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Outline of Thesis Plans, 9/23/72

Pzul J, ¥Werhos

I, Proposed View of Mammalian Intelligence:
(1) Mammalian intellizence has three basic tasks it must perform:

(a) provide a description of its env*ronment, from empirical data
(and from the assumption that induction is valid);

(b) caleulate its "reinforcement level", U, which may be regarded
as 2 cardinal utility function;

(e) find the best possible approximate solution to the
dynamic programming problem of maximizing the long-term
expected va'ne of U, ziven the desecription ( a) of
its environment,

(11) I have arszued for
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ITI, Thesis Objectives:

(1) To describe adantive systems ecapahle nf performing tasks (a) and (e)
above, in the same general way as the human brain, In other words,
to formilate a theory of thess two vhases of human intelligencse,
(My lnng-term objective is to descrike all three; my oral exam
focused more on phase (b),) This obiective has been completed enousgh
for me to move on to my second Obipctive).iefar as dhe theumy v Bt i g
to tnderstand, trere axper “!*{S wlt clar by ot tead, the power of dhe sqitees deren-be
(11) To prosram the major part of the proposed systems in FCRTRAN,
and tn test thelr capabilities in rroblem=-solving and pattern-recognition,
Primary experiment: to use these systenms to provide a
"position evaluation system”, for use in existing FORTRAN
chess-playing systems, to improve their performance,
Secondary experiments possible# : almnst any adaptive
pattern-recognitior tvroblem, except for those requiring
excessive computer memory; Uhr's handwriting samples should
trovide a possible empirical test, zivinc a comparison with
previous, adaptive pattern-recognition systems,

IITI, Sketch of the Mathematical Theory of Intelligence:

(0) In this section, I plan to sketeh cut a general mathematical
class of intellizent systems, of which T elaim the human brain
is a member: in the third subsection, T will relate the theory
to human brain anatomy.

(1) Two types of subsystem seem unavoidable in any intelligent system:
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from the value of =n independent variadble, 3;: if

a pattern-recognizer o 23:ptive, it must insl-de

internal coefficients, 3} which get adjusted 4in time,

to fit the estinmates of ¥, to the actual observations,
Standard statistical estiniaters - like multinle regressions =
are a form of adaptive pattern recognizer, mut too weak

for our purposes here,

(b) Short-term maximizers, systems that try to maxinmize

-§ short -ﬁ U +
t tern 1 N known p——"——b
maximizer function
3 T4
T i
. U
25 T S T

a known function of'ﬁi and'§1¢ ﬁi would corresmpond

to "action by the system" (i,e., Fuscular activation),
while . wonld correspond to "data from the environment"
(sensory input), To calculate the derivatives above =
which tell us how we should adiust our action vestor -

we clearly need to know U, as a function of Fﬁ and

to work back through the known functicn via the chain rule
for differentiation, If the relation of U, to S, and W,
is not known, at first, then it can be cafculatéd by

a pattern-recognizer,

Short-term maxirmizers and vattern-recognizers
can be built on similar orincirles, which I will discuss below,
Both may be "recursive"; i.e,, they may generate a kind of
internal memory, Z,, to %e saved, and brourht in as if it were
part of §; 1 in the next cycle,

In tRe"charts above and btelow, normal data flows are
indicated by straight lines:; feedback used to adjust the
coefficients of the system receiving it is indicated ty
cross-lined lines; feedback to be passed on through
a more or less fixed conduit is indicated by broken lines,

(11) Let us assume that our intelligent system inputs S, {including U
as a component) ard then outputs y In every timetcycle. t
The first majior componenti of our svstem ig the "realitv-constructor":
a psttern-recognizer, with an internal memory, which vpredicts 3,
as a function of 57,7 and M-, S, alone describes only a part pf+1
the external environmént, theé part currently visible; 3, and'E:
combined form a reconstruction of the total external environment
let us call the combined vector,“?:". (This system is responsible
for what psychologists czll,"object permanence,")
In order to eolve the problem of maximizineg the exvected value of U
in the long-ternm, we can use the Yamilton=Jacobi-Bellman formulas

IRy) = () + o B HX KT
t

with the optimal strategy, Intuitively,
tal value of being in situation

f; (i.e. U{?:)) plus

1

"U:*equals the mean U
J(X, ) refers to the +
it equals the intrinsica value of heing in
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the the stratesgic value of beins in‘? i.e.,E(J( z_ 41 ), the ,
expected total valne of future ¥, * *“’”" tke richi choice of a-gim“.\q
Howard has qhn‘ )‘r""z‘r we can S'ﬂve for the ﬂ**iwa? strategy, M (?t),
by iteratirg b4 L) and J‘ (f) together:

J(n"i)(xtﬂ)‘ = U, - gl 4 E(,J(n)( 7, OV, ﬁ(‘”)(f) at t))

HAn+l) > | (“)
M (X,) = ¥ which maximizes E(J" “( t+l\x’c’ﬁ at t))

The second mainr commonent of our intelliecent systiem

is an "emotionz)l svstam": a nattern-recoernizer (with or without memory )
which ad fists the cireuit caleul=ating fHY W +o be

a predictor of H4*T(Y° V+annctant, the last expression

to be treated as if i% Ware a Ponctan+ furction, as in normal
‘iteration, (In the lansuage of ravehiatry, this ak might te called

a "cathexis-generatingz system,"T The caleulation of the constant

will require a slizht modification to the way the pattern-recogrizer

is used, The third majer comnonent of onr system is

an "ao*ion qv"+em" : a short-tern maximizer which mavimile%

;T_(lft (t, +H ziven the known "!‘“"Honﬁy 1(?}, t’ and J( Y

dnvaToppd kv the two other major compons ntq. This “the reali%v

constructor will art as a ecomdnit §n tronaferrine fesdhank from -
the emotional system to the action svstem, because it is part

of the compound "known funetion,”

ot
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laiction System: A Short-Term Maximizéi]—“—-———-’

In essence, that's all one has to mut together to get
a complete intellizent system, We have to design two types
mx of subsystem - vattern-recognirzer and short-term maximizer -
and plug them in together as above, The three corronents can be changed
around a little, to encourage the growth of intern~l memories
of all kinds: also, the brain may use complex tricks to economize
on time and circuitry, even when the benefits are only on the order
of a 20% cost reduction, But the basic idea 1s as above,




(111) In this theory, the anatomy of the humen brain may be sketched out:
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Many of these comnections add a kind ~€ fina trnin~ which will

not he % telﬁig*blp until we zet to the problem of desicming
pattern-recognizers and short-term maximizers; they all have a
sound foundatiocn in neurophysiology, except for the two with
guestion marks on them, For example, let mz guote Morran & Stellar:
*Accounting in rart for the aprere 1+iv nﬁpﬂ‘srg cemplexity of

the olfactory system is the fact that smell was very important

‘and highly developed in many of the lower animals, Man seems to
carry over this system in its complexity, even thourh he has
11ttle use for 1%,"(Phvsio sl ?wy"hﬂ’ﬂwf 1,117, ?nd ed,)

The olfactory syutem dcas not 2 +o be un*qu e, as we will see, tee

cabtent data, ~ 87
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Essentiallyv: the vhinsncerhalon vlus the major part

of the hyrothzlamus

discussionm above, The thzlarns provides a reality constructor,”
The cerebral cortex, however, is 2 hybrid system, which provides
a larger "X, " input to the amotional svystem than the thalamus
alone could provide, It, too; a pettern-recognizer,

the Yematinnal system” of our

RV

e

is
I

desicned to help predict U, +J(X . ) - as if the cortex

= T o 0l

were a lower part of the rHinendephalon - and the +1 generated
by the thalams, both, as a =ingle combined vector,

The brain stem and cerbellum are basically the action systenm,

receiving feedbzck from the known model of J(?ﬂetc.) provided

by the circuits above them. The caleunlation of J gets done

upwards, fronm thalamus to ooriex to =R rhinencephalon to

hypothzlamus, in Papez' nlzcsic loODpj therefore, the feedback

to our short-term maxinmizer flows in the reverse direction,
That would be the whole ctory, except that the brain has

been built to take ineynansive shorteuts whenever possible,

especially when them short-cuts were once present as major

systems in earlier stages of ninlerical evolution,

If all the senses had a direct pathway to the diencephalon,

ag An visinn and tha rhamian? asnean, +hen the lower hrain

could act nomnletely as an seatinn avsten, However, most

raw sensory data and all direct mizeular activations

are registered only in the leover brain, which then relays

a summary of both un to the thralamusy this summary can be of

value to the thalamus only 3f the lower brain also acts as

a partner with the +thalamus in reality construction,

(Even the cerebellum sends dnta to the reticular formation
for use, not in action, tut »=s data for the cerebral cortex, )

Furthermore, the brainastsnrvsabzins hypothalamus, in computing Jy
gets its data as directly as -ossible fronm the original source;
therefore, it can draw data Jdirectly from the thalamus
and brain stem, or simple variables such as posture, and encourage
the brain stem to measure ard @»aintain such variables effectively,
Thus the lower brain is 2 hyrrid reality constructor, action system
and miniature emotional system; the construction of such hybrids
will be discussed below,

The neurophysiolesgist ray he somewhat impressed by this
mithematical formulation of Papez' classic theory., However,
he may wonder where I have wot the corpus striatum, The striatum,
I would claim, is a fossil earebral cortex, kept intact {tut reduced)
" in the mammalian brzin, onliy bveecazuse its simpler design allows it
to carry out simple functions more cheaply than the cerebral cortex
does them, The rhinencerhalon ic 'mown (Pribram) to have three
major divisioms - the first, orientsd towards smell (a thalamus
for smells alone?), the sezond, whish uses striatal data as its
major input, and the third, which inputs from the cerebral cortex,
Once it was thought that the striatum was a kind of motor system,
because injuries there could lead to museular tremors,
However, when the conneatirms from the thalamus to the striatum
are cut off, such tremors dissviezr, implying that the main effect
of the stviatum am ansicw ssean ho (oshenieal) feedback on the
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gland measure two distinct componenis of U,,

The cersbellum ard the brain stem, like the cerebral cortex
and the stristum, may be treated as two systems designed
to do the same thing, one in 3 sovhisticated, exvensive way,
the other in a simpler way, - »

The nonspecific thalamus defines the unit "cycle time"
used in the forebrain; it defines the difference between
what I have called "t+1" and "t", for the subsystens
most sensitive to this definition,

In REM sleep, the system reconstructs imaginary situations,
and updates them by use of the (cortical) reality construction
system; the reality construction system, after all, is ad justed
to provide a model of the laws of nature, to rredict future S,
In REM sleep, the system ad justs the circuits which measure J
and which maximize J to make them consistent with the known
laws of nature,(i.e, It carries out a kind of simulation study,)
In deep sleep, the subsystems attend to their own
internal adjustments,

IV, A Discussion of Alternative Possihle Thearise .Af Tnitalligence,

From experience, we know that the human brain does not
have to imagine the long-term implications , first, before
every minor decision about every possible minor action.
Somehow, it has circuits that eams allow one to evaluate
~ddfferent actions, directly, without having to form new images
of the distant future, over and over again, From dynamic rrogramming,
we know that there is really only one way for such a system to
choose between different actions, via a direct furctional evaluation -
by approximating the Bellman J function, cited above, This function
i1s defined by the Hamilton-Jacobi-Bellman equation, as above:
in an open-ended situation, we are forced to use this equation,
as above, to form the core of our system,
. However, there is one way we could apply the equation a bit
differently - we could let the time interval between "t" and "t+1"
vary substantially, We could let the time interval be-very large
on some levels, to allcw our emotional system to jump ahead easily
in time, We could imagine that the brain uses "plans” or "action-schemas"
(of long duration) as its units of time and action, instead of"
restricting itself to small cycle times, Georee A, Miller, former head
of the Harvard Psychology Depariment, has proposed such a2 theory:
by now, the theory has received strong support in many places,
The theory also makes mathematical sense; mumk much of my work
this past year has been in exploration of the details of the theory,
However: the mathematics of the theory turr out to be cumbersome,
irrevocably so, They require a stratification of the cerebral cortex
and of && the thalamus into d@tffewsas disconnected regions, for
different levels of time aggresation, They require that the long-term
planning parts of the .cortex (frontal lotes) be fairly free of normal
(high frequency) brain waves, and they require that most "dreaming"
. involve no visual imagery; none of this makes empirical sense,
Also, some of Plaset's work surrests thzt explicit "planning"
i1s a difficult learned =2bility, similar o language, :
Most important of all: the simpler thecry above can do the same work,
anyway, if its pattern-recognizers are sophisticated enoush,
For these reasons, I do not &3 intend to program this
alternative theorv, For intellectual honesty, I will put s chapter
in my thesis somewhere describing the nroblems of the theory in
more detail, But the bulk of nv thesis will sirzly formulate

IR
v

a newer. and simnler. trReorv of mammalian intellirence,




V. Adaptive Pattern Recognizers,

(1) General Description, An =d=ptive pattern recognizer, similar to

those of the human brain, will have four critical properties:

(2)It will input an "independent” vector X, and 2 "decendent"_f;
in every time cycle (Xg at the beginning of the cycle, Yt the end, usually

(b) It will contain an electrical network, made vp of large numbers
of equivalent subsystems ("neurons"”, Doqsibly & handful of
different types), a network which inputs Xt and outputs
a "predicted" L

q(

(c) Each subsystem will have internal coefficients,zj, which
determine its electricsl response~function, and which will be
ad usted by 2 "chemieral feedback" system desicned to
encourage P(Y will be the circuit's prediction | %, ) to equal
P(Y, will equil the sctual ¥ input late in the cvelelX ),

approximately,

(d) The electrical circuit may =lso generate a "f;", to be innmut
in the next time cvecle as an annex to X++1. -

=
0ld &« and other data

¥ Electrisal l$ e (Chemical) -
t P Circuit, Y, estimated, Y, Feedback |qactual Y4
Made Up of | &~ “ TlSysten
Neurors 5%
4 “t-1 s”“ﬁL-ﬁ
s . LT‘"’
new o A

Concert of Pattern-Recosgnizer: NOT Physical Description

(e) In practice, the electrizal circuit and the feedback system
need not be turned on in every time cycle, if there are reasons
to turn them off from tine to time; our requirement,
mathematically, 1is to set up a system which produces
an em electrical netwerk capable of predicting Y e

(11) A simple pattern-recognizer, without a recursive component7f
can be designed as follows:

(2) The subsystems, "neurons", nay be ordered in such a way that

each neuron, #3j, can receive the output, N,, of anotker neuron,

#1, only if 1 oprecedes j; this is simply a more convenient way

of saying that the Lireuit is not recursive,
.The prediction of t would come from the last group of neurons;

each component of Y, 4 vould be generated as the output of

a neuron, as N e g; L k  plus the number of components in Y
would, ,efzomem o " of eourse, equal the total number of neurors,

2t e mgdoad At every neuron, N,, is bounded
Slrnore e a3 RO and a maximum, "1V,
Ae-trites of neuron #1 calculate a number:

the anm dn T Ao Tres oo

e
. s
neuran #ig

- f'ewr neurons, #3, whirh cornenct to
wriless W40 or W;}l, in which casss

N. 1= brous:
N, rou
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The linear model to calculate ¥, is standard in the literature,
and will also simplify the chem§c31 feedback svstem; the graph
above for N, as a function of ¥, will simplify the feedback system,
while the nanal TIU model would nnt allow a rational feedbark system
at all, (Civen that neurons often tend to output bursts of spikes,
of varying intensity, the ol all-or=-nothing formulation
is unnecessary, ) - A '

Given an error function, e(Y,,Y,), we can try to minimize E(e)
by steepest descent; i,e, we can charige each o, ., in every time period,

i3 :
by an amount proportional to:
~ge

i

Oy
From knowing Y and Y , ve should already know:

t t
de Qe
a?z(t) = an, j(t) 3 {assuming no connections amongst last neuror
+
ot

to caleculate the derivative with respect to «, ., we need only use
13 .
the chain rule:

d.e = (N _de H (e ot d;;\ et d 53 N, A ea\\\, Qirect side & ;o..\»m‘\‘)
ddi. an, § e S
J i or zere £ WHPLLO
mthe derivative with respect to N,, for any neuron #i, can be

caleulated backwards, from the 1laSt neurons to the earliest,
by the chain rule, which gives:

de _ de Ly <4 .

an, de)((qji if O-Hjni, otherwise zero)

4 + direct effect, if any, of N1 as part of ?..
This formula can be calculated out, in a vhysical network of neurons,
by having de/dNi sent backwards, alonz the same pathways as the
electrical comméctions follow, as a kind of chemical feedback.

(A more precise forrulation of how the chain rule is to be used here

may be found in Section IIT of my report of May 1972, )

For e=ch o, ., We have the problem of fiszuring out & gii:
' de
Aoty s = = Qj. —
L3 dol, .
J J 2%y 5

As &, . converses to a stable vzlue, we would want 8 to decrease,
We oFfi set:

bei"' = kgij S((&iijtt)(&xijnt'l))t

ot



where s is the sign function; i,e, s=+1 for positive
arguments, -1 for nezative, This formula will adjiust 6
until the increments of g4, . have no correlation with
each other through time, as statistieal theory recommends,

We have three ways of deciding "k":(1i) a priori;

(11) by a formula similar to that = for 8, . itself,

using an a priori k,; (i1ii) by a global k}” ad justed by

a formula similar t6 that for 8, . itself, but summed

over all active (i,3) pairs, 7 with an a oriori !

One can imagine more complicated possibilities, but

the justifications for them do not hold up under

careful scrutiny; the details are not worthy going into here,
With any of these three adaptation systems, 6 will grow larger
whenever de/dx tends to be consistent from one iteration to
the next; therefore, these systems, used as emotional systems,
may converge on the true J more gu@ quickly than a system
obeying Howard's original formula,

.
i3

(11i) There are four basic types of adaptive pattern-recognizer
which appear relevant to the design of the human brain:

(a) The simnle pattern-remoenizer, as above,

A critieal property of this pattern-recognizer:
in one "time cycle”, the “Y * mist be calculated up
from the X , and the cbemica} feedbacks must bm then be
calculated “back down to neurons near the X, level,
This would suggest that one "time cycle" mist correspond to
many time-cycles of processing by individual neurons.
(This is not obvious; one could still hopme to process
a number of different "X," in the same system, in parallel,
each a neuron cycle behind the other, However, this would make
the chemical feedback process much too unmanageable;
the feedback formula for de/dNi(t) requires knowledge about
W.(t), not about W.(T), where = "T" is the time cycle
n&uron #j would berrocessing electronically at the time it
receives feedback about time t,)
One would need a pulsing system, to signal the arrival of
a new time-cycle to the pattern recognizer,

In practice, the nonspecific thalamus does generate
such a pulsing signal, about 0,1-,05 sec, per pulsé
(alpha rhythm and beta rhythm, respectively), These time cycles
are much larger than the 3 milliseconds or so per synapse
in the cerebral cortex, Movie makers have known for a long time
that human visual perception does, in practice, pulse itself
in time cycles larger than the time of movie frames (about 1/16 sec,).
Also, one might expect that vision - which requires a more complex
hierarchy of processing than does touch to predict even
short-term movements - would ovnerate on a larger time-cycle
than does touch; this does turn out to be true, (Visual alpha rhythm
versus somatic beta/gamma rhythms, )

However: all of these timing requirements also apply to
recursive pattern-rscognizers, the ones mhimhk with 2 7: added,
Also, if there ars pattern-recognizers in the brain siém, they
are not controlled by thalaric »ulsinz or by any other known
pulsing system, Therefore, we have to consider both extended
and abbreviated versions of the simple system above,

(b) The recognizer-arc systen - an abbreviated Datf@rﬂ-recorni?er.
From the reascning akrove, it chould be clear that even
the simplest multi-sztage rattern-recognizer rnﬂnﬁ*es some kind of



pulsing system, to prevent neurons from overating at their
2, 1f we wish to construct
a pat+ern-reoorn1zer W**“t“* sunh i!lsing, it must be a
one-stage system, In other words, the neurons predicting 3?
must take their inrut direcily from X, not from other neurons
in the same system, We 2 adant these neurons as we do the neurons
in the multi-stage system; this is only a special case of
the mathematics above,
How can we construct a complex hierarchy of pattern-recognition
out of one-stagze pattern-recosnizers? .
Suppose that we are tryirs to Dredict'§ from M, and S,,
T t+1 t
With a one-stage pattern-recosnizer, we can Fenerate rredictidns, ++1°
essentially available 2t time t+1, That's it, To achieve the
effec+ of a tun=stace Dﬂtt°rﬂ recognizer, we can then treat
as 3 new vector of wvariables, to be input and
3%0t°§ by another cne-sta age pattern-recopnizer built on top
of the first, And so on, In fact, we could even pass the new vector
on up to a higher, multi-stage pattern recosznizer,
(We would also perhaps pass on all other data at time t+4 as
data for making the predlction,) Such a sterladder system of
pattern-resonizers I would call a "pattern-arec system” -
named for the stepladder system of sensory/motor arcs
("reflex ares") familiar in the spinal cord and brain stem,
The pattern-arc system has one advantage over
a simple multi-stage system, tut many disadvantages,
The advantage: it cuts the unit of time down to the
reuron cycle time; this can be very helpful to znimals
whose survival depends on split~second reactions, and whose
reaction netwerks take a3 sitnificant frzction of a second
to do their weork, However, this is a matter of low=level
motor coordination, not a matter of thousht, The brain does
have such "arc" systems in the train stem, involving
both pattern reccgnition and motor control, Put or a higher level,
the brain relies on a tulsed svstem, The are systenm
may work well when predictions can be made one step at a time,
but when one needs several levels of processing to make any
decent predictions, then one needs an optimal, onulsed system,
Thus, kinesthetic and auditory senses go throush
unpulsed, brain stem arcs before teins sent up to the
thalamus, but vision, which requires cemplex rattern-fecognition
for even the simplest predictions, goes directly to the thalamus,
The cerebellum, on the other hand, is pulsed, at
a frequency of 88 200 cycles per second; according to recent work
by Eccles, this pulsing seems to be generated by a
"recurrent inhibition" system in the core of the rmxeke= cerebellum,
similar to the nonspecific system of the thalanus.
(This high frequency mizht involve the use of an expensive,
electronic feedback system within the cerebellar cortex,
in place of the usual chemical system,) Apparently, the brain stem
is a kind of primitive equivalent to the cerebellum,

Preserved because it can carry out the simpler functions :
of the lower brain at a lower cost in terms of circuit complexity,,
Given that mv orimary =ecal in this thesis is to deseribe

the higher intellizence of ramrals, gziven that my experiments
will not address themselves to the question of motor coordination,
and given that we are facing serious pressures to speed up

this work, the primitive arc systems of the train stem will
receive no further attmn*ion here,

. ig



(c) Recursive Pattern-Recosnirzers,

From the o actions ubnvo, we should already begin
to realize that +i A nf¢ﬁﬁiencv is the chief source of
trouble ir d?qiru 7 ntelligent evstew, We were able
to design 2l Wﬁlt*wstapp rattern-recognizer,
but only by inct»]iivv 2, *ulsinqﬁfjstem to give it time to
feed back from_each prediction, Y,, down to the level of
the raw data, 42 vsed to generaté the rrediction,

With recursive systems, this kind of ortimality becomes,

not merely expensive, btut impossible, (For biological brains,
at least,) If we were sztisfied to optimize the circuit
generating from Y and 7 y We could treat the last

two vectors zZs raw q;ta and Eroceeﬁ as before, But how do

we optimize the cireouit which generates Z.? In other werds,
how do we cntimize the recursive pattern-recognizer as

a total systenm?

In prineiple, wa should use the formulas of page &
to feed back from each rrediction, s down to the level
Of the raw data used to cenerate the prediction:

X ;7 _1,...‘? . For a computer brain, this approach

! ™
1"H male o lct o conoo {exact formulos in my outline

oy 10 o 14 A lA =3 e ne r,v—.v +o +r nc1ﬂ+m +he charte
of M 2, charts

on pages ? aﬂd L dirsctly into mathematies, ERRERZA
The comdiuter brain conld simply stop everything, at some times t,
and feed backwarde thronesh rast history, (Hybhrig
systems and short-term “ﬂvimi zers would involve no extra
difficulty at all, since zny derivative would be fed back
by the same formulas, as on page %,) But biological tmamé brains
have shown neitker willinemess nor ability to do this sort
of thing, Admittedly, hurans do stor things to go to sleep,
But REM sleep tzkes i"ﬁ"f“a*‘ situations forwards in tinme,
not real ones backwards, Deep sleep, according to recent
research (e,gz, Evarts, ‘IT Neurosciences ueries),
involves a @mmymEhramim:yionmEfieEIXrERxeimerEYER Xk
ThExzEXERETxYXEIEEEX slackening of cells' interconnections
even within the cerebral cortex; it also involves
forwards-moving "abstract dreaming” within the hippocampus;
in short, it does not involve a synchronized, realistic
movement backwards in m& time, In fact, the nevrons of
blological brains rrotably couldn't come close to the
total recall of rrevious states and the total synchronization
required by such a fsadback system, In short:
the human brain muddles throush with a feedback timing system
ERRENFX somewhat lass than optimal,

There are two protable alternatives for such an ad hoc
system ~ a limited memory svstem, and a decay system,
With a2 1limited mamory_gystsm, the system remembers Z+_1
and the 0ld inmuts to Z even ® after Z+ has been ~
generated, in the nle~+rcnﬂb thase of each time-cycle;
in the chemlﬂa’ Dhese, it then feeds back to the input
coefficients @f‘ﬁlﬁq, usins the formulas from page 8,
A denny cvaten e e T wnans nitive, 2d hoc system; it would
i s moving averace of past and
9 wy‘tfvgdkzmkyfaxxhxz
fzedback which reaches 1t;
be decayed to a fraction, 1-8,
to account for this dmmxyin

e moving average and the feedback
Hy the same expoential decay factor,

4.
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rrobably equal to ore minus the avtocorrelation of N
Whatever its other disadvartzces, 2 decsy system
would 2llow sm21l neurons to m*ﬁ**fﬂ at thelir natural
frequencies, without dirert aontrnl, and to establish

recursive cenrections which are not dplavnd by a large

time-cvcle (1.e, from "t-1" to "t", which equals

many neurodn time=-cveles),

The small stellate neurons of the cerebral cortex (Layer IV)
seem to be a clear case of cells operating on a decay system;
they have multiple recurrent interconnections,
under no exterral pulsing control, operating at high ¢requency.
The large pyramidal cells of =211 thlee cortices - cerebral,
cerebellar and limbic - could be orerating, in theory,
by a limited memory system, since 211 of them are under
the direct control of some Dulsi“” system, (e,o, nonspecific
thalamic fibers to anical derdrite of pyramids in visual
cortex, observed bv Scheibel and Scheibel, Rookefeller
Neunrological Seiences Studv Progranm, vol, 11
P(\’U‘l foedbaek c\,re"n”*: 17112 ke *‘rn(ﬂ‘ﬂmr«pﬁ in F‘OQ’T‘W‘\“ - plhs rﬁ'\"\?s
a more powerful baclkwards-memory system = in the next phase
of mv thesis work,

The 1imited memory system, when used in a hybrid
emotional and reality-constructor system, may be what
the statisticians call "inefficient but exact"™;
in other words, it may force our circuits thezazmwerzsz
to converge to the right confisuration, but at less

1,t"

" than the maximum possible speed. T+ may force the cortex

(4)

to construct an active memory, 'jl, which records everything
about the external world of re]evnnce to the systen's
decision-making, If such a system has a set of decay-based
circuits attached to 1t - 11%e the stellate cells - these cells
will not corrupt the hisher system, but will merely

provide it with a larger set of data to work with,

Negentropic Pattern-Recognizers
My original goal was to confure up‘§
according to their actval probabilities,
The systems above do not do this; they are deterministic,
Also, we have little reason to believe that these systems
will help extract ont the varisables of mm sreatest interest
to higher-order svstenms,
At first, these points may seem acaderic, Suppose,
for simplicity, that we presume our system gets raw input
in the form of ones and zeroes, (This is still consistent
with our assumption that intermediate signals ray be
continuous,) Then for e g2 ach Yt y PUY rattern-recognizers
would still produce a Yt " E which varies from zero to onej;
we could interpret + '" as a probability, and plug into our
attern-recognizer ' any error function which encourages
%; 4 to equal the probability of Yt,' being "one", _
(To minimize E((Y, -?+ )2), for example, we set ?' =p(Y ).
A anestion AP —in ¥L-~s ;5 2(1-9) 24010V ) ty1
Then, to ure up nossible "4 g ¥e "ﬂ“’ﬂ simnly
"thr nao ' for eack 3, 7 qqmﬂ unon
as the pr0b1b1li Ly of firing a "one"
However, - life is not so simple, A simple example
will show why this arrroach will not work, and why

its failure 1= of enormous imreriance,

[

t,1
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probebly eauzl +o ene irus the autoeorrelation of N

Whatever its othor Avantazes Aec: ste
wonld allew am=11 neurors to orerate zt theiy ztural

frequencies, without dirent ﬂﬁQ**PT and to e%+a511<h

recursive ecconrections which. ﬂfgwggi delayed by a large

tirme-cycle (i,e, from "tel” tn "t", which equals

many neuron time-cveles),

The small stellate neurons of the cerebral cortex (layer IV)
seem to he a clear case of cells orerating on a decay system;
they have multiple razcurrent interconnections,
under no external pulsine control, operating at high frequency,
The large pyramidal rells of all three cortices - cerebral,
cerebellar and lirbina - could be operating, in theory,
by a 1limited memorv svetem, since all of them are under
the direct contrel of scome pulsing system,(e,s, nonspecifie
thalamic fibers to arical derdrites of pyramids in visual
cortex, observed by Scheilel and Scheibel, Rockefeller
Nenrolorical Sziences S4udy Program, v ‘.ii,)

Both feedbacl syste-rn w11l ke ~woovammed 4n FORTRAN - plus fz*hfi
-2 more powerful heclkwardseramory system = in the next phase
of mv thesis work.

The 14mited memorr cystem, when used in a hybrid
emotional and reality-corastructor system, may be what vhat
the statisticians call "inefficient but exact":
in other words, it may force our circuits thermaverxs
to converge to the right confisuration, but at less
than the maximum possible speed, Tt =ay forse the cortex
to construct an astive msmery,'f s which records everything
about the external worl’ nf velevance to the systen's
decision-makins, If sush 2 system has a set of decay-based
circuits attached *to 1+ - I14Le the stellate c2lls - these cells

will not corrupt ths hisher system, but will merely
orovide 1t with a larser set of data to work with,

(d) Negentropic Pattern-Recosnizers

My original goal w2s %o coniura up
according to their zstial nrohzbilities,
The systems above do not do this; they are deterministie,
Also, we have 1ittle rezson to believe that these systems
will help extract out the variables of ma sreatest interest
to hivher-ordav sratess,

At flrst, these points may seem academic, Surpose,
for simplicity, that we preswnme our system gets raw input
in the form of ones and zeroes, (This is still consistent
with our assumdtiscn that intormediate signals may be

t

continuous, ) Then Iortfach Y. g1 PUT pattern-recognizers
would still produce =Y, , *7 which varies from zero to one;

we could interrret ?; s "7 =8 a probability, and plug into our
gﬁttern—recognizer 7 any error function which encourages
4,4 to equal the prom:bility of Y 5 being "one",

\ A by
(To nmininirve P('f ot )7 ), for °Yamnle, we set ¥ i=p(¥ ).
. R e AL ‘..:»;“.‘"‘ 4 4’\"_'(4 \)V , t! tii
. e m""‘ﬁv Lo iR Té o n@ node sinmnly
,,J"” 45 . o ’ Loyl

tased upon

e

t,1

A simple example
will not work, and why
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probably equal to ore minus the auntecorrelation of N
Whatever its othar diszdvantases, s decay system
would allow sm=21ll neurons to orerzte at their natural
frequencies, without dirent contrnl, and to establish
recursive conrections which 2re not delayed by a large
time-cycle (i,e, from "t-1" to "t", which equals
many neuron time-cyeles),

The small stellate neurons of the cerebral cortex (laver IV)
seem to be a clear case of cells orerating on a decay systenm;

i,40

they have multiple recurrent interconnections,

under no external pulsing control, operatinz at hish frequency,
The large pyramidal cells of all three cortices - cerebral,
cerebellar and limbic = could be overating, in theory,

by a limited memory system, since all of them are under

the direct control of some pulsing system,(e,z, nonspecific
thalamic fibers to avical derdrites of pyramids in visual
cortex, observed by Schelbel and Scheibel, Rockefeller
Nenrological Sciences Study Preocram, vol,i3,)

- Beth feedback systers will he rrosrammed in FORTRAN - us exbaps
th edback systems will be rrogrammed in ) P 3

(d)

. would still produce a 'Y

a more powerful baclkwards-memory system = in the next phase
of my thesis work,

The 1limited memory system, when used in a hybrid
emotional and reality~constructor system, may be what
the statisticians call "inefficient but exact";
in other words, it may force our circuits thezmmverxm
to converge to the right confisuration, but at less
than the maximum possible speed, It =may force the cortex
to construect an active wemory,‘? y which records everything
about the external world of relevance to the system's
decision-makinz, If such z system has a set of decay~based
circuits attached to 1t = 1i%e the stellate cells - these cells
will not corrupt thes hicher system, but will merely
provide it with a larger set of data to work with,

Negentropic Pattern-Recognizers

My original goal was to conjure up
according to their actval probabilities,
The systems above do not do this; they are deterministic,
Also, we have little reason to believe that these systems
Wwill help extract ont the variables of mm sreatest interest.
to higher-order svstenms,

At first, these points may seem academic, Suppose,
for simplicity, that we presume our system gets raw input
in the form of ones and zeroes, (This is still consistent
with our assumption that intermediate signals may be
continuous,) Then for pach Yt g0 OUr pattern-recognizers

*" which varies from zero to one;
we could interpret‘? P as a probability, and plug into our
§§ttern-recognizer ’7 any error function which encourages
t,1 to equal the probability of Y 4 being “"one",

2
(To minimize E((Y L)), for example, we set T =2(Y, .).
A question of'm§r§%%?ig%* p(1-9)24(1-0 177 ) 1 1

we counld

Then, to conjure up nossibkle Y, o siroly
"throw the dice” for e=ch i, “?“based upon ?+ 1
b

as the probability of firirg a “one",

However, 1life is not so simple, A simple example
will show why this arrproach will not work, and why
its failure is of enorrous imreortance,

. i2



Suppose that our vis:al fisld, for7?, consists of
a simple 2 X 4 wicusl erid, Su-rogse that the visual field
takes on only *wo corfisurztions, in rractice, In configuration 4,
there is a dlack szuare (1's) in the top 2 X 2 part of the field,
and a white square (0's} in the bottom, Ir configuration B,
the white square s on top =zrd the hlack square on the botionm,
At each time, t, the field +akes on a new configurayion, A or B,
with equal proha¥ilitr 223 with no regard for eiliher X dats
or for its own previcus confisuration, Usirs 4he rattern=-recornizers
described atove, every ~e1l in the rrid will Ye ~iven a ¥, . of 50%,
at all tires. If we "throw the dice" for each of these cells
.separately, the odds will be more than a hundred to one against
our predicting either cgnfiguration A or configuration B,
(Probability equals (3)%+(3)S=tftg 1/128,) Clearly,
this point is more than academic; the main task of
human vision is to selzct out objects which are stable
in themselves, but which change somewhat erratically
in their positions in our visual fields, Even if we could
make a deterministic prediction of Y, based on all the data
implicit in X1, it would te extremely difficult for a system
to learn how to make such a prediction unless it could
make ITull use o1 an intermediate set of predictor features,
which are Gily wacugi v v..er stochastic predictionsy
in other words, the deterministic pattern-recognizers
above may find it diffi-ult to find a pathway from
their initlal igncrance to their final perfection,
because they may be unable to operate effectively
(and develop) in the intermediate zone of probabilistic
knowledge. This effect may explain the weakness of
all adaptive perceptron devices to date,

Say

So: how do we account for this effect?

Let us go back for a moment to the idea of
"minimizing an error funetion®, which we took for granted
above, We didn't specify which error function to use,
or why we should use such an approach, In classical
statistics, people have found good reason to justify
the cholice of mean square error as an error function:
minimizing the sum of squares through time turns out
to be the same, in the lin't, as maximizing the likelihood
of one's model belng true, for linear Gaussian processes,
However, we are not dealing with Gaussian processes here,
The nonlinearity of our processes is so pervasive that
wWe are better off thinking of Y as pure information,
codeable into zeroes and ones,

So: how would we apply the maximum likelihood method
to a simple (Markhovian) series of zeroes and ones?

Suppose that we have a model, p(yt)-f(t,a).
("t", in this case, could stsnd for thé effect of all kinds of
extra data, However, we are interested only in how to adapt
the coefficient "a"; in other words, we wish to find the value
for "a” such that the model has a maximum probablility of being true,
glven that the weli T 1o toue for some "a™,)

13



Suppose that we have a series of data, Yy from time zero
to time T, Then:

pla|{y,r +=0,7) = p{r,, t“""ﬁ“ﬂﬁ:f%w.ﬂ)
ooy
p(a) S
" W@, t=0,T}) t\:\0 (7, £(t,2)+(1-7, )(1£(¢,a)))

- The term in the denominator of the left-hand term is
the same for all "a™; therefore, in choosing "a"
to maximize the likelihood of our model, we can ignore
this term, P(a) is really a distribution, representing
the apriori probability of any model, In general, in statistics,
one ignores this term, since its relative effect becomes
negligible in time, and since there is xmt no philosophical
reason to glve a higher apriori probability to one ®a*
or another, except to a=0, (Occam’s Razor,) In choosing
the best nonzero value for "a", we can ignore p(a)
(formally, set it to da), and thein later send a
garbage collection routine back to see if we have found
reason to set "a" significantly different from zeroc;
if not, we can delete the term in f which has "a”
as 1ts coefficlient, and try another term to replace & it,
more or less at random, So, for now, we can concentrate on
finding the best nonzero value for "a"™, which means
maximizing:

.\ll_(y.tf(t!a) + (1‘Yt)(1"f(t.a.))
t=0

We want to find an error function, e(yt,t). such that
minimizing the sum of "e™ through time~ is equivalent
to maximizing the product above, Clearly, we have to
take (minus) the logarithm of the term above to achieve
the equivalence:

e(x,0t) = = 1og(y,f(tsa) + (1-y, )(1-£(t,a)))
- -ytlog f(t,a) - (l-yt)log(l;f(t,a)) (as Y = 0or1l)

So: the error function is simply a joint entropy function!

To optimize our predictions, we simply minimize the entropy

of our errors, More precisely, we are trying to minimize

the extra information content required, ahbove and beyond

our predictions, to give the true value of y, through time.
Now let's go back to our difficulties wfth simulation, above,

Our problem, essentially, was that the probabilities of

the different Y g0 €ven given X, were interdependent;

the determinatigﬁs of different Components of Were not

‘statistically independent events, In other words,

the information content (entropy) of Y, as a whole, given 5?,

may be much less than the sum of the entropies of its

parts (the T, i). (This 1is the essence of the "gestalt™ idea,)

1

In order to simulate'?;, gliven ib, eccnomic considerations
dictate that the brain simulate large numbers of variables
all at once, not one after the other, The only way to  _,

do this is by recoding our uncertainties about Y;, glven Xj,
14



into a set of indeperdent variables, which we can deal with
separaéely, all at once, in simulating Y,. In short,
we wish to find a techrique to encode - Y (given Xt)
into a new vector, R,, of zeroes s and ones,
whose entropy does equal the sum of && the entroples
of its parts, We wish to make sure we can recode R, and Xt
back into f;, so that we can simulate Y, by simula%ing
all the coriponents of ‘'K, in parallel and recoding,
The components of R, ’ uniike the elements of our simpler
pattern-recognizers, would tend to represent unusual
joint events in Y, and X 3 they would tend to represent
the unusual patterns and ‘events which disrupt the more
predictable monotony of human vision, In practice,
this is exactly what Letivin and Hubel have found in the
higher visual centers of mammals and frogs - edge detectors,
detectors of vertices as special angles, and even "newness”
detectors which respend to moving objects which change - their
direction or velocity. & pattern-recognizer buikt on
these principles will autcmatically select out the most
interesting features of its environment, for study
by higher-un eystema 3In +he train, They will alco
select out interesting natterns of action initiated
by the Intelligent sysiem itself; this would form the
foundation on whiech "planning™ is learned,
Now: the technical details,
If we give ourselves a falrly free hand in selecting
'§£ as a function of ¥, ard X, we cannot be sure of finding
a’ straightforward way of recdoding 1t back into Y
In general, we would have to Juse pattern-recognitfon to
try to predict by back frea K, and & Suppose that we
define the "gross R,"™ tc ba t&e combination of our
original R » Plus the information required to give us
back, item by item, from the proposed Y, we got back
'f§om recoding, Given all the information in "gross Rt ’
We can get back Y exactly, simply by recoding R,
into an estimaved Y, and then correcting the reésult,
Therefore,ﬂgroas ﬁ 3annot have less information content
than does Y 1tself, glven X,, Therefore, the minimum of
the sum of %he entropy of the parts of gross R R, cannot be less
than the entropy of Y, given X,, We can tring ¥nis sum of
entropies down to this lowest possible minimum by converging
onE & simple with ths properties called for earller:
i,e., the sun o} the eatropy of the components of K, proper
equals the entropy of ¥, given X, while the mxxax recoding
process involves no erxor or entropy at all,
Therefore, by setting up a circuit which minimizes the sum
of the entropics of the components of gross K., We can
get what we wanted in the Tirst place, Admittedly, we
could reach the same minimum in another way: if the
errors of recoding are all independent of each other,
and independent of the components of R, proper, and 1if
- the componerte »f *; reenner are a1l 1n§ependent
i ' AR E Nﬂo;V of the parts would be
vbay owousovry of he whole, which in turn is mywak
t8 greater ihan or sgual to thn minimal entropy-level we are
trylng to reach for e na:ts.) However, in this case, gross R
fits all our origined criteria for 4 Proper,




So: we can set up a network with two levels:
- T - >

R, = T(1,,X,)
to be adapted like our simple pattern-recognlzers, but with
feedback coming in from each component of F, and from
the error of each component of Y,, Notige that we are worried
about the entropy of R controlled for X; given that we are
worried about keeping the components of H independent of
each other, and not about keeping them independent of X,
we can get away with measuring the entropy of ®, , controlled
for some function of X,, In short, we can try t6'" “predict”
R, 1 fron information azhout X,, and count in just the entropy
o%' the error. (This iz unnedessary, formally, but it
makes it much easier for us to bring in recursive data,
if such data is generated by glant pyramid cells in xk=x
the cerebral cortex,) We can even set up several layers
of R, ,: each layer could use the actual value of R 's
from 'frevious layers, for use in predicting its own’
R, .'s

t,J °

As with our simple pattern-recognizers, we can avold
a formal layering structure by using a pulsing system and time
to define the layers, We can define special units, called
Pyramids, to care for one component of R 4 each,
In the bottom part of each Pyramid, there’ would be a network
to define the actual value of R, ,3 the bottom part would
have access to all information ' in the system from ¥, and i', both,
In the top part of the Pyramid would be a circuit to predict
the value of R the tcp part would have access only to

3 e i
information fréht X {+ncluding Z&_ ), and from Pyranmids
which havée already released the actual value of their R

(1,e, effectively, lower-level Pyramids,) At a certaln time,t’i

dependent on the state of its inputs (or on the time
since the beginning of the alpha cycle, or, more likely,
on a signal from the nonspecific thalamus for those pyramids
which receive such a signal), the Pyramid would carry out
two actions at once, It would compare its prediction of R,
against the actual valus, and store the entropy of the errdr,
plus other details, for distribution in the feedback part
of the cycle; it would, at the same time, reduce its Rt 1
for use by any other Pyramid in the system, Pyramids '
and the simpler kinds of neurons discussed above would be
mixedd together in a ccmmen network, with the same kinds of
timing possibikies discussed above,

When the feedback cycle gets back to our Pyramid,
the Pyramid (like any nesuron) will receive one significant
feedback - the total derivative of entropy elsewhere with
respect to R, ,; the Pyramld itself will have generated Rt
from an interfal provavility, q, generated by a linear
“elrenit in the botiom of the Pyramid, and will also have
mita] Dy U owying fimbility of R, , according to the

¢ o s o:ouleasant to evaldate R,

of a derivative; howetér, there
n console ourselves with the thought
de how to use R 4 8Le more formally
% to the top, ' 3

o1

1

a zerofone v Yk of 4
is no cholen here, and we
that the circuits Wl ¢
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will receive a feedback:
op ,9E(p,q)
?Xj 2 !

where E(p,q) is the entropy of observing a probability q
when you had been expecting a probability p:

=91 a _ (1-q) {1-q)
B(pra) = - 5 18 5 = (1op) 18 (1)

(A crude system could look directly at E(p,R
that would be a waste of information,)
Each input to the bottom, Yj’ will receives

(1%&91 QRt )

where the last term is the feedback input to the Pyramid,
(The initial trial of a Pyramid is also a bit tricky;

if necessary, one could sei Lt up Lo duplicate exacily
the output of a lowsr Pyramld, and replace the lower one,
if the errors of that lower Pyramid correlate with

those of other Pyramids on the same level,)

The neuroanatomical evidence in favor of this idea
is very strong; in fact, I found it very difficult to
to imagine that a blological brain could contain such circuits
until I reviewed the microanatomy of the cortex,
The large pyramid cells of the cerebral cortex reach from
the top layer of the cortex (layer I) down almost to the
very bottom (layer VI), In between, each cell has a long shaft,
which can develop a graded spike of its own. (Recent Bark
in this area indicates that the spikes coming down the shaft
can vary continuously in intensity, while the final spike
that comes out of the cell body, at the bottom of the
pyramid, is 0/1,) The top of the pyramid, in layer I,
receives input only from fibers in this layer; Szengothal
has shown that these fibers are almost entirely
"recurrent collaterals"”, fibers tranching up and out from
the main axons coming out of the cell bodies of nearby pyramids.
Some recent work suggests (Eccles) that there are a few
strange cells outputting to the upper layers of cortex,
inputting only from pyramid collaterals; these cells
would merely be accessories to the pyramid tops in processing
data which they are entitled to receive, Direct input
from the specific thalamus, by contrast, goes straight to
layer IV, almost all a thick plexus of medium/small =% cells
called Layer IV stellate cells. This input gets to the
pyramids by synapses to the cell body of each pyramid,
in layer V, The cerebellum, incidentally, also maintains a
distinction between the upper "plia" and the lower plexus;
however, tae details of that analysis must wait,

Cne should note that a negentropic pattern-recognizer
could also profit from "deep sleep", Normal neuron ccefficients,
in a pattern-recognizer, have to be adapted together with
the other coefficientis which they influence, But the top
subeclrculits which prediet the R of a pyramld do not have any
direct electronic effect on othéd™ cells (except in the simulation,
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or "dreaming"”, mode,), A single pyramid could record its
most interesting inputs from the daytime, and adapt to
them during the night,

(1v) Miscellaneous Aspects of Pattern-Recognizers,

(a) The philosophy of induction,

All of the pattern-recognizers above are set up
to improve their performance by "steepest descent”,
sometimes called "hill-climbing”, An adaptive
pattern-recognizer clearly should have the ability to
"climb” to the top of any "hill" it finds itself on,

But most students of artifieial intelligence would assert
strongly that hill~-climbing is not enough, A system needs’
the ability to leap to a new concept,

I would counter by saying that the systems above are
necessary, to create a framework which includes hill-climbing,
If one can design a system that “leaps" to new concepts,
then presumably we can use that system like the
"garbage collector” menticned on page 14: i,e, to suggest
new concepts for predicting Y,, circuits which could be
made avallable (on a trial basis) as new inputs
to the rest of a standard pattern-recognizer;
as in multiple regression, a powerful new predictor
variable should quickly accumulate a high coefficient
Within the adaptive system, and should then be absorbed
by the normal systen,

One might argue that I have not, in fact, provided
such a system for "hill-leaping"; I have proposed, instead,
the ek creation of trial neuron-connections "more or less
at random,”™ I would counter, first, that the most powerful
"leaps of insight" which humans experience tend to be
the result of complex strategies - learned strategles -
involving the use of language; the leaps of insight shown by
lower mammals are not nearly as impressive, despite the
equivalence of their brain structure to ours, Furthermore,

I would argue that one cannot tell which models will work
until one has tried them,

One might argue that the "garbage collection™ system above
could exhaust the simpler new circuits availzble, but would not
be able to give enough attention to the more complex explanations,
I would counter that one can do no more than try out new ideas
according to their probability - before the fact - of being true,
In this case, at the most basic level, we have no manageable
source of information about which ideas are likely to work
except by lcoking at their simplicity, This m system does,
definitely, discrininate in favor of simpler models;
1t does attribute a higher apriori probability to simpler models,
(The "truth of a model” could be represented, by the way, as
a component of R, .; in effect, a negentropic pattern-recognizer
can define its uné%rtainty well enough for decision-making,)

Students of language and philosophy have long recognized that
one can never escape entirely from such apriori blases;

Bayes' Law clarifies the matter: :

p{observations|theory) p(theory)
p{observations)

P(Theory|observatiorm) =

Kant used the term ®"apriori synthetic" to describe the system
18



(b)

of blases which give us "p(theory)”, Carnap described

a probabilistic aprroach to the apriori synthetic,

based upon Occam's Razor, Prof. Solomonoff, a friend of Minsky,
has pointed out the generality of Carnap‘'s procedure,

when "simplicity” is defined in terms of an appropriate
language, (FORTRAN plus a random number generator would seem
to be quite geod enough,) After a tedious analysis -

which would clutter up this outline far too much -

I have come to the conclusion that neuron networks,

as above, are about as close to an "appropriate language”

as one can hope to create in normal physical circuits;

the resulting imperfections can be made up for only by

the conscious use, by our system, of learned, sequential
languages like English and FORTRAN, (Therefore, we reaffirm
Precisely one orthodoxy - the philosophical view,

post Wittgenstein, that the assumptions and rules

governing languages are in large part learned

by a process related to trial and error, rather than
dredged up fxsmxtiexprryexkxt directly from the preverbal
basis of preverbal induction, )

Chemical Memory and the Adjustment of Pyramid Cells

Hyden, a few years ago, set off a great wave of research
by suggesting that certain neurons - especially large pyramid
cells - do not obey the usual electronic rules for deteramining
their input/output relations; instead, he suggested that they
_§pcode their past experience {interesting pairs of

and R1 ¢ in our framework), and sift through their past
e&periencé to find pairs whose X matches the current
electronic input weximexmfxike vectors as closely as possible;
they then fire according to the Ri of the closest matching
pairs, if any. (This process, exteﬂ&ed to allow the
simultaneous processing of many molecules inside of
and between cells, would even give us a closer approximation
to a Solomonoff-iype general language,) However, in the
domain of classical physics (room temperature),
one could not expect that a cell could sift through such
a large body of data in time to keep up with the usual
electronic processing rates. In areas 17,18 and 19 of
the visual cortex, electronic processing rulés seem ss enough
to predict the behavicr of all cells ever observed, Perhaps
such cells operate electronically sometimes, and chemically
at others; but in this case how would they know which to do when?
There is no anatomical sign of an appropriate signalling system
to tell them which to do, A chemical signalling system of
a general kind might do the job - but only by instituting
gross changes in the behavior of large numbers of cells,
as in the onset of dreaming or of deep sleep,If, in normal
waking experience, these cells do not behave according to
Hyden's hypothesis, then their behavior during sleep anould
also focus on optimizing normal, electronic behavior, as above,
Sot essentially we reject Hyden's hypothesis,

On the other hand, we did suggzest a rrocess for adjusting
the tops of pyramid cells in deep sleep, &m based upen the
chemical encoding of memories from the wakeful period;

We are left with five possible ways of carrying this xo= through:
(A) Forgetting it, :
(B) Encoding those memories which are most "interesting®,
accerding to a simple rule for what is "interesting”,
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Presumably, a memory is "interesting” in proportion

to the eror-reduction achieved by taking the menmory into
account; if we assume that the optimal expected change 5.17@41‘j
is roughly equal to -91.(33/3x )s as our adjustment
formulas stated, then J we ge%i

Interest = Ae 2 - %Eeij(,s&-e-)z (J= j of pyramid)
N 1j

[
A system can set its minimum interest level just high enough
to keep its memory stocks full, but not overstocked,
(C) Fusing its memories, by a simple rule, The “distance”
of two memories could be defined by: ,

2 -
Distance -2 oij(xn - xiZ) (Yl and Xz the input vectors)

¢
A certain distance range could be set up so that memories
below that distance are always fused together, This range
would be set to make the number of fused memories
Just enough to use up most of the memory capacity
of our cell, An "intensity" counter would have to be added
to each memory molecule, to indicate the number of
&ctuai memouries contributing to a singie fused memory,
(D) A combinaticn of (B) and (C).
(E) An aposteriori coding system for memories.
Even with apriori systems, the portion of “X* encoded
could not realistically include all the tens of thousands
of inputs to the far top of a typical large pyramid cells
the partially processed inputs which make it to Layers II and III
would make better candidates for storage,
However:zzs an aposteriori system for encoding
(and fusing) these memories might work much better -
- 1f only one could spare the cells to set up such a network,
The objective would be to set up a coding cirecuit,
EH(XTR )» such that B is limited to a certain number of
componefit variables, and %e/3«, . can be recongtructed
as accurately as possible from Jknowledge of H and &, . ) alons,
This would require two circuits to be adapted togethéf,
as a simple pattern-recognizer:

e . >
5 ™ 1))

- b 4
H ='h(i:Ri), H of fixed dimensionality,

The accuracy of the error estimates would rrovide the major

source of feedback, This system seenms urrealistically

cumbersome, but the upside~down stellate cells (Layers II&III
stellate cells) recently discovered to bte Very numerous

(Eccles, Brain Mechanisms and Consciousress) in the cerebral cortex,
have all the necessary properties of a recoding network;

they receive data from pyramid bases, and ¢limb up along the
dendrites of pyramids 4in an interweaving pattern of some kind,

not fully understood as yet,

Of these possibilities, (D) seems to be the most likely,
by far, It helps account for the drive of the organism to
get four hours of deep sleep every night, whatever Nayyexsd
may happen %to dresaming (MIT Nzsurcsciences Series); the
Interesting memories of the day may have to be fused onto
existing templates, to make room available for a new day's experience,
. ~n




For the sake of completeness, however, I will program
all five possibilitles.
One should note that thess pyramid memories are

emphatically not the only possible form of long-ternm

memory available to the cortex, in this model,

The alpha coefficients themselves provide aeform of memory.
Highly interesting experiences could even bp translated
immediately into the basis of a new pyramid cell (layer II or 111 ?),
especially if ordinary recursive memories “rehearse"”

the memory enoughj this is one of the principles in designing
a “garbage collection" system.

Internuncial cells - small pyramids - in cerebral cortex

could be interpreted as Pyramid cells which do not

generate ordinary recursive memories, unlike large Pyramids,
which generate both. (Small pyramids do not appear to

be controlled directly by nonspecific thalamic fibers,)

On the other hand, one might imagine that internuncial
pyramids are given extra (negative) feedback, or even
transferred memory molecules, to encourage them to

represent special cases of the large pyramids they output tog
this might be ot some value in developing a specialized
memory and planning system, For completeness, this possibility
will also be programmed,

(¢) The Irrelevance of Second-Order Feedback Conflicts,
In my chart of the brain, I drew a dlagram of a sort
which may have seemed quite problematic:

J maximization J maximization

_ fesdback _ _ pinosts H-Feedbask oLt liction

Reality
estimate of J Constructor data &

And ax feedback 227 iSysten
ac e;dbac{f@ft%‘—j*w} J-Calculator A -
If the same circuit, in the middle, decides what the estimate of J
w11l be, and also helps maximize the estimated J, would this not
encourage a kind of dishonesty by this circuit? Thekgaswer is no,
The J maximization feedback to the middle circulf ccics , :
to it from the lower circuit, to encourage better-transfer from
the middle to the lower (i,e, feedback is fed back along
the "data™ circuit)s the J feedback to the lower systen,
in turn, comes from a feedback process which assumes
that the J-measurement coefficients of the middle circuit
will be held constant, In short, the middle circuit is unable
to perceive the "value", in J maximization, of cheating by
changing its J-measurement ccefficients, If the middle circuit
received J-maximization feedback directly from U, that might
be a different matter, Feedback from a lower system to
a higher system may seem artificial here, btut it is the only way
a lower system can extract out the data it wants from a distant
higher systenm,

Our chart of the brain stem's role appears even worse;
the lower system receives J-accuracy feedback and J-measursment
feedback from the same source, However, the hypothalamus does have
access to more objective sources of data, to replace the brain stem
data in cases where the latter may grow blased,
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VI, Computer Programs Planned

(0) General Plans.

My goal in this thesis will not be to simulate all the minor
details of the human brain, My goal will be to show that
the general corcepts of “reality conmstructor” and "emotiocnal
system" defined above are powerful enough, given the pattern
recognition systems above, to allow us to duplicate
the power of the human brain in solving certain problems
that involve "higher intelligence.” The game of chess =
which requires both the ability to perceive complex patterns
and to formulate complex strategies - would be an &a ideal test,
.Chess-playing programs have been written before, but few of them
adaptive, and all of them somewhat weak in their play.

All of these programs have routines to look through the tree of

legal moves, and to min-max; the problem comes when the programs
try to evaluate the configurations that come at the end of

each tree of moves, The programs do not seem to have the "feel”

that a good chess-player has. My "emotional system" is designed

to provide such a "feel”,

The "J" luacilon whicn comes from my “emotional systems"
should provide the powernful cvaluation-system that the present
Programs lack, My first goal, then, will be to get hold of
an _existing FORTRAN chess-playing program, and to show that
the "emotional swvotom®™ uhieh T we13 rIczxram can improve
the performance of the existing programs, In theory,
an "emotional system" with enough time and space available
should be able to supplant all of the foresight functions of
the present programs; I may try this experiment, too, though
a negative result would not be so conclusive, given the normal
limits on computer time and space,

When these experiments are complete, I also intend
to carry out experiments oriented towards pattern-recognition
proper, Uhr's handwriting samples offer one experimental check
against previous prograns, though I may try out something else,
involving more conplex sequences of patterms, if possible,

The prediction and xmz composition (simulatior) of music

would offer an ideal test, if only there were other prograns
available for an objective comparison, At any rate, once the basic
"emotional system" and "reality constructor® are programmed,

they can be applied immediately to a large number of problem areas,

(1) FORTRAN Subroutine #1: "PATT1": A Simple, Nomrecursive Negentropic
Pattern-Recognizer fora Computer,
In the game of chess, the need for a negentropic
"reality constructor" becomes very great; the positions of the Pieces
are highly interdependent, and we have very good reasons to try
to extract out information about the most interesting configurations,
Oddly enough, there isn't much need for this reality constructor
to contain a memory of previous states of the chessboard;
almost all the important information is there, sitting on the
Yoard, So let us vegin by designing a sinple negentropie
patiern recognlzer, designed to "predict” the state of the
cheszboard given the previous state of the board,
: __main list of cells =

I Board t=-1 | Board t ' 1121 ... Lk ] Ko+l ... |.»
| Board t !
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The memory set-up of this subroutine will be as in the chart
above, There will be an ordered 1list of cells, from cell #1
to cell #m, Some of these cells will be “pyramids®,
others “"stellates”, Each stellate cell will have a list of
input sources, which may include the final outputs of any
cells earlier in the 2&a& main list, and any data about
the chessboard at times t or t-1, Associated with each input
will be a coefficient, alpha. Each pyramid cell will have two
lists of input sources, a “top” list and a “bottom” list,
The bottom 1ist may include any earlier data, as with the
stellate cells; also, it will include a coefficient for each input,
The top 1list may include only data from the chessboard at time t-1,
and data from the output of previous pyramid cells; this 1list, too,
includes a coefficient for each input. The cells from k.+1 to m
will all be pyramid cells, but their "bottoms™ will be Prescribed
in advance; the bottom lists here will each include one item -
& component of the state of the boardem at time t - to be input
with a coefficient of one,
At the completion of each move by its opponent, our
intelligent system will immediately call in PATT! to analyze
what has happened. It will update the record, above, of the .
state of the board at times "t-1" and "t", Then it will go through
the “electronic cycle“ of the system; more precisely, it will
call on a subroutine, ELEC1, ELECI will proceed, from cell #i to
cell #m, to calculate the output of each cell, When it gets to
a stellate cell, #1i, it will first calculate W s the summ of
each input source multiplied by the coefficien% attached to 1it;
then it will calculate its own cutput, N,, from W,, from the
simple relation graphed on page 8, When ELECL gets to a pyramid
cell, it will use the same procedure to determine the
output of the top of the eell and the output of the bottom;
then, however, it will call on a random number generator
to generate a number in the interval zero to one, with a flat
probability distribution, If the random number is less than the
output of the bottom of the cell, then the output of the cell
as a whole will be set to “one"; otherwise, i1t will be set to zero,
After ELEC1 has finished with cell #m, thenm PATT1 will call on
FEED1, the "chemical feedback" subroutine, FEEDI will first
initialize the "feedback level” at every stellate cell, at every
Pyramid top and at every pyramid bottom to zero, It will then
work its way back from cell #m to cell #1 to determine the feedback
levels, When it reaches a Pyramid, it will set the feedback level
at the top to:

9E(p,a)

dp ’
¥here E(p,q) is the function on page 17, with p the output of
the top of the pyramid and q the ocutput of the bottom,
(If this term gets too high, we can put in a cutoff point,
This cutoff point will be one of the basic Parameters of the system;
in effect, it tells us to restrict P to an interval slightly
narrever than zerc te one.) If the pyranid is one of the
cells between #k.+1 and #m, FEEDL will not give any feedback to
the bottom of the cell, because there is nothing thers to adapt,
- Otherwise, FEED1 will increase the feedback level at the botiom by:
d5lea)
q L
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Then FEEDL will actually feed back, by the formnlas on page 8,
First, it will look at the top of the pyramid, If the ¥

used to generate p does not itself equal p, then there should be

no feedback from the top of the pyramid, in theory;

FEED1 should move on to the bottom, In practice, it would probably
be convenient for us to have FEEDL continue anyway. For every

cell which provides an input source to the top of the pyranmid,

the feedback level of iimzsowssgammm that cell (of its bottonm,

if a pyramid) will be increased by an amount equal to the feedback
level of the top of our pyramid multiplied by the input coefficient,
alpha, of that cell to our pyramid, Then FEEDL will look at the
bottom of our pyramid, If the W, used to generate q does not equal q,
then FEED1 will be finished wi%h this pyramid, and move on to

the cell just before it, If W, equals q, then, for every cell

which provides an input sourcé to the bottom of our pyramid,

the feedback level of that cell will be increased by an amount
equal to the feedback level of the bottom of our pyramid,
multiplied by the input coefficient, alpha, of that cell to

our pyramid,

Those are the procedures used by FEEDL when it encounters

a pyramid cell om 1iS path Irom.celil #m to cell #i,

When FEED1 hits a stellate cell, the procedures are simpler,

FEEDL will assume that the feedback level of the cell is already
known, If the W, which generated-the output, N,, of the stellate cell,
does not equal "N,, FEEDI will move on to the fext cell, #1-1,
Otherwise, every cell which provides an input source to the stellate
cell will have its feedback level increased by an amount equal

to the feedback level of our stellate cell, multipliied by the

input coefficient, alpha, of that input cell to our stellate cell

After FEED1 has gotten through with cell #1, PATT1

takes over again, PATT! will now call in a subroutine to

ad just all the coefficients, alpha, I will write three different
subroutine, ADJ1, ADJ2 and ADJ3, which can adjust these
coefficients, Our present memory setup requires, for each cell #i,
two matching lists - a list of input sources, and an alpha for

each source, (All of this twice for pyramids, of courss,)

To use ADJ1, we will require iwo more lists tc be matched to the
present two - a list called theta, and a list called signi,

ADJ2 requires three new lists - theta, signl and sign2,

ADJ3 requires four - theta, signi, k, sign2,

. When.any of the ADJ subroutines is called, it will zax scan
systematically through all the coefficients, alpha in our systems
the order of scan doesn't matter, but it will be easiest to
start with cell #1, to scan through its list(s) in order, and so
on up to cell #m, For each mEkipmizitt stellate cell, pyramid top
or pyramid bottom, ADJ will first make sure that W, equads the
actual output produced; as before, if this condition is not met,
ADJ will simply pass on to the next list, If it is met, the
feedback to the coefficient will be set equal to the product of
the feedback level of the cell (bottom/top)whose input list it
is on, rultiplied by the output of the input source which the
coefficient is matched o, (This may include cells or board data.)
Hith 232dx& ADJL, 1f the sl ”A of this fecdback level equals signl,
then theta wiii be nultiplisd ty k, a taslc parameter supplied to ADJ1;
if theg sign is different, theta will be divided by k3 if elther
is zero, then theta will be held constant. Then signl will be replaced
by the sign of the current foedback level to alpha,

With ADJ2 znd ADJ3, theta will be adjusted in the same way,
except that k would be taken from the list *k%, in ADJ3, or from
2i




a global variable called “k", in ADJ2, With ADJ2 and ADJ3,
the sign of thls chanze in theta would then be compared with
sign2, If the signs were the same, k would -be multiplied by

» & basic parameter supplisd to both ADJ2 and ADJ3;
1T they were different, k would be divided; otherwise, it would
stay the same. (For ADJ2, one would expect a much smaller ?2
than for ADJ3,) Then sign2 would be replaced by the sign o
the current change in theta., Finally, with any of the ADJ
routines, alpha will be increased by theta times the current
feedback level to alpha, And that will be that.

Every once in a while, PATT1 will call on another subroutine,
“"GARBAG", to carry out the “"garbage-collection” process described
above, GARBAG will have 1o be rather ad hoc; there are no
rigorous rules for it to follow, It would include two subroutines,
AXONG and CELIG,

AXONG would be given a perameter, A, from the ocutslide,
indicating the desirable iturnover rate of axons per call on AXONG,
It would maintain a glotel vsriable, "T", for "interest threshold”,
which it would increase after every c¢all in which it kept too
many connectlons intact, and decrease after every call in which
it broke +an many Aarmastions  Far snch wﬁ*werWQ'
connection, it would 1nok =21 tha absolute valun of the ratio of
alpha over theta; if this ratio is less than T, AXONG will
erase the connection, and generate a new one by an ad hoc
sort of routine, (A more sothisticated form of AXONG might require
an increase in the nunmber of memory lists,) AXONG would be given
a list of ad hoc parameters from the cutside - probability that
it will create a new input to the same cell, probability that
it will add a connection to another cell chosen at random,
probability that it will wander down the input network of
the cell mksxmE which has just lost one input, etec,

CELIG will be similar., To begin with, we could loock at
the sum of the interest zratios of the connections from our cell
10 other cells, and use a threshold "T" to decide when to erase a cell,

The garbage-collectlion routine, which sets up the pattern of
connections, could be used to enforce a "layering® pattern
closer to the realities of the human traing each “layer”™ would
constitute an interval of cells, each compelled to input data
only before the interval fhmgrkulumgxtm it belongs to. This option,
and the parameters reguired %o set it up, will also be programmed
into GARBAG,

The pattern~recognizer above, like the cerebral cortex,
only learns to perform efficlently after it has enough experience,
Therefore, the pattern-recognizer used for chess will have
to be given much experience in plaving chess against the
standard FCRTRAN player mentionad abvove; it would also profit
by sifting through "bock games", sspecially insofar as these
games have been recorded sonewhers in machine-readable form,

(I might wind up encoding such zaues myself, if not,)

The chessbhboard will b2 encoded in binary form, row by row,

by using four ddta bl*ﬂ ta enecds each of the 13 configurations
morlviion om0 aroerwn {enpty, white queen, ete, )

cate the occurrence of check,

chess-playing program which

Sk
HA

" 4 Timple Emoticnal sttem for a Computer
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state of the board; thersfore,




& simple, nonrecursive vattern-recognizer should be good enough
to give us a decent "emotional system“, as on page 3,

to evaluate the configuration, A "negentropic”
pattern-recognizer only adds something wunen there are several
variables to predict (and take advantaze of thereby),

Our emotional: system predicts only cne - J

therefore, a simple pattern-recognizer is good enough,

Note that our system is designed to play a continuous series
of games, one after another,

[Board at t |
ii2] t t v im—iisjl [l 3,
] ~— T - \/’V’\/l
Uy 1} [Board at =11 ~ "poisst of cellss peeado-
psendo-rhinencephalon hypothal s

The memory set=-up for EMOT1 will be as above, There will be
a list of m cells, all stellate; each cell will have a list of
input sources, including previous cells and data from the
chess=board, in inis case, nowever, ine cells are only iree
to specify izmput data fzom the "curxent” conflguration
of the board, which may turn out to refer to either time, t or t-1,
With each input source, there will be a coefficlent alpha,
There will alzo te a "hypothalamus cell™, labelled U above,
and a storage location called 3t' U,_y - the intrinsic utility
of the state of the beard at time t-1, must also be input,
The critical subroutine, EMOT1, is the subroutine which
adapts the circuit to give a good estimate of J, EMOT1, first of all,
"plugs in" the data from time t to the stellate network,
In other words, it calls on ELEC1 - the same subroutine we used
with PATT1 -~ to work out the output of our stellate cells,
from #1 to #m, using data from time t whenever the stellate
cells call for data from the chess-board, (After all, a network
of stellate cells only is just a special case of the networks
described abeve,) Then control returns to EMOT1, which
interprets the output from cell #m as an estimate of J,j; it
stores this estimate in the storage location marked 3;.
Then it "plugs in" the data from time t=13 it calls on
ELEC1 again to recalculate the output of the stellate cells,
this time using data from t-1 every time that the stellate
cells call for chess-board data. The feedback level of
all the stellate cells will then be set to zero, except for
cell #m and the hypothalamus eell, whose feedback level will be
set to J +Ut_1-U-ﬁl_1. (Jy_q» of course, equals the actual_
output &r cell” “#m, =~ after our second use of ELECl; U
comes from the hypothalamus cell, This feedtack formula corresponds
to the derivative of mean scuare error in our J estimate;
the continuous variation of J makes this the appropriate
error function heré,) FEEDL - the ganme feedback routine as before -
ean be used to feed back from stellate cell #m on down to cell #1,
ADJ can be unsed, exactly zs teisre, to adjust all the coefficlents
alpha in thz steliat

N R s K . £ Fd . - n 1 e
e neiwerx, If we treat U gs if 1%t were a ov fodnn

alpha, with Its overall feedback level used as the feedback to the
coefficient, we can adjust U in exactly the same way. And we can
call on GARBAG every once in a while here, too, And that's 2ll
there is to 1%, -
It should be very interesting to psychologlsts that U, _
the expscted “normal” level of satisfaction in life, and the ¢ of U,
. 3



the readiness to change this expsctation, should seem so fundamental
to the machinery of the btrain, Also of interest: this system is more
systerx¥s likely to learn to play chess if winning generates

a U of +1, if a draw generates a +%, and if a2ll other conditions
produce a U of zero for the relevant move; negative reinforcement

is likely to make the system try to aveid playing the game at all,
if possible, or at least to avoid experimenting with

interesting situations. (Different reinforcement patterns

will be tried, but the positive reinforcement strategy

gives much greater assurance of good results.)

(111) Interface of the Emotional Sysgtem and the Reality Constructor,
The emotional system above gives us the estimates of J

that we need for our chess-playing program. But what about the
reality constructor? Reality constructors, in general,
have only two ways of making a contribution:{i) by making
new variables available to other systems, especially to
the emoticnal system;(ii) by allowing the simulation of
what happens in hypothetical situations, as in "dreaming,”
In the case of chess-playing computers, we have little reason
to institute a "dreaming" subroutine; we can have the

ZrdeomDBP 4 & 2 womn - £ -~ 2 £ ,
entire crotom ploy EEmm2@ i4c mixror Izmoge in a game ¢f chess,

Just as easily, to 2dart I, So1 our geal is to make sure that
the variables extracted by our reality constructor are actually
used by the emotional system,

The simplest form of interface which will work
is the one suggested on page 3, Whenever a new situation occurs
on the board, at time T, we can call on PATTL to go through
the process defined above. Then we can define the “greater”
chessboard to include the state of the chessboard proper at time T,
and alsc the state of the normal electronie outputs of
all the cells (or at least the pyramids) in the network of
cells which PATT1 operates on - i,e, the ocutputs generated
when PATTi processes the data from times T-1 and T,
The emotional system will process the state of the "greater”
chessboard at times T and T-1, by the rules of the section
above, (When J is evaluated over a hypothetiecal situaticn,
by the normal chess=playing program, the mxdmximx normal program
will have also suggested the series of plays leading up to
that situation; thus, the state of the "grester chessboard”
in such situations could be calculated very easily.)
, A subtler, and better, interface will be one analogous
to the one used by the human brain, The J system will still
operate over the "greater chessboard”, but it will also
feed back to the reality constructor, to change the
definition of the greater chessboard, In effect, we will
replace our pure reality constructor with a hybrid systenm,
To adapt such a system, in a computer, we cant
(1) Store the state of the chessboard proper at time t=-2,
in a speclal stocrage site, while registering t-1 and t
in the normal storage sites belonging to the reality constructor,
as above3(ii) Call ELEC1 +o0 calculate the output of the
reality-construetor netuwork;(iii) From the ontputs of
the rezlity eonstructien network, and the state of the
chesstozrd proper at time t as siorec in the reality constructor,
Plug in the “state of the greatsr chessboard at time t" into
the stellaie network of the emotional system; (iv) Call ELEC]
in the emotional system, to calculate J,; {(v) Transfer the data
about the chessbeard fraz prover at tires t-2 and =1 to the
Ptel® and "t" storage areas of the realiiy constructor;
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(vi) Call ELECI in the reality constructor; (vii)P8lug in
the state of the greater chassboard at t-1 io the stellate
network of the emotional systems {viii) Call ELECI in
the emotional system; (ix) The first critical step:
call FEED1 as before in the enotional system, but with
one critical difference - this time, calculate the feedback
level all the'way back %o the variables deseribing the
greater chessboard (the mathematics is precisely the same
as before, except that we have to add more storage room
to hold the new feedback information); (x) Adjust the
emotional mi# system as before; (x1) Clear the feedback levels
of the reality constructor to zero as before; (xii) The second
critical step: take the feedback levek of variables in the

. greater chessboard, as calculated in the emotional systenm,
multiply them by zx a new global parameter ("epsilon”
and then add them to the feedback levels of the output
of the correspending cells in the reality constructor;
(xiii) Now apply FEEDL and ADJ to the reality constructor,
as before, Variation in inborn parameters like epsilon
from person to person may be one of the reasons
for persistent differences in cognitive style, In the limit,
as epsiion goea to zero, we come up with a system exactly like
our origlimal chart on page 3y With a distinet reality constructor,

(iv) A Note on More Sophisticated Circuits
In the above, I promised to program many different types
of system eventually, For the most part, these new types '
can be built fairly easily, by extending the basiec systems above,
For example, a negentropic pattern-recognizer m can be nade
recursive, by the "limited memory” timing system, One could
add a set of “Giant Pyramid® cells to the cell network of
the pattern-recognizer above; they would number m+l through n,
Each giant pyramid cell would have two input lists, just like
the standard pyramid cells, However: attached to each input
source and alpha coefficient would be another storage location,
for storing the most recent value of the output of the input
source, All cells, yxewizuz prior or not in our ordering system,
would be allowed to cite the glant pyramids as an input source,
PATT1 would start out Just as before, with ELEC1 calculating
the output of cells #1 through #m, Then the feedback levels would all
be set to zero, as before, and FEED! would feed back as before,
starting with cell #m; this time, however, it will feed back to
the glant pyramids, as a natural result of these cells' role as
an input to normal cells, Then ADJ will be applied exactly
as before, to all cells, including giant pyramids; however,
with the giant Pyramids, &&# ADJ will find the "output of
the input source” term it needs, before calculating the
feedback level to any coefficient, by looking at the
"most recent output® list right in the glant pyramid,
Then - after the chemical feedback eycle - the electronic
cycle of the giant ryramids will be carried through by a new
subroutine, ELEC2, ELEC? will g0 through each pyramid, one by cne,
from #m+l to #r, For each item on each input 1ist, it will
leok back and write in the nost recent output level of that
input source; then it will compute p,q and Q for the pyranid,
as in any pyramid cell, based on those cutput levels,
And that would be that, Recursive menory may be unnecessary for
a chess-playing.éystem, but recursive rocessing may still be very
helpful there because of its analytiec power,
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"Deep sleep routines™, as on page 19, can be set up by a2dding
long lists of “encocded experience™ to each pyramid cell, and by
tossing in a “storage™ subroutine to look at the current contents
of every pyramld, one by cne, and put those into storage which are
“interesting” enoughj these routines would be called by PATT1 between
its calls on FEED1 and ADJ,

And so on, But there 1s enough basis here already to begin
rrogramming and experimentation; further details will be in
the Ph,D, thesis itself,

SO



