffling (RR), which has an even better performance than
SGD, proven by Gürbüzbalaban et al. [4]. The SGD is

designed to use only one dataset, whereas RR is basically an
improved form of GD, which uses all data. In federated

learning there are many clients and the main idea is to always

use a specific fraction of those client’s data. Therefore, as we
want to stay flexible on the amount of data used in each round,

SGD and RR are probably both not quite suitable for federated

learning.

The FederatedSGD was introduced by McMahan et al.
[1] and solves the problem of choosing the right number of

clients. They use a large-batch synchronous SGD as it is

proven by Chan et al. [5] to outperform asynchronous
approaches in data centers. Further, they select a C-fraction of

clients in each round to calculate the gradient over those
clients. C = 1 means to use all clients, which is referred to as

full-batch (non-stochastic) gradient descent [1].

E. Federated Averaging

The updates 𝑔𝑘 have to be calculated by the clients using

FedSGD, typically using C = 1 and the current model 𝑤𝑡 [1]:

𝑔𝑘 = ∇𝐹𝑘 (𝑤𝑡).

 After they were communicated to the server, some kind

of averaging has to be done in order to apply the update to the
current model. Defined by McMahan et al. [1] we will learn

about the the definition of FederatedAveraging (FedAvg) in

this section. First of all, McMahan et al. rewrite the objective

of (1) as follows:

𝑓(𝑤) = ∑
𝑛𝑘

𝑛

𝐾
𝑘=1 𝐹𝑘(𝑤) where 𝐹𝑘(𝑤) =

1

𝑛𝑘
∑ 𝑓𝑖 (𝑤)𝑖𝜖𝑃𝑘

,

while 𝑃𝑘 is a set of indexes of data points on client k and

𝑛𝑘 = |𝑃𝑘 |.

Once the server has the updates, it can calculate the update

with

𝑤𝑡+1 ← 𝑤𝑡 − 𝛾∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑔𝑘

since

∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑔𝑘 = ∇𝑓(𝑤𝑡)

, while 𝛾 is the fixed learning rate. This update is also given

by the following statement:

∀𝑘, 𝑤𝑡+1
𝑘 ← 𝑤𝑡 − 𝛾𝑔𝑘 , then

𝑤𝑡+1 ← ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑤𝑡+1
𝑘 .

This far, each client performs one single gradient descent step

and the server takes the weighted average of the resulting
single updates. The local model of the clients can be iterated

several times as follows:

𝑤𝑘 ← 𝑤𝑘 − 𝛾∇𝐹𝑘 (𝑤
𝑘).

This all together is called FederatedAveraging [1].
Furthermore, there are three parameters to control the

computational expenditure: C, the number of clients active in
one round; E, the number of passes each client makes on its

local data; B, the local minibatch size. The values E = 1 and B

= ∞ correspond to the basic FedSGD.

As a small summary, the FedAvg method is hereby

completed. We now know how updates of the current model
are generated locally at the client and how those clients are

chosen as a subset of all clients. We also have learned how the

server aggregates those updates and calculates an update for
the common model. The computational effort can be adjusted

with various parameters. For any further information on this I

refer to the work of [1][3] and their references.

IV. COMMUNICATION EFFICIENCY

This Chapter is dedicated to give the reader a small insight

into the complex concepts of communication efficiency. Even
though federated learning inherently handles this aspect pretty

well, there are still some methods that can be applied to
improve the efficiency. I refer to the respective literature for

further information, as it is intended to only mention the basic

principles here.

The main aspect in communication efficiency is how the

updates are handled. As we have many clients , preferably
sending many updates , it is obvious that the communication

traffic is a bottleneck of federated learning systems. As
already mentioned above, in federated learning it is common

to work with mobile devices , which almost certainly have not

the best upstream capacities. This is usually handled by
assuming that uploading updates is performed while the

devices are plugged in and unused. This way the
computational power as well as the availability of the internet

connection is largely guaranteed. But this is not the primary
source of traffic problems. At the time when the updates are

calculated there are many possibilities to minimize the size of
the data packages which need to be sent to the server.

Described by Konečný et al. [6] there are structured and

sketched updates, which will be the topic of this section. But
first of all, they describe the general problem as follows:

𝑊𝑡+1 = 𝑊𝑡 + 𝛾𝑡𝐻𝑡 , 𝐻𝑡 ≔
1

𝑛𝑡
∑ 𝐻𝑡

𝑖
𝑖∈𝑆𝑡

,

while 𝑡 ≥ 0 is the current round of updates and 𝑊𝑡 is the

current model delivered to the subset 𝑆𝑡 of 𝑛𝑡 clients. The

learning rate is 𝛾𝑡 and 𝐻𝑡
𝑖 is the local update of client I at round

𝑡. As 𝑊𝑡+1 and 𝐻𝑡 are calculated at server side, we only have

to worry about 𝐻𝑡
𝑖 in terms of communication cost.

Minimizing the amount of data will be the goal of the

following update methods.

A. Structured Updates

Structured Updates lower the data traffic by keeping the
update in a pre-specified structure [6]. There are two types of

Structured Updates described by Konečný et al.: Low Rank

and Random Mask. In Low Rank updates the local update is

split up into two matrices:

𝐻𝑡
𝑖 = 𝐴𝑡

𝑖𝐵𝑡
𝑖 where 𝐴𝑡

𝑖 𝜖 ℝ𝑑1𝑋𝑘 , 𝐵𝑡
𝑖 𝜖 ℝ𝑘𝑋𝑑2

and k is a fixed number. The rank of the update matrix 𝐻𝑡
𝑖

should be at most k. Generating 𝐴𝑡
𝑖 as a random seed constant

and only optimizing, training and sending 𝐵𝑡
𝑖 to the server

saves a factor of 𝑑1/𝑘 in communication. There were also

attempts to fixing 𝐵𝑡
𝑖 and training 𝐴𝑡

𝑖 as well as training both,

neither of which proved to be as effective as the first
alternative. The Random Mask approach benefits from using

a sparsity pattern to send only a sparse matrix update. As the
sparsity pattern is a random seed, only the seed together with

all non-zero entries of the update have to be sent to the server.

B. Sketched Updates

Sketched Updates in general use the full update and
compresses it before sending it to the server. There are several

compressing methods, two of them described by Konečný et

al., which I will sum up here: subsampling and probabilistic
quantization. Subsampling consists of clients sending only a

subset of the values of the local update to the server. The
server can average the updates again, creating an unbiased

estimator of the true average [6]. Probabilistic quantization
compresses the update by reducing each scalar to one bit in

the following form:

ℎ̃𝑗

{

 ℎ𝑚𝑎𝑥 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

ℎ𝑗 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑖𝑛 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
ℎ𝑚𝑎𝑥 − ℎ𝑗

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

while ℎ̃ is the compressed update of

ℎ = (ℎ1, … , ℎ𝑑1𝑥𝑑2) = 𝑣𝑒𝑐(𝐻𝑡
𝑖)

and

ℎ𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗(ℎ𝑗), ℎ𝑚𝑖𝑛 = min𝑗(ℎ𝑗) .
This method brings an advantage of 32 times the compression
in comparison to a 4-byte float. Errors can be prevented by

improving it with structured random rotations [6].

This section was only to sketch an idea of the complexity

of determining the right method for calculating updates. In
practice, there is need of a complex combination of the

mentioned and other methods to achieve an efficient

communication. There is much more research and literature
available on this topic than to be covered in the boundaries of

this paper, such as Suresh et al. [7], who study efficient

algorithms for distributed mean estimation.

V. PRIVACY ISSUES

This section is meant to give the reader a perspective on

the privacy issues of federated learning. It is again only to

sketch a general idea, as the field is very complex and has a

depth that cannot be covered in this paper.

Federated learning always means to gather data from many
different clients. In language prediction context for example

there is a huge amount of data collected from users, i. e. words
they typed in private conversations. These conversations can

contain sensitive data that the users probably do not want to

share with everyone. The concept of communicating with
updates in federated learning inherently has a method of

protecting privacy by omitting data through sending as little
information with updates as possible. It is still pretty easy to

derive one user’s data with access to raw, unsecured updates.
Therefore, it is necessary to take precautions, some of which I

will introduce in the following.

Bonawitz et. al. [8] describe a protocol for secure

aggregation of update data in machine learning. They do not

use individual user’s updates but the elementwise weighted
averages of the update vectors. In combination with a secure

aggregation protocol for averaging these updates, it is ensured
that the server only can learn about what words were used, but

not by which users.

The protocol described by Xie et al. [9] uses Crypto-Nets

to limit the communication and calculation to encrypted data

only. This means that the client sends an encrypted ciphertext
and the server processes this without deciphering. Afterwards,

the server sends the result back, again encrypted and only
readable for the user. They achieve this by using

homomorphic encryption.

Pathak et al. [10] show that using Hidden Markov Models,

homomorphic cryptosystems and a protocol for secure

forwarding works for probabilistic inference. They apply this

in a use case of speech recognition.

All in all, advances are made in terms of research and
publications when it comes to privacy. All of the mentioned

and many more methods of privacy protection can be
considered to be applied to federated learning, directly or in

modified form. Therefore, there are and will be many
possibilities to counteract the privacy concerns in federated

learning. Since there is almost always a privacy sensitive area

involved in working with training data gathered from end
users, those methods of privacy preservation must be applied

to guarantee a secure environment of the machine learning
process. In terms of security there are also some aspects to be

considered. As described by Bagdasaryan et al. [11], there is
a way to manipulate the learning process. They explain how

each user in federated learning can bring in some backdoor

functionality, e. g. to have an image classifier assign an
attacker-chosen label to images. This shows that the learning

process is not only vulnerable to attacks from outside but also

from inside the system.

VI. RELATION TO ORGANIC COMPUTING

Advances in technical systems have led to an increasing

complexity. Organic Computing tries to tackle this topic by
implementing concepts found in nature. As natural and social

systems also need to deal with complex situations by using
benefits of organisation and adaption, these observations can

very well be studied and applied or imitated. Organic

Computing aims to improve technical systems in classical
capabilities such as robustness, flexibility and efficiency by

applying such observations and concepts. An important aspect

of Organic Computing is autonomy. In this scope there are the

self-* properties as described in [13].

Federated learning can also profit from advances in the
fields of Organic Computing as efficiency, optimization and

privacy are highly important issues in federated learning.
There are some fields of Organic Computing described by

Müller-Schloer and Tomforde in [12], who write about the

possibilities and importance of keeping federated learning
optimized and private. They explain an efficient and robust

way of data communication which benefits the efficiency

concerns we had earlier.

The self-* properties help designing a federated learning
system. Self-configuration for example is seen in the local

updates. Structured Updates often have different pre-specified

structures, which can be adapted each round.

VII. SUMMARY

Federated learning uses a great concept of model and

update. The adaptation of general machine learning

approaches is a very important aspect. Even though SGD is a
common way for optimizing, the use of modified methods like

FedSGD is inevitable. Also, the use of FedAvg for the
averaging process is an immense advantage. Certainly, any

more evolvement in optimization in this rather new field can

and should be done in the future.

In terms of communication efficiency, the concept of
structured and sketched updates is a good basis for

improvement. The combination of those should be beneficent

for reducing communication cost and improving the overall
efficiency. As far as privacy issues go, there are many starting

points. Even though there isn’t much done for federated
learning in particular, there is much research done in machine

learning or communication in general. Many of those concepts
and methods can easily be adapted to be applied to federated

learning. Of course, this should be considered as a secondary

aim, as the primary should be to optimize the efficiency of the
methods and algorithms used in federated learning.

Nevertheless, it is an important point which must not to be

neglected at last.

Federated learning is an Organic Computing system in
many aspects. Not only the organisation of many single nodes

but also the optimization, efficiency and privacy issues are

very important aspects. These can profit immensely from
concepts of Organic Computing by adapting real-world

analogies, which can make the learning process more robust

and efficient overall.

In conclusion, the field of federated learning promises an
interesting field of research for modern and future

technologies and use-cases, e.g. language prediction. Many
aspects of this field are already researched, proven and

optimized. Others still have to be looked into. Federated

learning gives a possibility for many scenarios to improve
through efficient and self-organized updates. The direct

involvement of end users into the learning process is an
innovative alternative to traditional, big data centers . But there

are also still many stumbling blocks in the way of federated
learning. Anyways, federated learning will get more and more

attention in the future, as the concept behind it fits very well
in our nowadays society. Almost everyone is a mobile phone

user, thereby a potential client in a federated learning system.

I am very eager to continue my own research on this field and
am excited about the future improvements and achievements

that will certainly be made.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, B. Agüera y Arcas,
“Communication-Efficient Learning of Deep Networks from
Decentralized Data”, arXiv:1602.05629v3, 28. Feb. 2017

[2] B. McMahan, D. Ramage, “Federated Learning: Collaborative

Machine Learning without Centralized Data”, Google AI Blog, April
6. 2017

[3] J. Konečný, B. McMahan, D. Ramage, P. Richtárik, “Federated

Optimization: Distributed Machine Learning for On-Device
Intelligence”, arXiv:1610.02527v1, 6. Oct. 2016

[4] M. Gürbüzbalaban, A. Ozdaglar, P. Parillo, “Why Random Reshuffling

Beats Stochastic Gradient Descent”, arXiv:1510.08560, 29. Oct. 2015

[5] J. Chen, R. Monga, S. Bengio, R. Jozefowicz. “Revisiting Distributed

Synchronous SGD.” In ICLR Workshop Track, 2016

[6] J. Konečný, B. McMahan, F. Yu., A. Suresh, D. Bacon, P. Richtárik,

“Federated Learning: Strategies for Improving Communication
Efficiency”, arXiv:1610.05492v2, 30. Oct. 2017

[7] A. Suresh, F. X. Yu, S. Kumar, B. McMahan, “Distributed Mean

Estimation with Limited Communication”, arXiv:1611.00429, 25. Sep.
2017.

[8] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, B. McMahan, S.

Patel, D. Ramage, A. Segal, K. Seth, “Practical Secure Aggregation for
Privacy-Preserving Machine Learning”, 2017

[9] P. Xie, M. Bilenko & T . Finley, R. Gilad- Bachrach & K. Lauter & M.

Naehrig, “Crypto-Nets: Neural Networks over Encrypted Data”,
arXiv:1412.6181v2, 24. Dec. 2014

[10] M. Pathak, S. Rane, W. Sun, Bhiksha Raj, “Privacy Preserving

Probabilistic Inference with Hidden Markov Models”, May 2011

[11] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, V. Shmatikov, “How to

Backdoor Federated Learning”, arXiv:1807.00459v2, 1. Oct. 2018

[12] C. Müller-Schloer, S. Tomforde, “Organic Computing – Technical

Systems for Survival in the Real World”

[13] S. Tomforde, B. Sick, C. Müller-Schloer, “Organic Computing in the

Spotlight“, arXiv:1701.08125v1, 27. Jan. 2017

