
1 / 5

SelfGAN--Not A GAN But Punch Itself

Author
Hecong Wu (hecongw@gmail.com)

Abstract
In my research, I modified the basic structure of GAN, let G and D train together, and use dynamic loss
weights to achieve a relatively balanced training.

Keywords: Dynamic balance, dynamic loss weights

1 Introduction
One problem with the classic GAN is that it is difficult to control the strength of the generator and
discriminator. I broke the structure of the traditional GAN, let the generator and the discriminator connect
together, and let it punches itself during the training so that the discriminator and the generator can adapt to
each other.

I tested the model on the mnist dataset and the 20% LSUN Bedroom dataset, and achieved satisfactory
results. The model is trained by Pytorch on the GPU and Tensorflow Keras on the TPU using different
parameters due to some difference between GPU and TPU.

2 Related work
My work is based entirely on GAN related papers.

3 Overview

G

D

z/imgA validity gen

realB validity real

last fakeB validity fakenext step

ones

zeros

loss_fn

loss_fn

loss_fn

Dynamic
loss

balance
loss

Fig1. Model training process

I trained the generator and the discriminator in the same gradient descent process.

2 / 5

In this process, the greater the loss of the discriminator, the greater the weight it occupies in the sum of the
discriminator losses. This will make the changes in several losses very unstable, but actually achieve a dynamic
balance effect.

4 Evaluation
I am poor in studying deep learning. Despite the scarce resources, I am very grateful to Colab for giving me
free GPUs and TPUs for training models.

On PyTorch GPU, I compute final loss like this:

v_g = mean(gen_loss) # (batch_size,) => ()
v_f = mean(fake_loss) # (batch_size,) => ()
self_loss = (real_loss + 0.1 * v_g * gen_loss + 0.9 * v_f * fake_loss) / 2

On Keras TPU, I compute final loss like this:

v_g = mean(gen_loss) # (batch_size,) => ()
v_r = mean(real_loss) # (batch_size,) => ()
v_f = mean(fake_loss) # (batch_size,) => ()
v_sum = v_g + v_r + v_f
self_loss = real_loss*v_r/v_sum + gen_loss*v_g/v_sum + fake_loss*v_f/v_sum

Why are the parameters different? In the PyTorch GPU I use a smaller generator ratio to prevent the
discriminator from always discriminating the picture as true. But this method is not good on the Keras TPU,
because the Keras TPU will cut the input into eight equal parts, which will cause a difference in the batch. I use
the loss all to participate in the dynamic weight allocation method to solve this problem.

What I need to explain is, TPU does not seem to have ResizeNearestNeighbor operation, so I used Upscale of
StyleGAN[5] to replace Keras' default UpSampling2D layer.

Here are some training results:

SelfGAN GPU MNIST step.2000,20000,59600 64x1x28x28(BCHW)

3 / 5

Self DCGAN GPU MNIST step.2000,20000 64x1x32x32(BCHW)

SelfGAN TPU MNIST step.2000,20000,68800 64x28x28x1(BHWC)

Self DCGAN TPU MNIST step.2000,20000,68000 64x28x28x1(BHWC)

4 / 5

5 / 5

SelfGAN TPU Bedroom step.2000,20000,68800 64x64x64x3(BHWC)

Except the earliest GAN[1] and DCGAN[2], I also tried to convert Pix2Pix[3] and CycleGAN[4] into the form of
SelfGAN, but Colab's resources don't seem to be enough for fast training of these types of models. So I hope
that people with more resources can try it. I may now have no time to try.

8 Conclusion
It seems that my SelfGAN can achieve the same effect as the general GAN. I don't have time to compare. But I
think that introducing dynamic balance should speed up the training of the model and avoid some
shortcomings. It looks very similar to GAN, but it is brand new. It should have more potential to be tapped.

I will open source after this casual article is published. I hope my ideas can be approved.

References
[1] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative
Adversarial Networks. arXiv e-prints. arXiv preprint arXiv:1406.2661. 2014 Jun.

[2] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434. 2015 Nov 19.

[3] Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks.
InProceedings of the IEEE conference on computer vision and pattern recognition 2017 (pp. 1125-1134).

[4] Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial
networks. InProceedings of the IEEE International Conference on Computer Vision 2017 (pp. 2223-2232).

[5] Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. arXiv
preprint arXiv:1812.04948. 2018 Dec 12.

