Interval Sieve Algorithm

Creating a Countable Set of Real Numbers from a Closed Interval

© 2019 by Ron Ragusa All rights reserved

I. Introduction

I wrote a paper posted on viXra.org e-Print archive (viXra:1806.0030) titled The
Function f(x) = C and the Continuum Hypothesis wherein I proposed a proof of the
CH. In the paper I showed that by indexing (using a unique natural number for each

index value) the calculation of the function’s range values for each element of the

domain I could establish a one-to-one correspondence between the domain and my
index. It was pointed out that in order to present the domain of the function in the
torm of a list, which I needed to do in order to create my index, I first had to prove

that the list contained every element in the interval from which the domain was
defined.

I began working on the problem and came up with what I call the Interval Sieve
Algorithm which uses a method of repeatedly dividing a closed interval into a series of
closed sub-intervals and using the numbers bounding each sub-interval to form a list

that will be used as the domain of f{x) = C.
II. Abstract

The Interval Sieve Algorithm is a method for generating a list of real numbers on any
closed interval [, 1j] where 1; < 1;, which can then be defined as the domain of the
function f{x) = C.

The purpose of this paper is to delineate the steps of the algorithm and show how it
will generate a countable list from which the domain for the function f{x) = C can be
defined. Having constructed the list we will prove that the list is complete, that it
contains all the numbers in the interval [r, 1j].

III. Given
1. The set of natural numbers
N, {neN|1<n}
2. The set of real numbers
R, {reR | ris real}
3. The closed interval
[rl, r2] where r; <, and 1, r, are real numbers
4, The list
L= {rl, rz}
IV. Definitions

1. The lower bound of a closed interval is the smaller of the two numbers comprising
the interval. In the interval [r1, r2] where r1 < 1o, 11 is the lower bound of the interval.

2. The upper bound of a closed interval is the larger of the two numbers comprising
the interval. In the interval [r1, 12|, where 11 < 12, 12 is the upper bound of the interval.

4. A conjoined interval pair is a pair of closed intervals where the upper bound of
one and the lower bound of the other are the same number. [1;, [11,] 1] is an example
of a conjoined interval pair where 1 is both the upper bound of [r;, 1] and the lower
bound of [rx, 1j].

5. A relative bound is a number that is common to both intervals in a conjoined
interval pair. In the conjoined interval pair [r1, [13,] r2], where 11 < 13 < 12, 13 is a relative
bound in both intervals [r1, 13] and [t3, 12].

The importance of the relative bound will become apparent when we get into the
description of the Interval Sieve Algorithm.

0. The immediate predecessor of a number A is a number such that there exists no
number 6 where 3 <6 <A.

7. The immediate successor of a number A is a number 3 such that there exists no
number 8 where A < & < 8.

From definitions 6 and 7, for any 2 real numbers A and B, in the interval, we can
always find another real number, 8, such thatif A > B then 3 <6 <Aandif A <3
then A < 8 <.

V. The Interval Sieve Algorithm
Procedure:
0. We begin the procedure with the interval
[rl, r2] where r; <r, and 1y, r, are real numbers

and the list
L = {1‘1, r2}

1. Sub-divide each interval [r;, 1j] by selecting a number 1y such that 1; < r, < rjto get a
conjoined interval pair:

L1, [1%,] 1]
2. Insert the relative bound number, ri, into the list L to get
L= {ri, I, rj}
3. Return to step 1.

The algorithm produces the following results:

Interval Sieve Algorithm

[ry rl
[r1 [r3] r
[r1 [ra] [r] [rs] rl

[y [re] [ra] [r7] [rs] [re] [rs] [rs] ry]

[ri [rio] [re] [ria] [ra]l [ri2] [rs] [ras] [rs] [ria] [rs] [ris] [rs] [rie] [re] [ri7] 12l

Intervals Generated by the Algorithm
[r1, ra]
[r1,r3][r3, r2]
[r1, r4][r4, r3][r3, r5][r5, r2]
[r1, r6][r6, ra][r4, r7]1[r7, r3]1[r3, r8][r8, r5](r5, r9][r9, r2]

[r1, r10l[r10, rellre, riallrie, rallra, riallria, 17107, rasllras, r3llrs, riallra, rsllrs, risliris, rslirs, rigllrie, rollrs, ral

List of Real Numbers Generated by the Algothrim
L ={ry, ry}

L={ry, r3, rp}

L={ry, ra, 13, rs, 12}

L ={ry, re, ra, r7, 13, rg, Is, Io, 12}

L ={ry, r10, e, F11, T4, P12, 17, F13, 13, P14, T8, F15, Is, F16, Fo, F17, T2}

Beginning with one interval, growth of the number of intervals created is exponential
and after the fourth iteration we have a total of 16 intervals. If n is the number of
iterations and I is the number of intervals, we have I = 2" and if L, is the number of

list elements then
T.=2"+1.

VI. Proving the List is Complete

The question remains as to whether or not the list L will contain all real numbers in
[r1, r2]. With the help of Cantor’s Diagonal Argument we will prove that: All the real
numbers in [ry, r2] are contained in the list L.

Proof:
Let each number in L. be represented by its digits so that:

r1 = didadsda. ..
> = didadsda. ..
r3 = didodsda. ..

Let a vertical list of elements of 1. be called List B.

Using Cantor’s Diagonal Argument we will generate a number X that is not contained
in List B and then show that X will be contained in L.

Examining X we note that:

1. r1 < X < 1, since for any number in L, 1, r1 < 1 < rpand X is created from
numbers in L that have been arranged vertically in List B. We know therefore that X
is in [r1, 1‘2].

2. Since X is in [r1, 12] then it must be either a member of a sub-interval contained in
[r1, 12] or the relative bound of 2 sub-intervals in [r1, 12].

3. If X is a relative bound of 2 sub-intervals in [r1, 2] it is already an element of L.

4. If X is a member of a sub-interval contained in [r1, 12] and not a relative bound,
then at some point it will become a relative bound of 2 sub-intervals contained in
[r1, 12].

5. Once X becomes a relative bound of 2 sub-intervals it will be included in 1. and
become a member of L.

0. There are no other cases regarding the nature of X to consider, therefore at any
point in time, all numbers Xj are or will be elements of L.

7. We can then assert that at infinity L. will be complete and this ends the proof.

