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I. Introduction 

I wrote a paper posted on viXra.org e-Print archive (viXra:1806.0030) titled The 

Function f(x) = C and the Continuum Hypothesis wherein I proposed a proof of the 

CH. In the paper I showed that by indexing (using a unique natural number for each 

index value) the calculation of the function’s range values for each element of the 

domain I could establish a one-to-one correspondence between the domain and my 

index. It was pointed out that in order to present the domain of the function in the 

form of a list, which I needed to do in order to create my index, I first had to prove 

that the list contained every element in the interval from which the domain was 

defined. 

I began working on the problem and came up with what I call the Interval Sieve 

Algorithm which uses a method of repeatedly dividing a closed interval into a series of 

closed sub-intervals and using the numbers bounding each sub-interval to form a list 

that will be used as the domain of f(x) = C. 

II. Abstract 

The Interval Sieve Algorithm is a method for generating a list of real numbers on any 

closed interval [ri, rj] where ri < rj, which can then be defined as the domain of the 

function f(x) = C. 

The purpose of this paper is to delineate the steps of the algorithm and show how it  

will generate a countable list from which the domain for the function f(x) = C can be 

defined. Having constructed the list we will prove that the list is complete, that it 

contains all the numbers in the interval [ri, rj].  

 

 

 

 



III. Given 

1. The set of natural numbers 

 

2. The set of real numbers 

 

3. The closed interval 

 

4. The list 

 

IV. Definitions 

1. The lower bound of a closed interval is the smaller of the two numbers comprising 

the interval. In the interval [r1, r2] where r1 < r2, r1 is the lower bound of the interval. 

2. The upper bound of a closed interval is the larger of the two numbers comprising 

the interval. In the interval [r1, r2], where r1 < r2, r2 is the upper bound of the interval. 

4. A conjoined interval pair is a pair of closed intervals where the upper bound of 

one and the lower bound of the other are the same number. [ri, [rk,] rj] is an example 

of a conjoined interval pair where rk is both the upper bound of [ri, rk] and the lower 

bound of [rk, rj]. 

5. A relative bound is a number that is common to both intervals in a conjoined 

interval pair. In the conjoined interval pair [r1, [r3,] r2], where r1 < r3 < r2, r3 is a relative 

bound in both intervals [r1, r3] and [r3, r2].  

The importance of the relative bound will become apparent when we get into the 

description of the Interval Sieve Algorithm. 

6. The immediate predecessor of a number λ is a number β such that there exists no 

number δ where β < δ < λ. 

7. The immediate successor of a number λ is a number β such that there exists no 

number δ where λ < δ < β. 



From definitions 6 and 7, for any 2 real numbers λ and β, in the interval, we can 

always find another real number, δ, such that if λ > β then β < δ < λ and if λ < β  

then λ < δ < β. 

V. The Interval Sieve Algorithm 

Procedure: 

0. We begin the procedure with the interval  

 

and the list 

 

1. Sub-divide each interval [ri, rj] by selecting a number rk such that ri < rk < rj to get a 
conjoined interval pair: 

[ri, [rk,] rj] 

2. Insert the relative bound number, rk,  into the list L to get  

 

3. Return to step 1. 

The algorithm produces the following results: 

 

[r1 r2]

[r1 [r3] r2]

[r1 [r4] [r3] [r5] r2]

[r1 [r6] [r4] [r7] [r3] [r8] [r5] [r9] r2]

[r1 [r10] [r6] [r11] [r4] [r12] [r7] [r13] [r3] [r14] [r8] [r15] [r5] [r16] [r9] [r17] r2]

.

.

.

Interval Sieve Algorithm



 

 

Beginning with one interval, growth of the number of intervals created is exponential 

and after the fourth iteration we have a total of 16 intervals. If n is the number of 

iterations and I is the number of intervals, we have I = 2n and if Ln is the number of 

list elements then  

Ln = 2n + 1. 

 

 

 

 

 

 

 

 

 

Intervals Generated by the Algorithm
[r1, r2]

[r1, r3][r3, r2]

[r1, r4][r4, r3][r3, r5][r5, r2]

[r1, r6][r6, r4][r4, r7][r7, r3][r3, r8][r8, r5][r5, r9][r9, r2]

[r1, r10][r10, r6][r6, r11][r11, r4][r4, r12][r12, r7][r7, r13][r13, r3][r3, r14][r14, r8][r8, r15][r15, r5][r5, r16][r16, r9][r9, r2]

.

.

.

List of Real Numbers Generated by the Algothrim
L = {r1, r2}

L = {r1, r3, r2}

L = {r1, r4, r3, r5, r2}

L = {r1, r6, r4, r7, r3, r8, r5, r9, r2}

L = {r1, r10, r6, r11, r4, r12, r7, r13, r3, r14, r8, r15, r5, r16, r9, r17, r2}

.

.

.



VI. Proving the List is Complete 

The question remains as to whether or not the list L will contain all real numbers in 

[r1, r2]. With the help of Cantor’s Diagonal Argument we will prove that: All the real 

numbers in [r1, r2] are contained in the list L.  

Proof: 

Let each number in L be represented by its digits so that: 

r1 = d1d2d3d4… 

r2 = d1d2d3d4… 

r3 = d1d2d3d4… 

         . 

         . 

         . 

Let a vertical list of elements of L be called List B. 

Using Cantor’s Diagonal Argument we will generate a number X that is not contained 

in List B and then show that X will be contained in L.  

Examining X we note that: 

1. r1 < X < r2, since for any number in L, rk, r1 < rk < r2 and X is created from 

numbers in L that have been arranged vertically in List B.  We know therefore that X 

is in [r1, r2]. 

2. Since X is in [r1, r2] then it must be either a member of a sub-interval contained in 

[r1, r2] or the relative bound of 2 sub-intervals in [r1, r2]. 

3. If X is a relative bound of 2 sub-intervals in [r1, r2] it is already an element of L. 

4. If X is a member of a sub-interval contained in [r1, r2] and not a relative bound, 

then at some point it will become a relative bound of 2 sub-intervals contained in  

[r1, r2]. 

5. Once X becomes a relative bound of 2 sub-intervals it will be included in L and 

become a member of L. 

6. There are no other cases regarding the nature of X to consider, therefore at any 

point in time, all numbers Xi are or will be elements of L.  

7. We can then assert that at infinity L will be complete and this ends the proof. 


