A Survey on Reinforcement Learning
for Dialogue Systems

Isabella Grafl
Chair of Intelligent Systems
University of Passau
Passau, Germany
grassl19@gw.uni-passau.de

Abstract—Dialogue systems are computer systems which com-
municate with humans using natural language. The goal is
not just to imitate human communication but to learn from
these interactions and improve the system’s behaviour over
time. Therefore, different machine learning approaches can be
implemented with Reinforcement Learning being one of the most
promising techniques to generate a contextually and semantically
appropriate response. This paper outlines the current state-of-
the-art methods and algorithms for integration of Reinforcement
Learning techniques into dialogue systems.

Index Terms—reinforcement learning, dialogue system, chat-
bot, conversational agent, human-computer-interaction

I. INTRODUCTION

In recent years, a shift in human-computer-interaction to-
wards a growing use of chat technology, especially so-called
dialogue systems (DS), has been observed. DS are com-
puter systems that communicate with humans using natural
language, learn from these interactions and improve their
behaviour over time.

DS become more and more important in society with humans
interacting every day with personal assistants like Siri, Google
Now, Cortana and Alexa — a fact which can also be illustrated
by people’s search behaviour on Google (Fig. 1). In March
2016 at Microsoft Build 2016, Microsoft CEO Satya Nadella
introduced the term conversation as a platform (CaaP) to fa-
cilitate the creation of even more advanced personal assistants.

Fig. 1. The rise of DS illustrated by the search frequency of the term
chatbot on Google Trends worldwide. The values indicate the search
interest relative to the highest point on the graph in the specified time period,
whereby the value 100 stands for the highest popularity of this search term.
Google Trends: https://trends.google.de/trends/explore?date=all&q=chatbot (accessed on 15.01.19)

In the context of DS, three major categories can be
specified by their modality: spoken, text-based or multi-modal
DS [1]. The intention of the user’s interaction with the system

is to achieve a certain goal using natural language whether
it is in form of personal assistants or (social) chatbots. The
goal of any DS is to figure out a satisfying dialogue strategy.
This optimal dialogue strategy can be achieved manually in
many ways. In any case, exploring, testing and evaluating
strategies is time-consuming and their performance difficult
to compare.

Recently, instead of actions based on static rules laid down
by human developers, machine learning approaches use
techniques such as Reinforcement Learning (RL) [2], so that
the DS is able to learn strategies at runtime. This is related
to the concept of Organic Computing (OC) [3] and the ideas
behind autonomous systems, where — as a paradigm shift
decisions made by a system are moved from design time to
runtime.

In order to be able to use machine learning models in
environments in which they can learn autonomous action-
response events, learning processes are required which take
into account the changing dynamics of the environment.

A popular example of the successful application of algorithms
of this kind is the victory of Google’s Al AlphaGo [4]
over the worlds best human Go player. AlphaGo would
not have been feasible with classical methods of supervised
learning because — due to the intractable number of moves
and scenarios — no model would have been able to describe
the complexity of action-response relationships as a simple
mapping between inputs and outputs. Instead, methods
are needed that are able to independently respond to new
circumstances of the environment, to anticipate possible future
actions and to incorporate them into the current decision. The
class of learning methods on which systems such as AlphaGo
are based on is referred to as RL.

RL is the third large group of machine learning techniques
besides Supervised and Unsupervised Learning. RL is a
method based on the natural learning behaviour of humans.
Human learning often occurs through simple exploration of
the environment, especially in the early stages of learning.
Human actions within the framework of the learning problem
are defined by a certain action-space. Trial and Error
monitors and evaluates the effects of various actions on the
environment. In response to our actions, we receive feedback
from our environment, abstracted in the form of a reward or
punishment. In many cases, the reward is paid in the form of

https://trends.google.de/trends/explore?date=all&q=chatbot

social acceptance, praise of other people but also by personal
well-being or success. There is often a latency between action
and reward where humans try to maximize the expected
total reward over time through their actions rather than just
generating immediate rewards [2].

RL refers to this psychological model, a form of goal-
oriented learning where learning is derived by, from or during
interactions with an external environment. Therefore, it is
very well applicable to the field of DS — to create responses
which are contextually and semantically appropriate. This
paper outlines how the approach of RL is utilisable in the
field of DS with its state-of-the-art methods and algorithms
and discusses the future and limitations of this integration.
Besides human-computer-interaction applications such as DS
or text summarization engines, the concept of RL is widely
used in many different fields, e.g. in control tasks for robotics
or helicopters [5], game playing like the already mentioned
AlphaGo [4] or Chess [6] and also for consumer products
like an autonomous vacuum cleaner.

II. PRELIMINARIES
A. Reinforcement Learning

RL is based on the mathematical framework of the Markov

Decision Process (MDP) and is a type of learning algorithm
in which the system itself learns what to do, hence to learn
which decisions on what actions to take in a certain situation
or environment to maximise a numeric reward.
In general, a simple RL model consists of a set of states S, a
set of actions A, a function of transition probabilities between
states, a reward r and a discount factor v to make a possible
infinite reward sum finite. In principle, the process can be
described as follows: an agent performs an action a: in an
environment for a given state s. from the available action-
space A, which results in a reaction of the environment in the
form of a reward r.. The reaction of the environment to the
action of the agent in turn influences the agent’s choice of the
in the next state s:.; (Fig. 2) [2].

Agent p-------
State ! i Reward Action
ste S ek ae A
...... f(t+1),
Environment €------
S(t+1)

Fig. 2. General framework of RL with its agent-environment interaction where
an agent takes actions in an environment which are rewarded and then fed
back to the agent [2].

Over a certain number of iterations, the agent is able
to approximate a relationship between its actions and the
expected future benefits for a given state and thus to behave
correspondingly optimally. In doing so, the agent has to strike

a balance between using its previously acquired experience on
the one hand and exploring new strategies to increase rewards
on the other hand. This is called the exploration-exploitation
dilemma [2].

RL also contains important sub-elements: a policy, meaning
a mapping from environment states to actions making up
the behaviour of the agent, a reward function that defines
a specific goal or what is good or bad behaviour, a value
function of what is a good action due to the expected reward
in long-term performance and a model that outlines the
impact of the actions [2].

There are three different types of RL: passive, active and
deep RL. In passive RL, an agent executes a fixed policy
defined at design time given by a human developer. In
contrast, a system using active RL [7] updates its policy as
it learns with the goal to learn an optimal policy. Active RL
is a combination of the advantages of two basic approaches:
active learning has been combined with RL for determining
the sensitivity of the optimal policy to changes in state
transitions and rewards, but not in the actual environment due
to time-extensity and high risk. Active RL is used to explore
regions of the state-action space where the optimal policy is
maximally uncertain [7]. Deep RL is an extension of active
RL based on neural networks and is most commonly used.

B. Dialogue Systems

There are many different architectures for different DS,
all based on the same set of main components and phases
forming a certain input-output-flow (Fig. 3 on the following
page).

This cycle begins with so-called input modules which
recognize user input and convert it to a textual representation,
i.e. a string of words, if necessary. In case of a speech-
based DS, speech recognition is performed Speech-to-Text
technologies based on phonetics and phonology [1].

As a next step, the intention of the user is transferred
into structured data, which is mostly done with Natural
Language Understanding (NLU) frameworks. As the telling
name suggests, the task is to figure out the intention of
the user. Therefore, the interpretation needs to include
several aspects such as a syntactic, discourse, semantic, and
pragmatic analysis [8]. This includes the investigation of
grammatical relationships among the words by parsing the
sentence as well as its meaning. If there is more than one
sentence, the relationship between those is determined via
co-reference resolution such as anaphora or cataphora in
discourse analysis.

This interpretation is provided to the Dialogue Manager
(DM). It is the main component of a DS and responsible
for selecting the most appropriate action as a response to a
statement. This includes also the maintenance of dialogue
history and adopting dialogue strategies. As the most trivial
strategy, there is only one dialogue state, corresponding to
the goal of answering the next question. The new dialogue
state is a function of the current state, the user’s statement,

How many rivers are in

Passau?

'
'
User Utterance !
0

Y

Connector Modules
(Web, Messenger, etc.)

System Utterance;

There are three rivers in
Passau: Danube, Inn, llz.

Input Modules
(Natural Language
Understanding)

Dialogue Query N
Management " Matched
(State Tracker, Entries Database
Dialogue Policy)

Output Modules

(Natural Language
Generation)

Fig. 3. Simplified general architecture of a DS, combining the most common properties from the different architectures of DS. The dialogue can be modelled
as an RL-problem where the DS is the RL agent and the user is the environment; based on [1] [8] [9].

and the subject of the conversation. The DM is split into the
State Tracker (ST) and the policy for the agent, which can be
represented by a neural network in case of deep RL [1].

In most cases, the DM must access external knowledge in the
form of domain-specific content (e.g. flight plans or movie
show times). As a consequence, the DM needs to interact
with some kind of external knowledge source such as a
database. The queries must be converted to the format of the
external system.

Eventually, a response is generated within the output modules
and their Natural Language Generator (NLG) [1]. This
constructed message can be either in form of a simple
communication to the user such as spoken or written text,
showing web pages or non-verbal responses, e.g. updating the
day planner. If the system is not text-based, Text-to-Speech
technologies such as Natural Language Synthesis are used
to generate the output. Pre-recorded speech, such as Hello,
how may I help you?, can be used to facilitate the start of a
conversation.

III. INTEGRATION OF RL INTO DS

The RL process for DS can be described as an agent
studying how the user has replied and tracking positive signals
such as Thank you. It tries to identify behaviour patterns and
learn from interactions from different persons. Based on the
analysis, policies are framed which, in turn, are the basis
for situation-dependent behaviour. The agent then collects
experiences to reframe its policies. Deep RL methods are used
for developing more accurate policies.

The MDP models a system’s interaction with human users
while RL is used to optimize the systems performance. The
amount of training data is limited by the fact that a human has
to interact with the system to obtain it. In DS, RL is used to
optimize the design of a dialogue management policy (Fig. 4).

The queries of the dialogue manager are modelled as states
and answers of the database are modelled as possible actions.
For some states, the proper action to take may be clear as
for instance, greeting the user in the start state as already
mentioned.

Trial and Error
Learning by performing
dialogues

Observation Phase
Learning from collected
dialogues

Fig. 4. Training of the DM with RL to reframe and optimize its policy; own
representation.

The reward function depends on the feedback of the dialogue
manager based on the user choices. This approach allows the
system to evolve in an uncertain environment and to collect
rewards. Intrinsically motivated rewards could also capture as-
pects of the user’s emotional satisfaction in human-computer-
interactions. The appropriate measure for the success of a
DS can range from user satisfaction to task completion or
sales figures in commercial applications to the number of
times users have to interrupt the system or returned sentences
from the system like Sorry, I do not understand. The dialogue
ST processes the semantic frame, ergo the input data and its
value, and the history of the current conversation into a state
representation that can be used by the agent’s policy. This state
is then fed as input into the policy of the agent, in deep RL
by a neural network, to produce an action which is passed to
the output modules (cf. again Fig. 3).

IV. TAXONOMY OF RL FOR DS

In general, DS bots can be classified into four major types:
social chatbots, infobots, task completion bots (task-oriented
or goal-oriented) and personal assistant bots [1].

There are three generations of dialogue technology since the
early *60s. The first generation focused on grammatical rules
and is based on human experts. The second generation used
data to learn statistical parameters in DS [5]. Since 2014,
the third generation uses neural models in addition to such
statistical parameters.

Based on the common types of DS and the historical back-
ground of dialogue technology, the results of this survey are
structured by a classification system illustrated in Fig. 5.

ILiterature databases were used to collect and review publications with the
results being based on Google Scholar which is aware of most influential
research papers [10].

£
©
5 €
-]
[R - Strong Al
o 3
Z O
o
o
Y— (=
o ©
c 1
£ 5
a
g e Rule-Based Weak Al
[0}
o 3
o

Retrieval-Based Generative-Based

System Responses

Fig. 5. A classification scheme of DS categorized by ordered pairs of the
conversation ability on the ordinate and the response mechanism on the
abscissa whereby DS can be based on rules or artificial intelligence (AI).
A retrieval-based DS in an open domain is not possible whereas a DS which
retrieves responses for a predefined topic domain is the comparatively simplest
form of a DS. If the DS is able to create new responses in a closed domain, it is
regarded as a weak Al In contrast, a generative-based DS without limitations
of a conversational domain would have true intelligence.
Based on Kojouharov (2016): https://chatbotslife.com/@kojouharov (accessed on 15.01.19)

A. Closed-Domain and Retrieval-Based DS

In the first generation, rule-based or corpus-based DS were
implemented and are still used for common goal-oriented
chatbots in a specific conversational domain (quadrant III in
Fig. 5). The purpose of goal-oriented or task-oriented dialogue
agents, i.e. agents interacting in a closed-domain, is to solve
a single problem for a user such as making a reservation or
booking.

Most of the task-oriented systems use so-called slot-filling
methods to capture the user request in a domain-specific con-
versation. Concrete, for making a reservation in a restaurant,
the intent performs an action in response to natural language
user input, like RestaurantBooking and utterances as
spoken or written phrases which convey the user’s intent,
like I want to make a reservation in a restaurant. From
an information processing perspective, slots are input data
required to fulfil this concrete intent, for instance, the value
of location, price range or opening times. After all slots are
filled, the fulfilment mechanism for the user’s intent takes
action, for example in the response: Your reservation for
the restaurant was successfully made. Each human-machine-
interaction contains slot-value pairs which are the so-called
semantic frames.

This traditional approach has proven reliable, but cannot be
adapted to other domains — even if they share common intents
or slots.

One of the most famous chatbots and probably the first
program which faced the Turing Test? was ELIZA [11] in
1966. As ELIZA is a rule-based system for a closed-domain,

2Alan Turing introduced his Turing Test in 1950 to survey a machine’s
ability to be seen as human in an interaction with another human being. As
of today, the Turing Test might not be exactly a proof of consciousness of a
program but is a reliable indicator, especially in the field of human interaction.

it could not have any meaningful conversations with humans
except for single predefined task — it had generic responses to
utterances which did not fit into any rules.

ALICE 3 is a popular free chatbot developed by Richard
Wallace in 1995. It is influenced by ELIZA and won the
Loebner prize in January 2000.

One of the most successful approaches for a task-oriented
system was introduced by Young et al. (2013) [12] where they
define dialogue as a Partially Observable Markov Decision
Process (POMDP).

In contrast to the before mentioned MDP, the states in a
POMDP are not completely observable, but as in MDP,
the state transitions can be controlled. In the centre of the
architecture of such DS are two stochastic models: a dialogue
model and a policy model. The dialogue model has a transition
probability p (st | st-1, ac-1) and an observation probabil-
ity p (ot | s¢), where s is the state of the dialogue at time
t, a¢ is the action taken at time t, and o, is the observation
at time t.

The policy model determines which action to take at each turn.
As the dialogue progresses, a reward is given at each step
to reflect the desired characteristics of the DS. The dialogue
model M and policy model P can be optimized using RL from
these rewards either through interaction with users or from a
corpus of dialogues (Fig. 6 on the previous page) [12].

Input Belief
observation ... _state
04 [by

: | Dialogue Model M | Reward

Stu (parameters 1) : Function R | z
. t

! " b; az l
User : ! H Reward :
H ol g ,
NLG : Policy Model P J : !
a (parameters 6) : |
System [Dinlogue Manager Maximise 2 |
action 9 9 witg,t |

Fig. 6. The dialogue model and policy model form the centre of the task-
oriented system with belief state tracking and RL. In contrast to the MDP, the
input utterance is regarded as an observation of the underlying user intent
which is hidden. Instead of trying to estimate the hidden dialogue state,
the system response is directly given from the distribution over all possible
dialogue states [12].

The launch of Siri in 2010 as an intelligent virtual assistant

pioneered for other personal assistants like Google Now
(2012), Cortana (2015) and Alexa (2015). All of these
assistants can help answer questions, partly based on the web
and want to extend the capability of not just focusing on one
narrow task.
Therefore, the retrieval-based methods must be replaced with
approaches which are capable of creating new responses in
addition to copying or mapping user utterances to a system
response by rules or sequence-to-sequence methods.

3Wallace (1995): http://www.alicebot.org (accessed on 15.01.19)

https://chatbotslife.com/@kojouharov
http://www.alicebot.org

B. Closed-Domain and Generative-Based DS

As IBM’s Watson* was developed in 2006 specifically to
compete with the human champions in the game Jeopardy! in
2011, it was a rule-based system in a closed-domain. Since
then, IBM Watson offers services to build chatbots for various
domains. These are not just able to process large amounts
of data and to fill slots like retrieval-based DS but also to
generate new responses for certain tasks and can, therefore,
be categorized as a weak Al in the conversational context
(quadrant IV in Fig. 5 on the preceding page).’

Li et al. (2017) [13] introduced a task-oriented DS with its
parameters trained by using supervised learning as well as
RL. The system is specified for the topic area of a movie
booking. As they used Deep Q-Networks (DQN), a high
amount of data must be available which can prove challenge.
Similary, Williams and Zweig (2016) [14] introduced an
approach using a combination of supervised learning and
RL, but contrary to other approaches, they are able to use
both for optimizing the policy function. They used a long
short-term memory (LSTM) neural network to remember past
observations arbitrarily long and enabling them to reduce the
costs of designing an appropriate state space.

Most of those deployed DS use manual features for the state
and action-space representation and require either a huge
amount of annotated domain-specific data or people willing
to interact with an unfinished system [15]. This not only
makes it expensive and time-consuming to deploy a real DS
but also limits its usage to a narrow domain.

C. Transfer to Open-Domain DS

Towards more advanced DS: If the system can transfer
knowledge from one domain to another, it can be called a
strong or general Al. Microsoft is aiming fur such system
with its Chinese bot Xiaoice® which interacts with people
on messaging platforms in Asia and America (quadrant I in
Fig. 5 on page 4). So far, most of the common systems like
Alexa and Siri just unify different domains to seem like a
strong Al
Conversational open-domain systems are systems which are
not limited to a certain conversational domain. In the context
of social chatbots, so-called chitchat-bots or chatterbots are
often mentioned which attempt to provide full-dialogue. In
general, generative methods produce responses one at a time
without considering their long-term effect.

In their work, Peng et al. (2017) [16] created a DS considering
more than a single-domain using deep RL and hierarchical
task decomposition to also reduce costs of state-action space.
They applied their system in the context of booking a hotel

4The DeepQA Research Team (2006): https://www.ibm.com/watson (ac-
cessed on 15.01.19)

5The term strong AT is referring to John Searle’s thought experiment
of the Chinese room in 1980 and can also be regarded as artificial general
intelligence (AGI). As a constructive criticism of the Turing Test, Searle
discusses whether a machine is capable of understanding (a conversation)
or just simulating.

SMicrosoft (2014): http://www.msxiaoice.com (accessed on 15.01.19)

and flight while also considering time for commuting with
a rental car using a two-level dialogue policy. As more
complex (sub-)tasks require multiple levels of hierarchy, they
can extend their approach, but this would be inefficient and
time-consuming in return.

The approach of Ilievski et al. (2018) [17] also addresses the
single-domain problem as they introduced a goal-oriented
DS using a transfer learning method based on earlier work
of [13] and [18]”. As both approaches implemented bots
independently for their respective domain, [17] are utilising
the similarities between a source and target domain and
transferring the knowledge from one neural network to
another. As illustrated in Fig. 7, two domains can include
the same type of information and therefore, there is no
need for learning this particular information twice. This
transfer learning technique can also be applied if a third
domain, for example, the domain Tourism, is added
which shares all information from the source domain and
some additional information like type of accommodation [17].

Source Domain
User Utterance
V\ihich theater can I book 3 tickets for TitnnJiC?

request(theater, num_people=3, movie=Titanic)

Target Domain
User Utterance
Which restaurant can I book for 2 people?,
request(restaurant, num_people=2)

Domain:
Restaurant
Booking

Domain:
Movie
Booking

0

Transfer the Knowledge

OO S
& Train with &
o Train with / J less data & \ "=
8 full dataset better &

< |Dialogue | Dialogue performances @
2] <
E- Manager | | Manager IE:’ E
=y g
5] Bot Bot .8
. What date are you interested in? What date are)V'ou interested in?
X request(date) request(date) W

Fig. 7. Model of the DS where a knowledge transfer can be realised due
to a domain overlap of the source domain MovieBooking and the target
domain RestaurantBooking, both sharing the same information date
[17].

A further step towards open domain chatbots is from
a research group at the Montreal Institute of Learning
Algorithms with MILABOT which successfully reached
the semi-finals of the Alexa Prize competition: Serban et
al. (2017) [19] implemented MILABOT, a chatbot using
an entirety of 22 individual models including sequence-to-
sequence methods to create responses and then choosing
the most appropriate response with the help of deep RL.
On the downside, they had also issues dealing with speech
recognition errors which can have an impact on the user’s
experience with the system.

In analogy to [13], Wen et al. (2016) [18] presented a goal-oriented DS
for restaurant reservations by using a neural network-based model based on a
Wizard-of-Oz paradigm, in which generally a human secretly tells the agent
which actions to take, instead of RL.

https://www.ibm.com/watson
http://www.msxiaoice.com

V. DISCUSSION

End-to-end statistical conversational models are already
satisfying, but open-domain (chat)bots are still at an early
state where one of the main problems remains the access to
external databases for domain-specific knowledge and the
transfer to other domains, as the approach of [17] showed.
Besides, one of the key problems is a lack of understanding
of natural language by the system. Especially in spoken DS,
ill-formed utterances like dialect which are not trivial to take
care of at runtime and may need consideration at design time.
One of the more significant problems is the co-reference
resolution like anaphora or cataphora.

In contrast, the syntax level of the responses of the generative-
based models can be quite low as they create their answers
and not just reply with one of the pre-defined answers from
a set of possible answers. As a consequence, they need more
training compared to the rule-based approach which can be
problematic, but might handle complex and unseen utterances
in return.

In addition, a fundamental problem of the approach of RL in
practice is to extract reliable feedback considering the reward
from the user [15]. In many application fields, the reward is
easy to determine such as with games where the system get
+1 if it wins and 0 or —1 otherwise [4] [6].

Regarding a simple feedback model by just asking the user
if the application was helpful, a Yes can merely indicate
politeness whereas a No can be the result of disappointment
or frustration at the end of the user. Thereby the user’s
perception of the system can vary significantly from the task
completion success.

VI. CONCLUSION AND FUTURE WORK

This paper discussed how the approach of RL can be
used in the field of DS and its state-of-the-art methods.
It showed that RL is a promising approach to generate
intuitive responses which are contextually and semantically
appropriate.

RL, as well as (chat)bots, attracted much attention not just in
the area of computer science but also in society in general.
However, the conception and implementation of DS using RL
faces many difficulties as discussed before.

DS offer new ways of interaction between computer and
humans and can be integrated into any domains and processes
such as education, healthcare, organisation and management,
business or entertainment. RL is a promising tool for
solving automated natural language processing across those
domains and transferring it to other domains as well as being
interlingually.

However, further research has to be done towards systems
which actually understand semantics. This implies also the
integration of psychological as well as linguistic knowledge
into the designing and implementation process, forming an
interdisciplinary approach.

One step towards this future of DS was taken by Google:
they announced in early January 2019 at the CES 2019 that

Google Assistant is on 1 billion devices, can perform over a
million of actions and is conversant in 30 languages.

REFERENCES

[1] Jurafsky, D. and Martin, J. H. (2018): Speech and Language Process-
ing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Prentice-Hall. Draft of September
23, 2018. [online] https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
(accessed on 15.01.19)

[2] Sutton, R. S., & Barto, A. G. (1998): Introduction to reinforcement
learning (Vol. 135). Cambridge: MIT press.

[3] Miiller-Schloer, C., & Tomforde, S. (2017): Organic Computing—
Technical Systems for Survival in the Real World. Springer International
Publishing.

[4] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M. (2016): Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587),484-489.

[5] Kaelbling, L. P, Littman, M. L., & Moore, A. W. (1996): Reinforcement
learning: A survey. Journal of artificial intelligence research, 4, 237-285.

[6] Lai, M. (2015): Giraffe: Using deep reinforcement learning to play chess.
arXiv preprint arXiv:1509.01549.

[7]1 Epshteyn, A., Vogel, A., & DeJong, G. (2008): Active reinforcement
learning. In Proceedings of the 25th international conference on Machine
learning, 296-303. ACM.

[8] Singh, M. (2004): Practical Handbook of Internet Computing. Chapman
and Hall/CRC.

[9] Petraityt, J. (2018): Deprecating the state machine: building conversa-
tional AI with the Rasa stack, PyData Berlin 2018.

[10] Martin-Martin, A. (2017): Can we use Google Scholar to identify highly-
cited documents?

[11] Weizenbaum, J. (1983): ELIZA - A Computer Program for the Study
of Natural Language Communication Between Man and Machine,
Communications of the ACM, vol. 26, no. 1, 23-28.

[12] Young, S., Gai, M., Thomson, B., & Williams, J. D. (2013): Pomdp-
based statistical spoken dialogue systems: A review. Proceedings of the
IEEE, 101(5), 1160-1179.

[13] Li, J., Monroe, W, Ritter, A., Galley, M., Gao, J., & Jurafsky, D. (2017):
Deep reinforcement learning for dialogue generation. arXiv preprint
arXiv:1606.01541.

[14] Williams, J. D., & Zweig, G. (2016): End-to-end Istm-based dialogue
control optimized with supervised and reinforcement learning. arXiv
preprint arXiv:1606.01269.

[15] Su, P. H., Vandyke, D., Gasic, M., Kim, D., Mrksic, N., Wen, T. H., &
Young, S. (2015): Learning from real users: Rating dialogue success with
neural networks for reinforcement learning in spoken dialogue systems.
arXiv preprint arXiv:1508.03386.

[16] Peng, B., Li, X., Li, L., Gao, J., Celikyilmaz, A., Lee, S., & Wong, K.
F. (2017): Composite task-completion dialogue policy learning via hier-
archical deep reinforcement learning. arXiv preprint arXiv:1704.03084.

[17] Tievski, I., Musat, C., Hossmann, A., & Baeriswyl, M. (2018): Goal-
Oriented Chatbot Dialog Management Bootstrapping with Transfer
Learning. arXiv preprint arXiv:1802.00500.

[18] Wen, T., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L., Su,
P, Ultes, S. & Young, S. (2016): A network-based end-to-end trainable
task-oriented dialogue system.arXiv preprint arXiv:1604.04562.

[19] Serban, I. V., Sankar, C., Germain, M., Zhang, S., Lin, Z., Subramanian,
S. & Rajeswar, S. (2018): A Deep Reinforcement Learning Chatbot
(Short Version). arXiv preprint arXiv:1801.06700.

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

	Introduction
	Preliminaries
	Reinforcement Learning
	Dialogue Systems

	Integration of RL into DS
	Taxonomy of RL for DS
	Closed-Domain and Retrieval-Based DS
	Closed-Domain and Generative-Based DS
	Transfer to Open-Domain DS

	Discussion
	Conclusion and Future Work
	References

