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 Definitive Proof of the Near-Square Prime Conjecture, Landau’s Fourth Problem 

By Kenneth A. Watanabe, PhD 

 

Abstract 

The Near-Square Prime conjecture, states that there are an infinite number of prime numbers of 

the form x2 + 1. In this paper, a function was derived that determines the number of prime 

numbers of the form x2 + 1 that are less than n2 + 1 for large values of n. Then by mathematical 

induction, it is proven that as the value of n goes to infinity, the function goes to infinity, thus 

proving the Near-Square Prime conjecture. 

Introduction 

The Near-Square Prime conjecture, first proposed by Euler in 1760, states that there are an 

infinite number of prime numbers of the form x2 + 1. In this paper, a function was derived that 

determines the number of prime numbers of the form x2 + 1 that are less than n2 + 1 for large 

values of n. Then by mathematical induction, it is proven that as the value of n goes to infinity, 

the function goes to infinity, thus proving the Near-Square Prime conjecture. 

 

Functions 

Let the function l(x) be the largest prime number of the form 4i+1 that is less than x. For 

example, l(10.5) = 5, l(20) = 17, l(17) = 13. 

Let the function π(n) represent the number of primes of the form x2 +1 that are less than or equal 

to n2 + 1. 

https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Prime_number
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Let the set K equal the set of odd integers of the form x2 + 1. 

Let π(n) represent the number of prime numbers in K that are less than n2 + 1. 

Methodology 

We will look only at cases where n is an even number because if n is odd, then n2+1 will be an 

even number and thus not prime.  

The set of odd integers of the form (x2+1) less than or equal to n2 + 1 is as follows:  

K = {5,17,37,65,101,145,197,257,325,401,485,…,n2+1} 

These numbers are in the form 4x2 + 8x + 5, where x is an integer greater than or equal to 0. 

There are n/2 numbers in the set. Notice that not all these numbers are prime. 

To identify the numbers that are prime, we will eliminate the values divisible by primes of the 

form 4i+1 since primes of other forms do not evenly divide numbers of the form x2+1. This is a 

known theorem of quadradic residues. 

Primes of the form 4i + 1 are 

{5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,…} 

Note that the minimum gap between primes of the form 4i+1 is 4, and there are no consecutive 

gaps of 4. This is because for the sequence 5,9,13,17,21,25,29,33…, every 3rd number is 

divisible by 3. According to Dirichlet’s Theorem, there are an infinite number of prime numbers 

of the form 4i + 1. 
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We start by eliminating all number of the form x2 + 1 from the set K that are divisible by the 

prime number 5. 

K = {5,17,37,65,101,145,197,257,325,401,485, 577,677,785,901,1025,1157,1297,1445,1601, 

1765,1937…,n2+1} 

Notice that every 5th number after 5, 2 of them are divisible by 5. This is a property of quadradic 

equations. 

The equation y = 4x2 + 8x + 5 can be written as y = x(4x+8) + 5. Values of x=5k or 5k+3 where 

k is an integer, will result in  a value of y that is evenly divisible by 5. Plugging 5k for x gives 

5k(4x+8) which is divisible by 5, plugging 5k+3 for x gives x(4(5k+3)+8) = x(20k+20)  which is 

also divisible by 5. 

Thus, as n-> ∞, about 2/5ths of the numbers of the form x2 + 1 are evenly divisible by 5. 

# of values divisible by 5 limit n-> ∞ = (n/2)(2/5) 

 

Next, we eliminate values divisible by 13, the next higher prime of the form 4i+1, from the set 

K. 

K = {5,17,37,65,101,145,197,257,325,401,485, 577,677,785,901,1025,1157,1297,1445,1601, 

1765,1937…,n2+1} 

Notice that every 13 numbers, 2 are divisible by 13. 

If we subtract 65 from both sides of y = 4x2 + 8x + 5, we get y-65 = 4x2 + 8x – 60 which can be 

written as (4x – 12)(4x + 20). Values of x = 13k + 3 or 13k + 8 will result in an integer value of 
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y/13. If we plug x = 13k+3 in the left side, we get 52k(4x+20) which is divisible by 13. If we 

plug 13k + 8 in the right side we get (4x-12)(52k+52) which is divisible by 13. 

Thus, as n-> ∞, about 2/13ths of the values are eliminated. However, notice that 65 and 325 are 

also divisible by 5. About 2/5ths of the numbers divisible by 13 are also divisible by 5. So to 

avoid double counting, we must multiply the number divisible by 13 by 3/5. 

# of values divisible by 13 and not 5 limit n-> ∞ = (n/2)(3/5)(2/13) 

 

Next, we eliminate values divisible by 17, the next higher prime of the form 4i+1, from the set 

K. 

K = {5,17,37,65,101,145,197,257,325,401,485, 577,677,785,901,1025,1157,1297,1445,1601, 

1765,1937…,n2+1} 

Notice that every 17 numbers after 17, 2 are divisible by 17. 

If we subtract 17 from both sides of y = 4x2 + 8x +5, we get y – 17 = 4x2 + 8x +5 – 17 which can 

be written as (4x – 4)(4x + 12). Values of x = 17k + 1 or 17k + 14 will result in an integer value 

of y/17. Thus, there will always be at least 2 values of x every 17 numbers. 

# of values divisible by 17 and not 5 or 13 limit n-> ∞ = (n/2)(3/5)(11/13)(2/17) 

 

The fact that y = 4x2 + 8x +5 is quadratic, for every p numbers, there will always be 2 values of x 

that will result in a y that is evenly divisible by p. 
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The general formula for number of values in the set K that are divisible by p where p is a prime 

number of the form 4i+1 is: 

# of values evenly divisible by only p limit n-> ∞ = (n/2)(3/5)(11/13)(15/17)…(2/p) 

 

This can be written as  

# of values evenly divisible by only p limit n-> ∞ = (n/2)(2/p)∏ (𝑞 − 2)/𝑞
𝑝
𝑞=5  

where the product is over prime numbers of the form 4i+1. 

We only need to go up to l(n) since prime numbers greater than l(n) will not evenly divide any 

odd number less than n2+1 that is not already divisible by a lower prime. 

Summing up all these gives us the total number of composite numbers in set K that are less than 

or equal to n2 + 1. 

# of composite numbers in K limit n-> ∞  

= (n/2)(2/5) + (n/2)(3/5)(2/13) + (n/2)(3/5)(11/13)(2/17) + … + (n/2)(2/l(n))∏ (𝑞 − 2)/𝑞
𝑙(𝑙(𝑛))
𝑞=5  

= (n/2)[(2/5) + (3/5)(2/13) + (3/5)(11/13)(2/17) + … + (2/l(n))∏ (𝑞 − 2)/𝑞
𝑙(𝑙(𝑛))
𝑞=5 ] 

= (n/2)[∑ (
2

𝑝
)

𝑙(𝑛)
𝑝=5 ∏ (𝑞 − 2)/𝑞

𝑙(𝑝)
𝑞=5 ] 

where the sum and products are over prime numbers of the form 4i+1. 

 

If we define the function W(x) as follows 
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W(x) = ∑ (
2

𝑝
)𝑥

𝑝=5 ∏ (𝑞 − 2)/𝑞𝑝
𝑞=5  

where x is a prime number and the sum and products are over prime numbers of the form 4i+1, 

Examples of values of W(x) are: 

W(5) = 2/5 

W(13) = (2/5) + (3/5)(2/13)  

W(17) = (2/5) + (3/5)(2/13) + (3/5)(11/13)(2/17)  

W(29) = (2/5) + (3/5)(2/13) + (3/5)(11/13)(2/17) + (3/5)(11/13)(15/17)(2/29)  

Etc 

The equation for the total number of composite values in set K is: 

# of composite numbers in K limit n-> ∞ = (n/2)(W(l(n)) 

 

The number of primes of the form x2+1 in K that are less than n2+1 limit n-> ∞ equals the total 

number of values in K, which is (n/2), minus the # of composite values in K. 

π(n) = (n/2) - (n/2)(W(l(n)) 

π(n) = (n/2)(1-W(l(n))        Equation 1 
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To verify that I derived equation 1 properly, I plotted the number of primes of the form x2 + 1 

that are less than or equal to n2 + 1 (blue line) and π(n) (orange line) for values of n up to 1000 

and as can be seen, the lines correspond very nicely. 

 

Figure 1. Number of primes of the form x2 + 1 that are less than or equal to n2 + 1. 

 

Since I will be using mathematical induction to prove the Near-Square Prime conjecture, I need 

to define 1 - W(pi+1) in terms of W(pi). Below are the values of 1 - W(pi). 

1 - W(5) = 1 – (2/5) = 3/5 

1 - W(13) = 1 - (2/5) - (3/5)(2/13) = (3/5)(11/13) 

1 - W(17) = 1 - (2/5) - (3/5)(2/13) - (3/5)(11/13)(2/17) = (3/5)(11/13)(15/17) 

1 - W(29) = 1 - (2/5) - (3/5)(2/13) - (3/5)(11/13)(2/17) - (3/5)(11/13)(15/17)(2/29) = 

(3/5)(11/13)(15/17)(27/29) 
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Notice the value of 1 - W(pi+1) is equal to ((pi+1 – 2)/pi+1) times the previous value of 1 - W(pi). 

This gives us the following equation: 

1-W(pi+1) = ((pi+1 – 2)/pi+1)(1-W(pi))     Equation 2 

 

Let l(n) = pi and let’s approximate n = pi. Since n is an even integer, n is at least pi + 1 so this 

approximation errs on the side of caution. Plugging pi for l(n) and n into equation 1 gives the 

following:  

π(pi) = (pi/2)(1-W(pi))  

π(pi+1) = (pi+1/2)(1-W(pi+1)) 

π(pi+1) = (pi+1/2) (pi+1-2/pi+1)(1-W(pi))   Using equation 2 

π(pi+1) = ((pi+1-2)/2)(1-W(pi)) 

 

Taking the ratio of π(pi+1)/ π(pi) gives: 

π(pi+1)/π(pi) = ((pi+1 - 2)/2)(1-W(pi)) / (pi/2)(1-W(pi))  

π(pi+1)/π(pi) = (pi+1 - 2)/pi > 1 

Since pi+1 is at least pi + 4, this proves that π(pi+1) will always be bigger than π(pi). However, 

plugging in pi + 4 for pi+1 gives (pi + 4 - 2)/pi = (pi + 2)/pi which approaches 1 as pi goes to 

infinity. This could mean that π(pi) approaches a constant. 
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To prove that π(pi) goes to infinity as pi goes to infinity, I will prove that π(pi)
2 goes to infinity. 

This is done because it is easier to prove that π(pi)
2 goes to infinity. 

π(pi)
2 = (pi

2/4)(1-W(pi))
2  

π(pi+1)
2 = ((pi+1-2)2/4)(1-W(pi))

2 

 

Let Δπ(pi) represent the difference between π(pi+1)
2 and π(pi)

2. 

Δπ(pi) = π(pi+1) - π(pi) 

Δπ(pi) = ((pi+1-2)2/4) (1-W(pi))
2 - (pi

2/4)(1-W(pi))
2 

Δπ(pi) = ((pi+1 – 2)2 - pi
2)(1-W(pi))

2/4 

We know that pi+1 is at least pi + 4, so to simplify things, let’s substitute pi+1 with pi + 4. We will 

call this new function Δπ*(pi) which will always be less than or equal to Δπ(pi). 

Δπ*(pi) = ((pi + 4 – 2)2 - pi
2)(1-W(pi))

2/4 

Δπ*(pi) = ((pi + 2)2 - pi
2)(1-W(pi))

2/4 

Δπ*(pi) = ((pi
2 + 4pi + 4) - pi

2)(1-W(pi))
2/4 

Δπ*(pi) = (4pi + 4)(1-W(pi))
2/4 

Δπ*(pi) = (pi + 1)(1-W(pi))
2 

 

I will prove Δπ*(pi) > 0 by mathematical induction. 

Base case 
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p0 = 5 

Δπ*(5) = (5+1)(1-W(5))2 

Δπ*(5) = (6)(1- 2/5)2 

Δπ*(5) = 6(3/5)2 

Δπ*(5) = 6(9/25)  

Δπ*(5) = 72/25 > 1  

 

Assuming the following 

Δπ*(pi)  > 0 

prove that 

Δπ*(pi+1)  > 0 

 

Δπ*(pi) = (pi + 1)(1-W(pi))
2  Assume > 1 

Δπ*(pi+1) = (pi+1 + 1)(1-W(pi+1))
2 

Δπ*(pi+1) = (pi+1 + 1)[((pi+1 - 2)/pi+1)(1-W(pi))]
2 

Δπ*(pi+1) = (pi+1 + 1)((pi+1 - 2)2/pi+1
2)(1-W(pi))

2 

 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1 + 1)((pi+1 - 2)2/pi+1
2)(1-W(pi))

2 / (pi + 1)(1-W(pi))
2 
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Δπ*(pi+1)/ Δπ*(pi) = (pi+1 + 1)((pi+1 - 2)2/pi+1
2) / (pi + 1) 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1 + 1)(pi+1 - 2)2/(pi+1
2 (pi + 1)) 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1 + 1)(pi+1
2 - 4pi+1 + 4)/(pi+1

2 pi  + pi+1
2 ) 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1
3 - 4pi+1

2 + 4 pi+1 + pi+1
2 - 4pi+1 + 4)/(pi+1

2 pi  + pi+1
2 ) 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1
3 - 3pi+1

2 + 4)/(pi+1
2 pi  + pi+1

2 ) 

 

The minimum pi+1 can be is pi + 4. Substituting pi with pi+1 – 4 gives 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1
3 - 3pi+1

2 + 4)/(pi+1
2( pi+1 – 4)  + pi+1

2 ) 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1
3 - 3pi+1

2 + 4)/(pi+1
3 – 4 pi+1

2  + pi+1
2 ) 

Δπ*(pi+1)/ Δπ*(pi) = (pi+1
3 - 3pi+1

2 + 4)/(pi+1
3 – 3pi+1

2 ) > 1 

Since the numerator is always greater than the denominator, the ratio will always be greater than 

1, thus proving that Δπ*(pi+1) > Δπ*(pi) for any pi and pi+1. Since Δπ*(p0) = 72/25, then Δπ*(pi) > 

72/25 for all pi. 

 

The first value of π(p0)
2 is 

π(5)2 = [(5/2)(1-(2/5))]2 = [(5/2)(3/5)]2 = 9/4. 

Since the gap between π(pi)
2 and π(pi+1)

2 is always greater than 72/25, then as pi goes to infinity, 

π(pi)
2 goes to infinity. Therefore, π(pi) also goes to infinity as pi goes to infinity. 



12 | P a g e  
 

This proves that there are an infinite number of primes of the form n2 + 1 thus proving the near 

square primes conjecture. 

Summary 

It has been shown that as n goes to infinity, the number of prime numbers of the form x2 + 1 that 

are less than or equal to n2 + 1 approaches the following equation: 

π(n) = (n/2)(1-W(l(n)) 

where W(x) is defined as follows: 

W(x) = ∑ (
2

𝑝
)𝑥

𝑝=5 ∏ (𝑞 − 2)/𝑞𝑝
𝑞=5  

where x is a prime number and the sum and products are over prime numbers of the form 4i+1. 

By mathematical induction, it is proven that π(pi)
2 goes to infinity as pi goes to infinity thus 

proving that there are an infinite number of prime numbers of the form x2 + 1. 

 

References 

Euler, L. "De numeris primis valde magnis." Novi Commentarii academiae scientiarum Petropolitanae 9, 

99-153, (1760) 1764. Reprinted in Commentat. arithm. 1, 356-378, 1849. Reprinted in Opera Omnia: 

Series 1, Volume 3, pp. 1-45. 

Dirichlet, P. G. L. (1837), "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren 

erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen 

enthält" [Proof of the theorem that every unbounded arithmetic progression, whose first term and 



13 | P a g e  
 

common difference are integers without common factors, contains infinitely many prime numbers], 

Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin, 48: 45–71 


