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Uncertainty and the Zitterbewegung 
interpretation of an electron 

The Zitterbewegung interpretation of an electron 
The diagram below show the idealized Zitterbewegung of a moving pointlike charge. The combined idea 

of a pointlike charge and its presumed motion make up what we think of as an electron. 

 

Figure 1: An idealized Zitter trajectory1 

The model is exceedingly simple. The pointlike charge itself has no rest mass and, hence, rotates around 

at the speed of light.2 We also think of the circular motion as some kind of two-dimensional oscillation 

and – because the two oscillations are independent and 90 degrees out of phase – we just add the 

energy of the two oscillators and, therefore, get an E = m·a2·ω2 equation. We then use the Planck-

Einstein relation (ω = E/ħ) and Einstein’s mass-energy equivalence (E = m·c2), to get the Compton radius 

(a): 

E = m ∙ 𝑐2 = m ∙ 𝑎2 ∙ ω2 = m ∙ 𝑎2 ∙
E2

ℏ2
⇔ 𝑎 =

ℏ

m ∙ 𝑐
 

The Compton wavelength λC is the circumference of the rotation: λC = 2π·a = h/mc. Now, if c is equal to 

the (tangential) velocity of the pointlike charge, then it’s easy to see that the Compton radius must 

diminish if the linear velocity (v) gets larger. We get the following formula for the wavelength λ in Figure 

1: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=
𝑣

𝑐
∙
h

m𝑐
= β ∙ λ𝐶  

Hence, λ is a fraction of the Compton wavelength λC = 2π·a, and the fraction is the relative velocity β = 

v/c. As the linear velocity increases (so that’s just the classical velocity of our particle), then it’s energy 

                                                           
1 This diagram is based on an illustration of a circularly polarized wave, which looks exactly the same. We just 
added the λ wavelength. It is a diagram from Wikimedia Commons. While it is in the public domain, we still want to 
acknowledge the author here: https://commons.wikimedia.org/wiki/User:Dave3457. 
2 This is a result that Schrödinger had already obtained from an analysis of Dirac’s wave equation of the electron. 
He referred to it as a Zitterbewegung. Prof. Dr. David Hestenes is to be credited with reviving this interpretation of 
what an electron might actually be. I should note, however, that Prof. Dr. David Hestenes – and other zbw theorists 
– may not agree with my shortcut to the results of the model. 

https://commons.wikimedia.org/wiki/User:Dave3457
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and, therefore, its equivalent mass is going to increase. In fact, using natural units (c = 1 and ħ = 1), we 

get the simplest of simple formulas for the Compton radius: 

𝑎 =
1

m
 

Interpreting the de Broglie wavelength 
The λ wavelength is not the de Broglie wavelength λL = h/p.3 So what is it? We have three wavelengths 

now: the Compton wavelength λC (which is a circumference, actually), that weird horizontal distance λ, 

and the de Broglie wavelength λL. Can we make sense of that? We can. Let us first re-write the de Broglie 

wavelength: 

λL =
h

p
=

h

m𝑣
=
h𝑐2

E𝑣
=
h𝑐

Eβ
=
h

𝑐
∙
1

m ∙ β
=

h

m0𝑐
∙
1

γβ
 

What is this? Let’s analyze it mathematically. What happens to the de Broglie wavelength as m and v 

both increase because our electron picks up some momentum p = m·v? Its wavelength must actually 

decrease as its (linear) momentum goes from zero to some much larger value – possibly infinity as v 

goes to c – but how exactly? The 1/γβ factor gives us the answer. That factor comes down from infinity 

(+) to zero as v goes from 0 to c or – what amounts to the same – if the relative velocity β = v/c goes 

from 0 to 1. The graphs below show how that works. The 1/γ factor is the circular arc that we’re used to, 

while the 1/β function is just the regular inverse function (y = 1/x) over the domain β = v/c, which goes 

from 0 to 1 as v goes from 0 to c. Their product gives us the green curve which – as mentioned – comes 

down from + to 0. [Take your time to carefully look at the formulas and the curves so you can digest 

this.] 

 

Figure 2: The 1/γ, 1/β and 1/γβ graphs4 

Now, we re-wrote the formula for de Broglie wavelength λL as the product of the 1/γβ factor and the 

Compton wavelength for v = 0:  

                                                           
3 The use of L as a subscript is a bit random but think of it as the L of Louis de Broglie. 
4 We used the free desmos.com graphing tool for these and other graphs. 
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λL =
h

m0𝑐
∙
1

γβ
=
1

β
·
h

m𝑐
 

Hence, the de Broglie wavelength goes from + to 0. We may wonder: when is it equal to λC = h/mc? 

Let’s calculate that: 

λL =
h

p
=

h

m𝑐
∙
1

β
= λ𝐶 =

h

m𝑐
⟺ β = 1⟺ 𝑣 = 𝑐 

This is a rather weird result, isn’t it? But it is what it is. Let’s bring the third wavelength in: the λ = β·λC 

wavelength⎯which is that length between the crests or troughs of the wave.5 We get the following two 

rather remarkable results: 

λL ∙ λ = λL ∙ β ∙ λC =
1

β
·
h

m𝑐
∙ β ∙

h

m𝑐
= λC

2 

λ

λL
=
β ∙ λC
λ

=
p

h
∙
𝑣

𝑐
∙
h

m𝑐
=
m𝑣2

m𝑐2
= β2 

The product of the λ = β·λC wavelength and de Broglie wavelength is the square of the Compton 

wavelength, and their ratio is the square of the relative velocity β = v/c. – always! – and their ratio is 

equal to 1 – always! These two results are rather remarkable too but, despite their simplicity and 

apparent beauty, you might be struggling for an easy geometric interpretation. I was struggling for it 

too, but then I thought the use of natural units might help. Equating c to 1 would give us natural 

distance and time units, and equating h to 1 would give us a natural force unit—and, because of 

Newton’s law, a natural mass unit as well. Why? Because Newton’s F = m·a equation is relativistically 

correct: a force is that what gives some mass acceleration. Conversely, mass can be defined of the 

inertia to a change of its state of motion—because any change in motion involves a force and some 

acceleration: m = F/a. If we re-define our distance, time and force units by equating c and h  to 1, then 

the Compton wavelength (remember: it’s a circumference, really) and the mass of our electron will have 

a simple inversely proportional relation6: 

λ𝐶 =
1

γm0
=
1

m
 

We get equally simple formulas for the de Broglie wavelength and our λ wavelength: 

λL =
1

βγm0
=

1

βm
 

λ = β ∙ λ𝐶 =
β

γm0
=
β

m
 

This is quite deep: we have three lengths here – defining all of the geometry of the model – and they all 

depend on two factors only: the rest mass of our object and its (relative) velocity. Can we take this 

                                                           
5 We should emphasize, once again, that our two-dimensional wave has no real crests or troughs: λ is just the 
distance between two points whose argument is the same—except for a phase factor equal to n·2π (n = 1, 2,…). 
6 In case you wonder why we get the same 1/m result for a as for λC, note that it depends on what we consider to 
be a natural unit: we got the a = 1/m equation by equating ħ to 1, as opposed to h. 
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discussion any further? Perhaps, because what we have found may or may not be related to the idea 

that we’re going to develop in the next section. However, before we move on to the next, let us quickly 

note the three equations – or lengths – are not mutually independent. They are related through that 

equation we found above: 

λL ∙ λ = λ𝐶
2 =

1

m2
 

We’ll let you play with that. To help you with that, you may start by noting that the λLλ = 1/m2 reminds 

us of a property of an ellipse. Look at the illustration below.7 The length of the chord – perpendicular to 

the major axis of an ellipse is referred to as the latus rectum. One half of that length is the actual radius 

of curvature of the osculating circles at the endpoints of the major axis.8 We then have the usual 

distances along the major and minor axis (a and b). Now, one can show that the following formula has to 

be true: 

a·p = b2 

 

Figure 3: The latus rectum formula: a·p = b2 

You probably wonder: why would this be relevant? It introduces an asymmetry in what we may loosely 

refer to as the shape of an electron. We get such asymmetry from other models – notably Dirac-Kerr-

Newman models of the electron – and it should explain the anomalous magnetic moment without 

having to resort to weird calculations using Feynman diagrams and renormalization techniques. In short, 

we think the analysis above gives you a classical electron model which may explain all of quantum 

mechanics in a classical way. We’ve elaborated on that in our book9 and, hence, will not repeat 

ourselves here. 

                                                           
7 Source: Wikimedia Commons (By Ag2gaeh - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=57428275).  
8 The endpoints are also known as the vertices of the ellipse. As for the concept of an osculating circles, that’s the 
circle which, among all tangent circles at the given point, which approaches the curve most tightly. It was named 
circulus osculans – which is Latin for ‘kissing circle’ – by Gottfried Wilhelm Leibniz. You know him, right? Apart from 
being a polymath and a philosopher, he was also a great mathematician. In fact, he was the one who invented 
differential and integral calculus.  
9 See: Jean Louis Van Belle, The Emperor Has No Clothes: A Classical Interpretation of Quantum Mechanics, 7 
March 2019, http://vixra.org/abs/1901.0105.  

https://commons.wikimedia.org/w/index.php?curid=57428275
http://vixra.org/abs/1901.0105
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Introducing uncertainty 
What about uncertainty? If there is uncertainty about the velocity, then there is uncertainty about the 

energy and, therefore, about the (equivalent) mass of our electron. Hence, the radius of the oscillation 

may also increase or decrease. The two complementary expressions of Heisenberg’s Uncertainty 

Principle (Δp·Δx = h and ΔE·Δt = h) can, therefore, easily be related one to another.10 In fact, all 

uncertainties can easily be related through this very simple geometric model. But so what’s h? What is 

that quantum of action? It’s just the product of the force that keeps that charge in its orbit, the 

circumference (λC = 2π·a) and the cycle time T = 1/f. Energy is force over a distance, so we can write this: 

F ∙ λ𝐶 ∙ T = E ∙
1

𝑓
= E ∙

ℎ

E
= ℎ 

This gives us the formula underpinning the energy-time expression the Uncertainty Principle: 

E ∙ T = h ⟹ ∆E ∙ ∆T = h 

You may wonder what this really means, but we will give a bit of an interpretation with some diagrams 

for the position-momentum expression in the next section, so you may want to hold your horses for a 

while. Let us first see if we can get that position-momentum expression from our geometric 

interpretation. A force times some time will give us the physical dimension of (linear) momentum. Of 

course, at this point we’re not quite sure if we’re going to get the classical p = m·v momentum, so let us 

just be careful and use some subscript. We’ll use pc. Why the c? I don’t know: classical, Compton, c,… It 

is just a placeholder for the time being. Let’s see what we get11: 

F ∙ λ𝐶 ∙ T = p𝑐 ∙ λ𝐶 = F ∙ T ∙ λ𝐶 =
E

λ𝐶
∙
ℎ

E
∙ λ𝐶 = ℎ 

So now we can write: 

p𝑐 ∙ λ𝐶 = h ⇒ ∆p𝑐 ∙ ∆λ𝐶 = h 

You think this looks good? I don’t think so. Why not? Because our pc is not the classical p = mv 

momentum, and that Compton wavelength is not the right length either. Why not? Well… We want to 

relate this to the linear motion. In other words, we want an equation involving the classical velocity. We 

don’t have that here. Just write it all out: 

p𝑐 =
E

λ𝐶
∙
ℎ

E
=
ℎ

λ𝐶
=
ℎ ∙ m ∙ 𝑐

ℎ
= m ∙ 𝑐 

What kind of momentum is this? I’ll let you think about it. I want to see something else, so let me try 

something here. If I multiply pc by β = v/c, I do get the classical momentum p = m·v. Let’s see what we 

get if we write this: 

                                                           
10 You will often see ħ/2 or ħ on the right-hand side, as opposed to h. However, that just depends on what formula 
you’re going to use to describe the spread in your variables. The expressions I use are the ones Dirac and 
Heisenberg used. 
11 Energy is a force over a distance and, hence, we substitute F for E/λC here. 
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p𝑐 ∙ λ𝐶 = h ⇔ p𝑐 ∙ β ∙ λ𝐶 ∙
1

β
= h ⇔ p ∙ λ𝐶 ∙

1

β
= p ∙ λL = ℎ 

That’s better! We get the second de Broglie equation. In fact, it’s the de Broglie equation – because the 

first de Broglie equation is just the Planck-Einstein relation, so de Broglie didn’t contribute much to that.  

So now we get what we had secretly hoped to come out of this rather weird discussion on the geometry 

of an electron: 

p ∙ λL = ℎ ⇒ Δp ∙ ΔλL = ℎ 

This, then, should guide our interpretation of the Δp·Δx = h expression of Heisenberg’s Uncertainty 

Principle. You’ll say: sure, we knew that already, didn’t we? No. We didn’t. The Δx is not an uncertainty 

in the position. It’s an uncertainty in the de Broglie wavelength, and it’s rather hard to relate to that to 

the position, as we’ll explain in the next sections. 

Planck’s quantum of action as a vector 
I have a not-so-secret agenda: I want to think of h as a vector, so I want to write it as h (in bold face). I 

feel that should not sound too outrageous because the physical dimension of Planck’s quantum of 

action is that of angular momentum, and angular moment is a vector, so why not think of h as a vector 

too? 

Of course, you may say angular momentum is an axial vector and, therefore, perhaps not all that real. 

We’d like to counter that objection by the following rather subjective statement: an axial vector does 

not reverse its sign when the coordinate system is changed to a new system by a reflection in the origin. 

In light of those weird 720-degree symmetries that pop up when analyzing spin-1/2 particles, I’d say that 

property makes an axial vector very real – perhaps even more real than the polar vectors that enter as 

factors into the vector cross-product. However, we don’t want to engage in philosophy here so let us 

play some more and see what might make sense.  

Modeling uncertainty 
Before thinking of Planck’s quantum of action as a vector quantity, we should, perhaps, first try to write 

the Δp·Δx = h expression of the Uncertainty Principle as a vector (dot) product: 

Δp·Δx = h 

We use an equality sign here because we think there must be certainty in the uncertainty: something 

must explain the probabilities.12 Hence, we write the right-hand side of the equation – currently, that is 

– as h. No uncertainty there. All of the uncertainty is in the left-hand side. So how should we think of it? 

Δp is the uncertainty in p. Both Δ as well as p are written in bold type. We think of it as an entity: a 

vector in its own. If there is uncertainty in the momentum p, the uncertainty may be in the magnitude of 

p, but it may also be in its direction. Hence, Δp can be any of the vectors depicted below – or anything 

in-between.  

                                                           
12 If you have read any of my papers, you’ll know I am just faithfully following Einstein’s basic intuitions. This is not 
the Copenhagen interpretation of quantum mechanics. In fact, the only reason why you want to read this paper is 
that it’s not. 
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Figure 4: Uncertainty in the linear momentum 

Note that the various Δp vectors here can point in any direction, and they also can have any magnitude. 

That is a bit weird because – as you can see from the illustration – the momentum vectors themselves – 

the p vectors, that is – are generally in the same direction: we do think that, if a particle has some 

momentum, it will in some direction. That’s just logic. 

But now we really run into trouble when interpreting Δx as some uncertainty in the position. The Δp·Δx 

= h relation gives us an inverse proportionality between Δp and Δx, and that doesn’t make sense. The 

uncertainty in the momentum will amplify the uncertainty in the position. I should find a better 

illustration but the one below should already give you an idea. If we have some uncertainty ε in the 

direction of the momentum of some object (the red billiard ball below, that is), then that uncertainty 

will be amplified over a longer distance.  

 

Figure 5: Uncertainty in (linear) momentum gets amplified over distance 

Why is that so? The momentum, velocity and position vectors (p, v and x) all have the same direction. 

Indeed, p and v only differ because of the mass factor: p = m·v. And v and x are, in turn, related by the 

simplest of equations: the x = v·t. Hence, their direction is the same – by definition: an object with some 

velocity v (and some mass m) will be at position x = v·t at any point in time t. That is just the way we 

make sense of the world. Hence, that weird inverse proportionality in the Δp·Δx = h expression cannot 

be explained if we interpret Δx as the spread in the position: they should be proportional13, rather than 

inversely proportional (as illustrated above and below).  

                                                           
13 The proportionality relation is given by simple trigonometry: if the angle ε measures the spread, and c is the 
hypotenuse, while a and b are the adjacent and opposite side of the triangle, then b will be equal to b = c·sinε. 
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Figure 6: Inverse proportionality 

In short, the second expression of the Uncertainty Principle should, effectively, be written in terms of 

the uncertainty in the (classical) momentum and the uncertainty in the (de Broglie) wavelength of our 

electron: 

Δp ∙ ΔλL = ℎ 

Planck’s quantum of action as a vector (2) 
Let me get back to my not-so-secret agenda: what would it mean to write h as a vector? Well… It would 

write it as h, just like we would write L for angular momentum. Look at the wobbling angular 

momentum of the spinning top below, and then think of the plane of rotation of our pointlike charge in 

Figure 1). 

 

Figure 7: A wobbling plane of rotation14 

So how would we write the Uncertainty Principle then? Simple, we just write h and p as vectors. So we 

have the p·λ = h expression out of the zbw geometry (with λ the de Broglie wavelength15). So then we 

can introduce the idea of a non-precise magnitude, or a non-precise direction and write:  

                                                           
14 The illustration is taken from Wikimedia Commons under the CC-BY-SA 2.5 license so I need to acknowledge the 
author: Xavier Snelgrove (https://commons.wikimedia.org/wiki/User:Wxs).  
15 I dropped the subscript here. You may want to add it again if you’re getting confused. 

https://commons.wikimedia.org/wiki/User:Wxs
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Δp· Δλ = h 

So I have p and h as vectors then: h wobbles as the electron gains linear momentum, so p wobbles too.  

[…] 

So… Well… We’re there. There is only one question left to answer: the precession of the spinning top in 

the illustration above is regular. The movement is regular, and we can associate it with some precise 

precession frequency. Can we do that for an electron? In other words, we have uncertainty – and we 

can model it – but do we introduce some uncertainty in our model? 

My instinctive answer to this is Einstein’s: no. The velocity of light is the velocity of light, and the 

classical velocity of our electron is the classical velocity of our electron. In other words, if we assume the 

rotational motion is defined by c and the Compton radius which, in turn, is defined by the linear velocity 

v, then there’s no room for uncertainty. The uncertainty is the wobbling of h. Nothing more. Nothing 

less. But I am happy to get other opinions. They’d be philosophical rather than scientific – as 

philosophical as Einstein’s intuition – but that shouldn’t prevent us from thinking creatively. 

I would like to add one final point. Could we possibly verify this interpretation of Heisenberg’s 

Uncertainty Principle? I haven’t given this all that much thought, but I think we should be able to do so. 

Indeed, if my memory is correct, then the (tiny) spread around the two spots where the electrons hit the 

detector in a Stern-Gerlach experiment are explained by the (tiny) spread in their (classical) velocity. So, 

yes, I think that might prove the point.16 

Uncertainty in particle interactions 
What is presented above does not say anything about interactions. Needless to say, if we are going to 

probe the position of some particle, we’ll need to use some other particle or – more likely – light. That 

will disturb the original state of motion the particle. For example, when a photon is used to probe an 

electron, the electron may pick up some kinetic energy and/or change its direction of motion. 

As such, we may think of the uncertainty being transferred or shared as a result of an interaction 

between the particle that’s being probed and the particle that probes it. Of course, if the particle that’s 

being probed is sufficiently massive, then the uncertainty won’t matter all that much. 

A rather obvious but interesting question is whether or not a photon could possibly interact with 

another photon: can they collide, so to speak? They can: light-by-light scattering has first been observed 

in the ATLAS detector of CERN’s Large Hadron Collider (LHC) in 2016, it seems.17 

                                                           
16 Note that actual Stern-Gerlach experiments are usually done with atoms or ions rather than electrons. I am 
actually not aware of any Stern-Gerlach experiment with electrons, and would be interested to hear about them. 
17 See: https://en.wikipedia.org/wiki/Two-photon_physics.  

https://en.wikipedia.org/wiki/Two-photon_physics

