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Abstract:  The discontinuous, non-causal and instantaneous changes due to a measurement 

that appear in quantum mechanics (QM) theory are not consistent with a classical 
understanding of physical reality, but are completely confirmed by experiments. Relative 
measurement theory explains why. This paper presents the first formal development of an 
experimental measurement which includes the uncertainty due to calibration and resolution. 
The uncertainty due to calibration and resolution, previously considered experimental artifacts, 
is shown to be equal to the uncertainty that appears in QM theory and experiment. When the 
calibration to a reference and resolution effects are considered, all the QM measurement 
discontinuities are consistent with classical explanations.  
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1.0 INTRODUCTION  

In quantum mechanics (QM) theory "...the discontinuous, non-causal and instantaneously 
acting experiments or measurements" [1] create: uncertainty – when measurements of an 
unchanged observable change [2], disturbance – measuring one observable disturbs a different 
observable [3], collapse – experimental results have a lower entropy than QM theory predicts 
[4], and entanglement – measurement results transfer faster than the velocity of light [5].  
Strangely, experiments completely support these unreasonable results [6].  And the wave 
function (the basis of QM theory) is a complete success at describing the probabilities of a 
quantum system.  This agreement of extensive experiments and successful QM theory has 
caused many to believe that quantum mechanics is not consistent with classical mechanics, i.e., 
QM is not reasonable in terms of human experience.  

In 1935, the EPR paper [7] proposed that the wave function must be an incomplete 
description of physical reality.  The belief expressed in the EPR paper is that physical reality has 
underlying consistency and it is a fundamental task of physics to formalize this consistency [5].  
Whether or not quantum and classical mechanics are consistent has been considered and 
tested extensively starting before 1935, without a clear resolution.  

 This paper develops the first formal measurement function [8] that includes calibration and 
resolution (Section 2.0-2.2), converts probabilistic QM measures to experimental measurement 
results (Section 2.3), explains how relative measurement theory resolves the unreasonable 
results (Sections 3 - 5), completes the QM description of physical reality (Section 5), and 
concludes that all mechanics are consistent (Section 6).  

L. Euler [9] identifies that any measurement result is only relative to another measurement 
result.  Fig. 1 presents the minimum empirical single axis relative measurement system [10] 
including three entities: observables3, measuring apparatus with finite intervals and a 
reference.  In Fig. 1, what is accepted in QM theory is the top half and unshaded. What this 
paper adds is the bottom half and shaded grey.  

 

                                                 
3 An observable has a magnitude of intervals, each with an interval vector magnitude. In this paper each interval 

vector magnitude is an independent variable. 
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Each measuring apparatus is projected (vertical arrows) on each observable A and B , 
establishing the A and the B vector magnitudes in intervals of ai and bj. The reference u is 
tightly correlated (relative) by calibration (diagonal arrows) to each experimental measuring 
apparatus interval (MAI). Calibration defines the interval vector magnitude of each ai or bj. Fig. 
1 does not include resolution effects. 

An experimental measurement result of an observable is the sum of each MAI magnitude 
(e.g., a centimeter ± uncertainty).  Often measurement results are assumed to be the product 

of the vector magnitude (e.g., A) of the intervals times the mean ( . ) interval magnitude which 

is iA a .  Or measurement results may be assumed to be Au .  When each ai is not exactly 

equal to u, or when all ai are not equal, or when the distribution of ai is not symmetrical about 

u, i.e., iu a , or when ia  MAI , then:   

Σ Σi iAu A a a   MAI        (1) 

The unequalities in (1) occur when these distributions are not symmetrical to each other. 
None of these unequalities are recognized in existing measure theory [11] as they are assumed 
to be related to the experiment.  Only ΣMAI  in (1) describes experimental results. The 
uncertainty caused by these unequalities can be significant. 

When two calibration functions occur (which correlate each MAI of each measuring 
apparatus to one reference), measurement result Ʃai and measurement result Ʃbj and the 
reference become relative to each other (thin dash-dot line) and can be compared via a 
common factor of u (common reference). 

 Relative describes the now corrolated relation of the measurement result's intervals , e.g.,
2 i ja u b  , as well as the now correlated relation of the measurement result's relative 

magnitudes (A=6 and B=3) in ui, i.e., i j6a 3b .  Fig. 1 does not include the uncertainty of the 

MAI. In QM theory the observables are termed entangled (thin dash-dot line) when the 
measurement results of two separated observables remain relative to each other. 
Entanglement is more formally developed in Section 2.1, below. 

In metrology (the science of experimental measurement), calibration to a reference 
establishes the correlation between measurement results and decreases the uncertainty of 
distributions of measurement results. QM theory is based upon a measure theory [11] which 
does not consider calibration in a reference space4. A relative measurement theory (RMT) is 
needed.  

2.0 FORMAL MEASUREMENT  

In an experimental measurement, the MAI and their coordinate axes are defined by the SI 
(International System of Units) [12].  The SI is the experimental reference space. This reference 
space must be applied in a measurement theory which describes experimental results. An MAI 
is correlated to the appropriate SI standard(s) using metrology.  But each MAI is not exactly 

                                                 
4 Reference space describes a vector space that also stipulates the discrete intervals applied for measures or 

measurements. 



4 

 

equal to the others from the same measuring apparatus or exactly equal to the appropriate SI 
standard(s). 

From Fig. 1, a measurement includes the inner product function and calibration function 
required to establish a comparable measurement result. In this paper, the magnitudes of 
observables and their intervals are formalized without consideration for interactions with the 
measuring apparatus (i.e., observer effects) or any external effects such as noise. In carefully 
designed inner product and calibration experiments, these observer and external effects may 
be minimized or canceled and are not considered inherent. 

2.1. INNER PRODUCT FUNCTION 

An observable (e.g., A or B ) exists prior to any relative relation. Therefore the observable is 
a norm or unity. Norms (bold) are self-relative and represent all the magnitude possibilities. In 
QM theory an observable is a superposition of complex amplitudes which represents all the 
magnitude possibilities.  

The inner product function converts an observable's norm to a magnitude of interval norms. 
The measuring apparatus's intervals, before the calibration function, are norms, ui. A measure 
(observable's magnitude in ui) is calculated when each interval of the measuring apparatus (ui) 
which projects on the observable  is counted. In Fig. 2 each projection is indicated by upward 
arrows.  

 

Equation (2) formalizes Fig. 2, as a sum of inner products .,.  where  i 1,2,...,n [13]. 

 
1

1
i n

i

i

,
n





 u   magnitude (e.g., A of A ) in ui    (2) 

Equation (2) may also be formalized in bra-ket notation [14]. Since -1i i 1
n

 u u  and N is a 

vector magnitude expressing the sum of n equal intervals of both the observable and the 
measuring apparatus, then Fig. 2 provides a derivation of the Born Rule [15]. The Born Rule 
identifies that the inner product of the bra and the ket in (3) is the probability amplitude of the 
magnitude of a measure in ui. 
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From Fig. 2, the inner product (2) makes the observable and the measuring apparatus in (3) 
entangled. That is, when they are separated, their relative absolute magnitude relationship, 

N N , continues. Fig. 1 shows that two observables, each entangled with different, but 

relative, measuring apparatus, are also entangled with each other. Equation (3) is an indication 
that Fig. 2 is valid.   

An example of entanglement in classical mechanics:  A blindfolded carpenter takes two 
dowels, A and B, aligns by feel one end of the two dowels and makes one saw cut across both 
dowels. The alignment (zero setting) and saw cut (projection) is an inner product which 
entangles the dowels.  Each dowels' length magnitude, before it is entangled is "one dowel", a 
norm or all the possible dowel lengths. The entangled dowels, when separated to anywhere in 

space-time, have an equal, previously unknown, length magnitude, A B , relative to a 

stipulated u.  

It is not the purpose of this paper to describe how QM observables become entangled, only 
to explain that when the entangled observables are separated in space-time, the continued 
correlation of their measurement magnitude is not "spooky action at a distance" [5]. 

The inner product measure (2) is in a reference (Hilbert) space. The linear result of an inner 
product is a scalar measure which is not relative to a coordinate axis. A non-linear calibration 
function which changes the reference space to an SI reference space is required to transform a 
scalar measure into a measurement result. 

2.2 CALIBRATION FUNCTION 

 Equations (2), (3), and Fig. 2 present each ui as normalized and equal.  Then multiple 
measures of a fixed observable appear as a probability distribution, not a distribution of 
experimental measurement results.  Exactly equal ui are not possible in any experimental 
measuring apparatus [16]. Therefore a measurement result is the Ʃui in theory and ƩMAI in 
experiments, not the sum of Ʃui interval norms. To convert Fig. 2 to an SI measurement result, 
a separate calibration function correlates u to ui, creating the applied references iu MAI , 
where   indicates equal with an uncertainty, as an exact (in theory) measurement result of 
each MAI is not possible (experimentally) due to the measuring apparatus resolution (Fig. 3).  
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  From Fig. 3, the calibration function (cf) projects each u to transform the ith ui to the ith ui 
with an inherent uncertainty iu s  :  

 i i iu u u s  u     (4) 

By stipulation, u may be a primary standard, e.g., a meter, kilogram or second, or correlated 
to a primary standard, or u may be a common reference, where u is referenced by two or more 
calibration functions to establish relative relations. From Fig. 3 the iu difference between u 

and ui is calculated from:  
2

i1 cf u u  .  

Calibration is relative to a reference in space or time.  When a reference in time is applied, 
the calibration function is the Lorentz transformation in special relativity [17], where the 
velocity of light =c= u, v = cf and n= a count of MAI (e.g., light years). Then the Lorentz 

transformation:

 
2

1 1

1 iuv c





 and 
1

i n

i
i

u





MAI  a measurement result in MAI calibrated in 

time (relativistic) rather than space. This is a strong indication that Fig. 3 is valid for all 
measurements. 

One part of the calibration function (4) describes the smallest magnitude (s, a sample, in Fig. 
3) that the perfect measuring apparatus5 can reliably detect. In QM theory, the sample may be 
a Planck, . In a perfect measuring apparatus (which cannot create perfect measurement 
results), when s of the measuring apparatus projects on the observable, it is s.  When s does not 
project on the observable, it is 0. When the magnitude of the measuring apparatus's projection 
is >0 and < s, that s will be uncertain, 0 or s. Each of the two possible s increments of ui shown 
in Fig. 3 may be uncertain due to zero setting or projection. This is resolution uncertainty.               

The resolution uncertainty ( s ) has three possible magnitudes: +s, 0 (i.e., <|s|), -s. The 
zero magnitude is not a state (does not occur in theory), but is a transition between the +s and 
-s states, which has a low experimental probability,6 and is usually treated as an experimental 
error (e.g., see Appendix A, below).  The standard deviation of such a three magnitude 
resolution distribution is developed in Section 4. 

2.3 RELATIVE MEASUREMENT FUNCTION 

Replacing ui in (2) with ui from (4) formalizes the theoretical relative measurement function  
in space (5): 

  
1

i n

i

i

i 1 ,
n

u u su




        (5) 

Equation (5) includes both accuracy (6), relative to a reference, and precision (7), self-
relative, due to resolution:  

1

i n

i

i

u




 accuracy   (6),    
1

i n

i

s




  precision   (7) 

                                                 
5 In QM theory a perfect measuring apparatus is represented by a Kronecker delta.   
6 The Stern-Gerlach experiments [5] present a two state resolution uncertainty, without the zero magnitude. 
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Multiple measurements of a fixed observable using the same measuring apparatus will 
exhibit uncertainty relative to a reference. s and iu  are shown to be responsible for the 
inherent uncertainty of measurement results from observables that appear continuous. 

Expanding on (1), different experimental measurements or theories cause different terms 
to dominate or be assumed: usually is u ; n may be large; (6) or (7) may be assumed to 
cancel (possibly invalid for iu and likely valid for s ). Measurement results without significant 

uncertainty are termed weak measurements [18] in QM. They occur when MAI  (6) or (7).  

The examples in Section 3 explain other effects.  

3.0 EXPERIMENTAL UNCERTAINTY 

Consider a four digit voltmeter where 00.01 is the voltmeter's display of an MAI. Measuring 
a fixed voltage source7 multiple times produces a distribution of measurement results.  
Practically, the uncertainty of this distribution is specified by the manufacturer (i.e., it  has been 
calibrated previously), for all voltmeters of this model, to be ±MAI.  

A theoretical measurement calculation example: maintaining ±ui=0.01 with uncertainty 
requires ≤ ±0.005 volt (v) resolution (s) based upon sampling theory [19], i.e., each ui is 
between 0.005 and 0.015 v. The smallest resolution (magnitude of one sample) of a measuring 
apparatus is one cause of the uncertainty of measurement results, and is never zero.  This 
resolution uncertainty also has three possible magnitudes: +0.005, 0.000 (<|0.005|), -0.005. A 
1.000 ±0.001 v fixed voltage source is applied.  ±0.001 v is the independently determined 

maximum uncertainty ( iu  ) of the 1.000 v fixed source relative to a primary standard.  

Applying (4), there are nine possible magnitudes of ui 0.001  when u 0.010 : 

±Δui -s ui ±Δui +s ui ±Δui +s ui 

-0.001 -0.005 0.004 -0.001 +0.000 0.009 -0.001 +0.005 0.014 

+0.000 -0.005 0.005 +0.000 +0.000 0.010 +0.000 +0.005 0.015 

+0.001 -0.005 0.006 +0.001 +0.000 0.011 +0.001+0.005 0.016 

Table 1. Nine magnitudes of ui 

Summing the nine possible magnitudes of ui over n = 100 of the ui (of the 1.000 v fixed 
source) identifies 9100 combinations of sums which will, as the number of different voltmeter 
measurements of the same observable increase, converge to a normal distribution as described 
by the central limit theorem. Therefore the uncertainty of the measurement result distribution 
without the calibration function (QM theory) is: 100 times 0.004 to 0.016 = 0.400 to 1.600 v.  

An experimental calibration example: The four digit display of the voltmeter is adjusted to 
00.00 (zero setting). The fixed voltage source (1.000v) is applied and a second voltmeter 
adjustment (reference setting) changes the display to 1.00. These calibration adjustments 

remove most of the inherent uncertainty,  iu s  , and establish 0.010 ±0.006MAI

v. The theoretical measurement is 1.00 ± 0.60 v. The calibrated measurement result is 

                                                 
7 In metrology this is a measurand [12], a non-normalized observable. 
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100 1.00 ±0.006MAI . The change from calculated distribution to calibrated measurement 

result distribution decreases the relative measurement system entropy. This is termed a wave 
function collapse (or jump) in QM and appears in the Compton and Simons experiments [4].   

4.0 RELATIVE UNCERTAINTY 

The following develops the standard deviations of three concepts from metrology: applied 
reference (ui), accuracy (6), and precision (7) to compare them with concepts in current QM 
theory. 

    
2

1

1 i n

i

s s s
n






           (8) 

 In the neutron spin experiments [20] discussed in Appendix A, the spin resolution 
distribution has two states, + 1 and - 1, as zero is considered an error in these neutron spin 
experiments.  Then the mean is very close to zero and the standard deviation of this resolution 
distribution (8) is slightly < 1, which is experimentally verified in [20].  

When the ( s )   is slightly < 1, the elog ( s )  which calculates the entropy of the s  

Gaussian distribution, is near zero and the entropy due to s is near constant [21]. Resolution 
entropy change is usually not experimentally significant.  

In the uncertainty relations in QM theory, the standard deviation of the measure magnitude 
is calculated relative to a mean, as shown in (9).  The use of interval norms (ui) and the mean as 
the reference shown in (9) are not valid in relative measurements. The effect of the calibration 
function on (9) is shown in (11). 

    
2

1

1 i n

i

i

N N N
n






 u      (9) 

Depending upon the relative measurement system, uncertainty due to iu may be non-
statistical [22],  e.g., when calibration causes a uniform shift from each ith ui to the ith ui.  Such 
distributions (10) will have a higher entropy than Gaussian distributions. Then, when n is large, 

the entropy increase due to 
1

i n

i

i

u




  is significant.  As demonstrated in Section 3 above, 

experimental calibration to MAI will cancel most of this entropy increase making the 

theoretical measures appear more uncertain than experimental measurement results, an 
unreasonable result.    

As developed in Section 3, rigorous experimental measurement results are calibrated to a 
reference, u in the SI reference space.  This is shown in (10) which calculates the relative 
standard deviation by applying (4), where each ui is relative to u.  

    
2

1

1 i n

i i

i

u u u
n






         (10) 
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The uncertainty of a measure (9) is transformed into a reference space by summing (8) and 
(10). Then the uncertainty of a measurement result (11) is: 

        i i i i( N ) u u u s          u    (11) 

Equation (11), the relative uncertainty relation, presents the inherent uncertainty of one 
measurement as the sum of the standard deviation of accuracy (6) and precision (7) when n is 
fixed. Equation (11) is an indication of the validity of (5).  

5.0 RELATIVE MEASUREMENT IN QM   

From Fig. 1, the measuring apparatus with ai intervals is projected upon the observable A. 
The measuring apparatus with bj intervals is projected upon the observable B.  The vector 
magnitude of the observables A and B in ui is determined to be A and B respectively. 
Transforming ui to ui (4) introduces relative measurements into QM theory: the measurement 
results from observables A and B are Ʃai and Ʃbj. These measurement results are relative to u 
as shown in (5). Then, applying the three left hand terms of (11), the Kennard form of 
Heisenberg uncertainty (also termed disturbance) eq. 3 in [3] transforms to: 

        i jq p /2    Q P    (12) 

 qi are the ui of position and pj are the ui of momentum. These ui are related by 

 j i ip m dq dt , where m = a fixed mass.  At the instant the qi are calibrated to q (the 

reference), both measurement results of the observables Q and P will change, since qi and pj 
are different functions of qi . The Kennard or Heisenberg uncertainty shows the effect of the 
calibration function on two variables related to q.  

The Robertson form of the uncertainty relation (where A and B are not relative to one 
reference) from eq. 4 in [3] is: 

      
1

ψ, AB-BA ψ
2

  A B     (13) 

In (13)  ψ, AB-BA ψ identifies that the inner product of the state vector   represents two 

magnitudes (A and B) that do not commute.  This appears experimentally when observable A is 
measured first, then the observable B and the reverse in the second term.  The magnitude AB 
is almost always different from BA, suggesting the first measurement changes a second 
differently each time.  Since A and B in (13) are not changed, this does not represent 
reasonable physical reality. When the vector magnitudes A and B in (13) are replaced by Ʃai 
and Ʃbj respectively, expressing both the fixed magnitude and ui, the now reasonable 
difference between AB BA  follows directly from the s  term in (11). 

Since QM theory lacks the concept of measurements relative to a reference, the uncertainty 
of a measurement result appears as the product of the uncertainty of the measurement results 
of each of two observables A and B  that are in the same reference space (comparable). 
Equation (14) is the product of (11) for each of the two observables: 

            i j i a j ba b a s b s                      (14) 
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as and bs  are the minimum sample magnitude of the measuring apparatus projected on 
A and B respectively. i and j are intervals of the respective measuring apparatus.    The product 
of the right side of (14): 

               i j i b a j a ba b a s s b s s                      (15) 

In the Appendix, (15) is shown to be equal to the universal uncertainty relation (A.1) 
formally developed by Ozawa in 2003 [3] and experimentally verified [20]. This is an 
independent development of (11) and therefore a proof of the relative measurement function 
(5).   

6.0 CONCLUSION 

Measurement uncertainty of observables with unchanged magnitude appears because the 
variation of the experimental measuring apparatus intervals is not treated. Measurement 
disturbance appears when one calibration function changes two relative measurement results. 
Wave function collapse occurs because representational measures do not include the 
calibration function. Measurement entanglement appears unreasonable only because a 
measurement result is not recognized as relative to another measurement result. These 
explanations of the unreasonable results from QM theory and experiments are the strongest 
arguments for Relative Measurement Theory.  

In 1935, the EPR paper recognized that the wave function, based upon representational 
measures, was an incomplete description of physical reality. RMT adds the missing description: 
calibration in a stipulated reference space.  

Representational measure theory should be expanded into a measurement theory which 
includes RMT.  Then both finite experimental and theoretical measurements are understood as 
inherently uncertain, are formalized the same, and produce equal (within an equal uncertainty) 
distributions of measurement results of the same observable. This unifies experimental and 
theoretical measurements.  
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Appendix 
 

This Appendix compares Ozawa's formal development [3] of the universal uncertainty 
relation (A.1) (equation (266) in [3]) to (15) showing that they are equal. It also presents the 
verification of [3] using neutron spin experiments [20] and identifies where the calibration 
function appears. 

              
1

2
A, B, A, B, A, B, Tr A,B                (A.1) 

Equation (A.1) maintains the notation used in [3]. The four terms applied in the SI reference 
space (15) and the equivalent terms from (A.1) in Hilbert space are shown in Table A.1.   ρ 
represents a pure state in Hilbert space.   

(15) (A.1) 

 ia     A,    

 jb     B,    

 as     A,    

 bs     B,    

Table A.1. Equal terms 

When comparing the left side of (A.1) to (15), (A.1) must be slightly modified. In (A.1) 

 A,  is the root-mean-square magnitude relative to a  (a is termed a true value in [3] page 

17 bottom of the right column).  In RMT this a is a reference, u.  

Notice that an additional fourth term in (A.1),    A, B,     , appears mathematically 

consistent.  The same suggestion is also presented in (56) of [3].  Modifying (A.1) to include this 
fourth term does not change the (A.1) inequality. This modification is supported by: A and B are 
correlated to a common reference (time) in the neutron spin experiments. This correlation is 
also expressed in (235) in [3].    Therefore the product of the pre-measurement uncertainties, 

   A, B,     , page 25 section C in [3], should be included in (A.1). And, the experimental 

results in [20] identify that both resolution uncertainties are slightly less than one, therefore 
their product is close to one, not zero.  

Discussing the above in relation to RMT: The point of modifying (A.1) to include this fourth 
term is to factor the modified (A.1) into (15).  The experimental results can ignore this fourth 
term, because the resolution entropy is n times a constant plus the log of close to one (which is 
close to zero), so the fourth term has little effect when n is small (2 spin states) on the 
experimental results [21].  But it does affect the understanding of measurement uncertainty.   

  



12 

 

EXPERIMENTAL VERIFICATION 

Experimental verification of (A.1) is provided by neutron spin axis position experiments on a 
stream of neutrons [20]. The notation below is from [20]. 

When фOA  is zero, OA=A. The resolution s of this experiment is ~1.5°, (page 8 in [20]), which 

is small relative to each  ui,  2
8

 . This is good experimental practice. The standard deviations, 

 A,   and  B,    represent the distribution of the observable magnitudes (+1, 0, -1). In 

the neuron spin experiments, n=2 (+1, -1) and 0 is an experimental artifact caused by the finite 
resolution.  

These experiments detune between 0 and 2 π. Changing detune to de-calibrate in [20] (all 
places) then relates [20] to the calibration function.     
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Figure Captions 
 

Fig. 1. Relative measurement system 

Fig. 2. Inner product function 

Fig. 3. Calibration function ui → ui 

 

 


