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Abstract—Standard machine learning approaches require a 

huge amount of training data to be stored centralized in order 

to feed the learning algorithms. Keeping and using data 

centralized brings many negative aspects with it. Those aspects 
can be inefficient communication between the centralized data 

center and the clients producing the data, privacy issues and 

quick usability of the profits and results of the training. Google’s 

new approach, federated learning, on the other hand tackles all 

these problems. The training data is kept decentralized at the 
client’s devices while communicating only with small updates of 

the common model. This method allows for optimizations of 

communication, keeping the privacy of users involved in the 

process and providing quick usability of the model’s process. In 

this paper I will explain how the federated learning principle 
works. Further on, I will give a small insight on optimization 

possibilities of communication efficiency as well as on privacy 

issues involved in machine learning processes and how those can 

be solved using federated learning principles. Additionally, I 

will show the connection between the federated learning concept 

and organic computing. 
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I. INTRODUCTION  

This paper is based on already published research in the 

fields of federated learning, distributed optimization and 
machine learning in general. It is intended to be an overview 

of the principle, capabilities and problems of federated 

learning. Therefore, I am not claiming any of this work for 
myself. A brief summary of some of the current available 

literature in this field will be given in Chapter II.  

Since the beginning of machine learning, developers must 

deal with one major problem: how to manage the huge amount 
of training data? Traditional approaches gather data and keep 

it in a central database. On this centralized data one can run a 
learning algorithm using a single, powerful computer. In 

contrary, federated learning decentralizes  the training data by 

leaving it distributed on the devices it is gathered from. Instead 
of running an algorithm on one single huge database of 

training data, federated learning uses a system consisting of a 
model and updates of that model. The common model is 

delivered to each client, every single one of which calculates 
its own update. Those updates are collected by the server or 

cloud, where a new common model is calculated and 

propagated to the clients. Federated learning was first 
introduced by research scientists working for google, but in 

the meantime much more literature is available on this topic. 
In Chapter II. I will give an overview of federated learning 

related publications. In Chapter III. the model of federated 
learning will be shown. After the basic operating principle, 

some problems regarding communication optimizations and 

update methods must be addressed as they are crucial for the 
whole process to function efficiently enough to be profitable. 

Afterwards, I will give a short insight on more complex 
communication efficiency problems and privacy issues  in 

Chapter IV. of this paper. Finally, I will show the connection 

of federated learning with organic computation.  

II. LITERATURE REVIEW 

Federated learning is a field in which various research was 

already published. But not only papers on federated learning, 

but also optimization in machine learning processes in general 
are applicable to this field. Here I will shortly review literature 

used by me in the following Chapters. 

A. Model 

The basic principle of federated learning is well explained  
by McMahan et al. in [1][2]. They explain what federated 

learning is and what concepts and methods are used, like 
Stochastic Gradient Descent (SGD). The finite-sum problem, 

which is the general form of the optimization problem, 
Gradient Descend and Stochastic Gradient Descent can be 

very well studied in [1][3]. The modification of the SGD, the 

FederatedSGD, and the Federated Average method are 

defined and described in [1]. 

B. Communication Efficiency 

Communication Efficiency, in detail s tructured and 

sketched updates, are well explained in [6]. The basic 
principles used here are mostly from other sources, such as the 

effect of random rotation on quantization in [7]. 

C. Privacy Issues 

Privacy issues are mostly addressed in a machine learning 
context in general. There are many methods and concepts 

available. Research as in [8][9][10] shows that there are many 
aspects and possibilities to keep training data and 

communication private. Some security aspects are also to be 

addressed, as in [11]. 

D. Organic Computing 

A quick overview of Organic Computing is given in [13]. 

A much more detailed and deep view can be obtained by 

reading [12]. 

III. MODEL 

A. Principle of federated learning 

Federated learning brings advantages in three major 

aspects: the value and privacy of the collected data and the 

communication and calculation efficiency of the training.  

The value of the gathered data depends on the use case. 

As federated learning is designed for many clients  such as 
mobile phones, use cases like image classification or language 

models are common. McMahan et al. [1] state that real-world  
data is to be preferred over proxy data of a data center as it 

gives a more realistic picture of the real environment. For 
example, instead of using standard and uniform language 

corpora like Wikipedia or images from Flickr, it is much better 

to train with actual words typed by users in their everyday life.  



After explaining the general principle of how federated 
learning works, we will focus on the communication and 

calculation efficiency of the training method and the 

privacy of the collected data. 

 

Fig. 1. Updating the model in federated learning. (Source: [2]) 

Using Fig. 1, the basic working principle of federated 
learning is explained as follows: Clients such as mobile 

phones download the common model and calculate their own 
specific update based on their local training data (A). Those 

updates are then sent to the cloud or server, where they 

immediately get averaged (B). Afterwards, the averaged 
update is applied to the common model, generating a new, 

updated common model (C). This model is again sent to the 
clients, which closes the circle and completes one round. After 

that a new round can start, repeating the steps. This procedure 
inherently preserves privacy of the training data because it  

keeps the data local at the clients while contributing only small 

updates to the learning system. Because of the immediate 
averaging on the server, even the single updates of the clients 

are not stored locally on the cloud. Even though this is a good 
starting point, the privacy aspect still is not quite done and has 

to be considered in some other points we will come to later in 
this paper. Also, both communication and calculation 

efficiency profit vastly from this principle. Many traditional 

approaches need as much processing power as possible to run 
on one huge pile of data. Whereas in federated learning the 

training data is already processed by the collecting nodes, for 
example mobile phones. Modern devices possess powerful 

enough hardware to cope with the calculations needed for 
most of the learning algorithms. There are even many 

situations where those devices stand idle with practically 
unlimited energy and Wi-Fi sources for a long time, e. g. while 

charging at night. Those cases provide an excellent time for 

resolving the problem of calculation expenditure by 
delegating it to the many clients instead of running it all at 

once on one single computer. There is also a communication 
efficiency aspect inherent in federated learning due to the 

principle of communicating updates instead of training data. 
However, this alone is not a certainty for efficient 

communication. Many more measures can be considered to 

improve and adapt the updates to ensure efficient 

communication. 

B. Federated Optimization 

Federated optimization describes four key properties to 

differentiate it from other distributed optimization problems. 
The key properties are as follows: Non-IID, Unbalanced, 

Massively distributed and Limited communication. In the 

following, I will explain those keys briefly.  

Non-IID In distributed optimization algorithms, an IID 
assumption is made. This means that the centralized training 

data is evenly distributed to the clients. This way all clients 
have roughly the same data. A more realistic approach is the 

Non-IID assumption. The gathered data on a client is usually 
highly dependent on the underlying user. Users mostly act in 

their unique and very own way, so we cannot just assume that 

their data is equal. This means that the data of one client, with 
a very high probability, cannot be representative of the overall 

distribution [1][3]. 

Unbalanced The method of gathering training data in 

federated learning usually consists of collecting it from many 
clients which act independently. It is obvious that those clients 

work at unregulated and individual intervals . Therefore, they 
will provide different amounts of data with utmost certainty 

[1][3]. 

Massively distributed It has to be assumed that the 
number of participating clients is much bigger than the 

average amount of training data they contribute [1][3]. 

Limited communication Similarly to having an 

unbalanced amount of local training data because of 
uncontrolled environments, different clients also tend to be 

offline or on slow connections [1]. This aspect gets 

particularly interesting when it comes to upload updates 

efficiently on slow connections. 

Those key properties are very important for the federating 
learning setting. A lot of optimization and efficiency can be 

done by handling those. However, this shall not be the further 
topic on this paper. Instead, in the following I will describe the 

mathematical background to minimize the amount of data 

used in updates delivered from the clients to the server. 

C. Finite-sum problem 

To solve those update optimization problems, we have to 

view them in a mathematical context. Most of the optimization 

problems can be seen as a finite-sum problem as described in 

[1][3] in the form of  

min
𝑤∈ℝ𝑑

𝑓(𝑤)   where  𝑓(𝑤) ≝
1

𝑛
 ∑ 𝑓𝑖 (𝑤)

𝑛
𝑖=1 . (1) 

This is a general formula, which can solve many problems 

depending on 𝑓𝑖 (𝑤) . Suppose we have a set of input pairs 
{𝑥 𝑖 ,𝑦𝑖 } 𝑖=1

𝑛 , we can use the general formula e.g. for linear 

regression [3]: 

𝑓𝑖 (𝑤) =
1

2
(𝑥 𝑖

𝑇𝑤 −𝑦𝑖 )
2, 𝑦𝑖  𝜖 ℝ 

D. (Stochastic) Gradient Descend and FederatedSGD 

To find the minimum of a problem like (1), it is common 
to use the optimization algorithm Stochastic Gradient Descent 

(SGD) or variations of it [1][3]. In this section I will explain  
what the Gradient Descent (GD) and the SGD are, referring to 

the descriptions of Konečný et al. [3]. Then we will learn 
about the adaption of SGD by McMahan et al. [1] defining the 

FederatedSGD (FedSGD). 

The Gradient Descent generally is used to find the 

minimum of a function. The algorithm is an iterative process 

which takes the direction of the negative Gradient to approach 

a local minimum. The iteration is as follows: 

𝑤 𝑡+1 = 𝑤 𝑡 − ℎ𝑡∇𝑓(𝑤
𝑡), 



where 𝑤 is a point in the graph, ℎ𝑡 > 0 is a stepsize 
parameter and t is the current iteration [3]. The Gradient, 

∇𝑓(𝑤 𝑡), is subtracted to reach the minimum or added to 

reach the maximum. As the finite-sum problem tries to find 
the minimum, we are subtracting here. The GD can be used 

for smooth functions, whereas the Subgradient Descend can 

be used for non-smooth functions [3]; however, this will not 
be a subject here. As already mentioned, in federated 

learning we have to deal with a vast amount of data, which 
would make the iteration process slow and inefficient. 

Although there are some ideas from Polyak and Nesterov to 
accelerate this process, a big amount of data still cannot be 

handled efficiently [3]. 

The Stochastic Gradient Descent is not that different 

from the GD: 

𝑤 𝑡+1 = 𝑤 𝑡 − ℎ𝑡∇𝑓𝑖𝑡
(𝑤 𝑡), 

where 𝑤  is a point in the graph, ℎ𝑡 > 0  is a stepsize 
parameter and t is the current iteration [3]. In each iteration 

there will be a function chosen at random with 𝑖𝑡  𝜖 {1, 2, … , 𝑛}  
in iteration t. This can be done because the update direction is 
an unbiased estimate of the gradient [3]. This method mostly 

benefits from great efficiency when it comes to a huge amount 
of data to process. There is a method called Random 

Reshuffling (RR), which has an even better performance than 
SGD, proven by Gürbüzbalaban et al. [4]. The SGD is 

designed to use only one dataset, whereas RR is basically an 
improved form of GD, which uses all data. In federated 

learning there are many clients  and the main idea is to always 

use a specific fraction of those client’s data. Therefore, as we 
want to stay flexible on the amount of data used in each round, 

SGD and RR are probably both not quite suitable for federated 

learning. 

The FederatedSGD was introduced by McMahan et al. 
[1] and solves the problem of choosing the right number of 

clients. They use a large-batch synchronous SGD as it is 

proven by Chan et al. [5] to outperform asynchronous 
approaches in data centers. Further, they select a C-fraction of 

clients in each round to calculate the gradient over those 
clients. C = 1 means to use all clients, which is referred to as 

full-batch (non-stochastic) gradient descent [1]. 

E. Federated Averaging 

The updates 𝑔𝑘  have to be calculated by the clients using 

FedSGD, typically using C = 1 and the current model 𝑤𝑡  [1]: 

𝑔𝑘 =  ∇𝐹𝑘 (𝑤𝑡 ). 

  After they were communicated to the server, some kind 

of averaging has to be done in order to apply the update to the 
current model. Defined by McMahan et al. [1] we will learn 

about the the definition of FederatedAveraging (FedAvg) in 

this section. First of all, McMahan et al. rewrite the objective 

of (1) as follows: 

𝑓(𝑤) =  ∑
𝑛𝑘

𝑛

𝐾
𝑘=1 𝐹𝑘(𝑤)     where    𝐹𝑘(𝑤) =  

1

𝑛𝑘
∑ 𝑓𝑖 (𝑤)𝑖𝜖𝑃𝑘

, 

while 𝑃𝑘  is a set of indexes of data points on client k and 

𝑛𝑘 = |𝑃𝑘 |.  

Once the server has the updates, it can calculate the update 

with 

𝑤𝑡+1 ← 𝑤𝑡 −  𝛾∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑔𝑘  

since 

∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑔𝑘 = ∇𝑓(𝑤𝑡 ) 

, while 𝛾 is the fixed learning rate. This update is also given 

by the following statement: 

 

∀𝑘, 𝑤𝑡+1
𝑘  ← 𝑤𝑡 −  𝛾𝑔𝑘  , then 

 

𝑤𝑡+1  ←  ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑤𝑡+1
𝑘  . 

This far, each client performs one single gradient descent step 

and the server takes the weighted average of the resulting 
single updates. The local model of the clients can be iterated 

several times as follows: 

 

𝑤𝑘  ←  𝑤𝑘 −  𝛾∇𝐹𝑘 (𝑤
𝑘). 

 

This all together is called FederatedAveraging [1]. 
Furthermore, there are three parameters to control the 

computational expenditure: C, the number of clients active in 
one round; E, the number of passes each client makes on its 

local data; B, the local minibatch size. The values E = 1 and B 

= ∞ correspond to the basic FedSGD.  

As a small summary, the FedAvg method is hereby 

completed. We now know how updates of the current model 
are generated locally at the client and how those clients are 

chosen as a subset of all clients. We also have learned how the 

server aggregates those updates and calculates an update for 
the common model. The computational effort can be adjusted 

with various parameters. For any further information on this I 

refer to the work of [1][3] and their references. 

IV. COMMUNICATION EFFICIENCY 

This Chapter is dedicated to give the reader a small insight 

into the complex concepts of communication efficiency. Even 
though federated learning inherently handles this aspect pretty 

well, there are still some methods that can be applied to 
improve the efficiency. I refer to the respective literature for 

further information, as it is intended to only mention the basic 

principles here. 

The main aspect in communication efficiency is how the 

updates are handled. As we have many clients , preferably 
sending many updates , it is obvious that the communication 

traffic is a bottleneck of federated learning systems. As 
already mentioned above, in federated learning it is common 

to work with mobile devices , which almost certainly have not 

the best upstream capacities. This is usually handled by 
assuming that uploading updates is performed while the 

devices are plugged in and unused. This way the 
computational power as well as the availability of the internet 

connection is largely guaranteed. But this is not the primary 
source of traffic problems. At the time when the updates are 

calculated there are many possibilities to minimize the size of 
the data packages which need to be sent to the server. 

Described by Konečný et al. [6] there are structured and 

sketched updates, which will be the topic of this section. But 
first of all, they describe the general problem as follows: 

𝑊𝑡+1 =  𝑊𝑡 +  𝛾𝑡𝐻𝑡   ,  𝐻𝑡 ≔ 
1

𝑛𝑡
∑ 𝐻𝑡

𝑖
𝑖∈𝑆𝑡

, 



while 𝑡 ≥ 0 is the current round of updates  and 𝑊𝑡  is the 

current model delivered to the subset 𝑆𝑡  of 𝑛𝑡  clients. The 

learning rate is 𝛾𝑡  and 𝐻𝑡
𝑖 is the local update of client I at round 

𝑡. As 𝑊𝑡+1 and 𝐻𝑡  are calculated at server side, we only have 

to worry about 𝐻𝑡
𝑖  in terms of communication cost. 

Minimizing the amount of data will be the goal of the 

following update methods. 

A. Structured Updates 

Structured Updates lower the data traffic by keeping the 
update in a pre-specified structure [6]. There are two types of 

Structured Updates described by Konečný et al.: Low Rank 

and Random Mask. In Low Rank updates the local update is 

split up into two matrices: 

𝐻𝑡
𝑖 = 𝐴𝑡

𝑖𝐵𝑡
𝑖  where     𝐴𝑡

𝑖  𝜖 ℝ𝑑1𝑋𝑘 , 𝐵𝑡
𝑖 𝜖 ℝ𝑘𝑋𝑑2 

and k is a fixed number. The rank of the update matrix 𝐻𝑡
𝑖 

should be at most k. Generating 𝐴𝑡
𝑖  as a random seed constant 

and only optimizing, training and sending 𝐵𝑡
𝑖 to the server 

saves a factor of 𝑑1/𝑘  in communication. There were also 

attempts to fixing 𝐵𝑡
𝑖 and training 𝐴𝑡

𝑖  as well as training both, 

neither of which proved to be as effective as the first 
alternative. The Random Mask approach benefits from using 

a sparsity pattern to send only a sparse matrix update. As the 
sparsity pattern is a random seed, only the seed together with 

all non-zero entries of the update have to be sent to the server. 

B. Sketched Updates 

Sketched Updates in general use the full update and 
compresses it before sending it to the server. There are several 

compressing methods, two of them described by Konečný et 

al., which I will sum up here: subsampling and probabilistic 
quantization. Subsampling consists of clients sending only a 

subset of the values of the local update to the server. The 
server can average the updates  again, creating an unbiased 

estimator of the true average [6]. Probabilistic quantization 
compresses the update by reducing each scalar to one bit in 

the following form: 

ℎ̃𝑗

{
 
 

 
 ℎ𝑚𝑎𝑥 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

ℎ𝑗 − ℎ𝑚𝑖𝑛  

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑖𝑛 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   
ℎ𝑚𝑎𝑥 − ℎ𝑗 

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

 

while ℎ̃  is the compressed update of 

ℎ = (ℎ1, … , ℎ𝑑1𝑥𝑑2) = 𝑣𝑒𝑐(𝐻𝑡
𝑖) 

and 

ℎ𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗(ℎ𝑗 ), ℎ𝑚𝑖𝑛 = min𝑗(ℎ𝑗 ) . 
This method brings an advantage of 32 times the compression 
in comparison to a 4-byte float. Errors can be prevented by 

improving it with structured random rotations [6]. 

This section was only to sketch an idea of the complexity  

of determining the right method for calculating updates. In 
practice, there is need of a complex combination of the 

mentioned and other methods to achieve an efficient 

communication. There is much more research and literature 
available on this topic than to be covered in the boundaries of 

this paper, such as Suresh et al. [7], who study efficient 

algorithms for distributed mean estimation. 

V. PRIVACY ISSUES 

This section is meant to give the reader a perspective on 

the privacy issues of federated learning. It is again only to 

sketch a general idea, as the field is very complex and has a 

depth that cannot be covered in this paper. 

Federated learning always means to gather data from many 
different clients. In language prediction context for example 

there is a huge amount of data collected from users, i. e. words 
they typed in private conversations. These conversations can 

contain sensitive data that the users probably do not want to 

share with everyone. The concept of communicating with 
updates in federated learning inherently has a method of 

protecting privacy by omitting data through sending as little 
information with updates as possible. It is still pretty easy to 

derive one user’s data with access to raw, unsecured updates. 
Therefore, it is necessary to take precautions, some of which I 

will introduce in the following. 

Bonawitz et. al. [8] describe a protocol for secure 

aggregation of update data in machine learning. They do not 

use individual user’s updates but the elementwise weighted 
averages of the update vectors. In combination with a secure 

aggregation protocol for averaging these updates, it is ensured 
that the server only can learn about what words were used, but 

not by which users.  

The protocol described by Xie et al. [9] uses Crypto-Nets 

to limit the communication and calculation to encrypted data 

only. This means that the client sends an encrypted ciphertext 
and the server processes this without deciphering. Afterwards, 

the server sends the result back, again encrypted and only 
readable for the user. They achieve this by using 

homomorphic encryption. 

Pathak et al. [10] show that using Hidden Markov Models, 

homomorphic cryptosystems and a protocol for secure 

forwarding works for probabilistic inference. They apply this 

in a use case of speech recognition. 

All in all, advances are made in terms of research and 
publications when it comes to privacy. All of the mentioned 

and many more methods of privacy protection can be 
considered to be applied to federated learning, directly or in 

modified form. Therefore, there are and will be many 
possibilities to counteract the privacy concerns in federated 

learning. Since there is almost always a privacy sensitive area 

involved in working with training data gathered from end 
users, those methods of privacy preservation must be applied 

to guarantee a secure environment of the machine learning 
process. In terms of security there are also some aspects to be 

considered. As described by Bagdasaryan et al. [11], there is 
a way to manipulate the learning process. They explain how 

each user in federated learning can bring in some backdoor 

functionality, e. g. to have an image classifier assign an 
attacker-chosen label to images. This shows that the learning 

process is not only vulnerable to attacks from outside but also 

from inside the system.  

VI. RELATION TO ORGANIC COMPUTING 

Advances in technical systems have led to an increasing 

complexity. Organic Computing tries to tackle this topic by 
implementing concepts found in nature. As natural and social 

systems also need to deal with complex situations by using 
benefits of organisation and adaption, these observations can 

very well be studied and applied or imitated. Organic 

Computing aims to improve technical systems in classical 
capabilities such as robustness, flexibility and efficiency by 

applying such observations and concepts. An important aspect 



of Organic Computing is autonomy. In this scope there are the 

self-* properties as described in [13]. 

Federated learning can also profit from advances in the 
fields of Organic Computing as efficiency, optimization and 

privacy are highly important issues in federated learning. 
There are some fields of Organic Computing described by 

Müller-Schloer and Tomforde in [12], who write about the 

possibilities and importance of keeping federated learning 
optimized and private. They explain an efficient and robust 

way of data communication which benefits the efficiency 

concerns we had earlier. 

The self-* properties help designing a federated learning 
system. Self-configuration for example is seen in the local 

updates. Structured Updates often have different pre-specified 

structures, which can be adapted each round. 

VII. SUMMARY 

Federated learning uses a great concept of model and 

update. The adaptation of general machine learning 

approaches is a very important aspect. Even though SGD is a 
common way for optimizing, the use of modified methods like 

FedSGD is inevitable. Also, the use of FedAvg for the 
averaging process is an immense advantage. Certainly, any 

more evolvement in optimization in this rather new field can 

and should be done in the future.  

In terms of communication efficiency, the concept of 
structured and sketched updates is a good basis for 

improvement. The combination of those should be beneficent 

for reducing communication cost and improving the overall 
efficiency. As far as privacy issues go, there are many starting 

points. Even though there isn’t much done for federated 
learning in particular, there is much research done in machine 

learning or communication in general. Many of those concepts 
and methods can easily be adapted to be applied to federated 

learning. Of course, this should be considered as a secondary 

aim, as the primary should be to optimize the efficiency of the 
methods and algorithms used in federated learning. 

Nevertheless, it is an important point which must not to be 

neglected at last.  

Federated learning is an Organic Computing system in 
many aspects. Not only the organisation of many single nodes 

but also the optimization, efficiency and privacy issues are 

very important aspects. These can profit immensely from 
concepts of Organic Computing by adapting real-world  

analogies, which can make the learning process more robust 

and efficient overall. 

In conclusion, the field of federated learning promises an 
interesting field of research for modern and future 

technologies and use-cases, e.g. language prediction. Many 
aspects of this field are already researched, proven and 

optimized. Others still have to be looked into. Federated 

learning gives a possibility for many scenarios to improve 
through efficient and self-organized updates. The direct 

involvement of end users into the learning process is an 
innovative alternative to traditional, big data centers . But there 

are also still many stumbling blocks in the way of federated 
learning. Anyways, federated learning will get more and more 

attention in the future, as the concept behind it fits very well 
in our nowadays society. Almost everyone is a mobile phone 

user, thereby a potential client in a federated learning system. 

I am very eager to continue my own research on this field and 
am excited about the future improvements and achievements 

that will certainly be made.  
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