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I. Introduction 

I wrote a paper posted on viXra.org e-Print archive (viXra:1806.0030) titled The 

Function f(x) = C and the Continuum Hypothesis wherein I proposed a proof of the 

CH. In the paper I showed that by indexing (using a unique natural number for each 

index value) the calculation of the function’s range values for each element of the 

domain I could establish a one-to-one correspondence between the domain and my 

index. It was pointed out that in order to present the domain of the function in the 

form of a list, which I needed to do in order to create my index, I first had to prove 

that the list contained every element in the interval from which the domain was 

defined. 

I began working on the problem and came up with what I call the Interval Sieve 

Algorithm which uses a method of repeatedly dividing a closed interval into a series of 

closed sub-intervals and using numbers I call relative bounds of conjoined interval 

pairs to construct the list that will be used as the domain of f(x) = C. 

II. Abstract 

The Interval Sieve Algorithm is a method for generating a list of real numbers on any 

closed interval [ri, rj] where ri < rj, which can then be defined as the domain of the 

function f(x) = C. 

The purpose of this paper is to delineate the steps of the algorithm and show how it  

will generate a countable list from which the domain for the function f(x) = C can be 

defined. Having constructed the list we will prove that the list is complete, that it 

contains all the numbers in the interval [ri, rj].  

 

 

 

 



III. Given 

1. The set of natural numbers 

 

2. The set of real numbers 

 

3. The closed interval 

 

4. The list 

 

IV. Definitions 

1. The lower bound of a closed interval is the smaller of the two numbers comprising 

the interval. In the interval [r1, r2] where r1 < r2, r1 is the lower bound of the interval. 

2. The upper bound of a closed interval is the larger of the two numbers comprising 

the interval. In the interval [r1, r2], where r1 < r2, r2 is the upper bound of the interval. 

4. A conjoined interval pair is a pair of closed intervals where the upper bound of 

one and the lower bound of the other are the same number. [ri, [rk,] rj] is an example 

of a conjoined interval pair where rk is both the upper bound of [ri, rk] and the lower 

bound of [rk, rj]. 

5. A relative bound is a number that is common to both intervals in a conjoined 

interval pair. In the conjoined interval pair [r1, [r3,] r2], where r1 < r3 < r2, r3 is a relative 

bound in both intervals [r1, r3] and [r3, r2].  

The importance of the relative bound will become apparent when we get into the 

description of the Interval Sieve Algorithm. 

6. The immediate predecessor of a number λ is a number β such that there exists no 

number δ where β < δ < λ. 

7. The immediate successor of a number λ is a number β such that there exists no 

number δ where λ < δ < β. 



From definitions 6 and 7, for any 2 real numbers λ and β, in the interval, we can 

always find another real number, δ, such that if λ > β then β < δ < λ and if λ < β  

then λ < δ < β. 

V. The Interval Sieve Algorithm 

Procedure: 

0. We begin the procedure with the interval  

 

and the list 

 

1. Sub-divide each interval [ri, rj] by selecting a number rk such that ri < rk < rj to get a 
conjoined interval pair: 

[ri, [rk,] rj] 

2. Insert the relative bound number, rk,  into the list L to get  

 

3. Return to step 1. 

The algorithm produces the following results: 

 

[r1 r2]

[r1 [r3] r2]

[r1 [r4] [r3] [r5] r2]

[r1 [r6] [r4] [r7] [r3] [r8] [r5] [r9] r2]

[r1 [r10] [r6] [r11] [r4] [r12] [r7] [r13] [r3] [r14] [r8] [r15] [r5] [r16] [r9] [r17] r2]

.

.

.

Interval Sieve Algorithm



 

 

Beginning with one interval, growth of the number of intervals created is exponential 

and after the fourth iteration we have a total of 16 intervals. If n is the number of 

iterations and I is the number of intervals, we have I = 2n and if Ln is the number of 

list elements then  

Ln = 2n + 1. 

 

 

 

 

 

 

 

 

 

Intervals Generated by the Algorithm
[r1, r2]

[r1, r3][r3, r2]

[r1, r4][r4, r3][r3, r5][r5, r2]

[r1, r6][r6, r4][r4, r7][r7, r3][r3, r8][r8, r5][r5, r9][r9, r2]

[r1, r10][r10, r6][r6, r11][r11, r4][r4, r12][r12, r7][r7, r13][r13, r3][r3, r14][r14, r8][r8, r15][r15, r5][r5, r16][r16, r9][r9, r2]

.

.

.

List of Real Numbers Generated by the Algothrim
L = {r1, r2}

L = {r1, r3, r2}

L = {r1, r4, r3, r5, r2}

L = {r1, r6, r4, r7, r3, r8, r5, r9, r2}

L = {r1, r10, r6, r11, r4, r12, r7, r13, r3, r14, r8, r15, r5, r16, r9, r17, r2}

.

.

.



VI. Proving the List is Complete 

The question remains as to whether or not the list L will contain all real numbers in 

[r1, r2]. With the help of Cantor’s Diagonal Argument we will prove that: All the real 

numbers in [r1, r2] are contained in the list L.  

Proof: 

Let each number in L be represented by its digits so that: 

r1 = d1d2d3d4… 

        … 

r3 = d1d2d3d4… 

        … 

r2 = d1d2d3d4… 

Because [r1, r2] is a closed interval and all numbers in between are > r1 and < r2 we can 

have r1 as the absolute first element of L and r2 as the absolute last element of L. 

Transferring the elements of L into a vertical list, that we’ll call List B, allows us to 

employ the diagonal argument to generate a number X that is not contained in List B 

and then show that X will be contained in L.  

Examining X we note that: 

1. If X < r1 or X > r2 then X is not in [r1, r2] and is of no consequence since we are 

considering only numbers within [r1, r2]. 

2. Since X is in [r1, r2] then at any point in time it must be either a member of a sub-

interval contained in [r1, r2] or the relative bound of a conjoined interval pair in [r1, r2]. 

3. If X is a relative bound of a conjoined interval pair in [r1, r2] it is already an element 

of L. 

4. If X is a member of a sub-interval contained in [r1, r2] and not a relative bound, 

then at some point it will designated a relative bound of a conjoined interval pair 

contained in [r1, r2] by the algorithm. 

5. Once X becomes a relative bound of a conjoined interval pair it will be included in 

L and become a member of L. 

6. There are no other cases regarding the nature of X to consider, therefore at any 

point in time, all numbers Xi are or will be elements of L.  

7. We can then assert that at infinity L will be complete and this ends the proof. 



VII. An Unintended Consequence 

In this paper we initially set out to accomplish three things: 

 1. Construct a list of real numbers from [r1, r2] and 

2. Prove that the list is complete; that is that the list contains all the real            

numbers in [r1, r2]. 

3. Use L as the domain of the function f(x) = C for the purpose of proving the 

Continuum Hypothesis. 

We have constructed the list L from [r1, r2] and have shown that the list is complete 

containing all the real numbers in [r1, r2]. Our construction requires only two givens: 

the interval  

  

and the list  

. 

The interval sieve algorithm constructs L which, with the aid of Cantor’s Diagonal 

Argument, has been shown to be complete at infinity. We can now use L as the 

domain of f(x) = C and continue as outlined in The Function f(x) = C and the 

Continuum Hypothesis. 

In fact, to demonstrate that there exists a bijective function from ℕ to [r1, r2],  

f : ℕ ↔ [r1, r2] 

we only have to represent the numbers in the list as their digitized equivalents and 

drop the r from their condensed forms to go from  

 

r1 = d1d2d3d4… 
        … 
r3 = d1d2d3d4… 
        … 
r2 = d1d2d3d4… 
 

 
 
       to 

1 = d1d2d3d4… 
        … 
3 = d1d2d3d4… 
        … 
2 = d1d2d3d4… 
 

Since the set comprised of the elements of L is complete and for every element of the 

set there is a corresponding natural number we can conclude that  f : ℕ ↔ [r1, r2] 



exists and therefore the Continuum Hypothesis is true for closed intervals of real 

numbers. 

Because we are only considering closed intervals of reals this proof of the CH is 

restricted to that special case. 


