A Complete Proof of the ABC Conjecture: The End of The Mystery

Abdelmajid Ben Hadj Salem

Received: date / Accepted: date

Abstract In this paper, we consider the ABC conjecture. Firstly, we give a proof of a the first conjecture that $C < rad^2(ABC)$. It is the key of the proof of the ABC conjecture. Secondly, a proof of the ABC is given for $\epsilon \geq 1$, then for $\epsilon \in]0,1[$ for the two cases: $c \leq rad(abc)$ and c > rad(abc). We choose

the constant $K(\epsilon)$ as $K(\epsilon)=6^{1+\epsilon}e^{\left(\frac{1}{\epsilon^2}-\epsilon\right)}$. Five numerical examples are presented.

It is the end of the mystery of the ABC conjecture!

Keywords Elementary number theory \cdot real functions of one variable.

Mathematics Subject Classification (2010) 11AXX · 26AXX

To the memory of my Father who taught me arithmetic
To the memory of Jean Bourgain (1954-2018) for his mathematical
work notably in the field of Number Theory

1 Introduction and notations

Let a a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \geq 1$ positive integers. We call radical of a the integer $\prod_i a_i$ noted by rad(a). Then a is written as:

$$a = \prod_{i} a_i^{\alpha_i} = rad(a). \prod_{i} a_i^{\alpha_i - 1}$$
 (1)

Abdelmajid Ben Hadj Salem 6, Rue du Nil, Cité Soliman Er-Riadh 8020 Soliman Tunisia

 $\hbox{E-mail: abenhadjsalem@gmail.com}$

We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a.rad(a) \tag{2}$$

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given below:

Conjecture 1 (**ABC** Conjecture): Let a, b, c positive integers relatively prime with c = a + b, then for each $\epsilon > 0$, there exists a constant $K(\epsilon)$ such that :

$$c < K(\epsilon).rad(abc)^{1+\epsilon}$$
 (3)

 $K(\epsilon)$ depending only of ϵ .

We know that numerically, $\frac{Logc}{Log(rad(abc))} \le 1.629912$ ([2]). A conjecture was proposed that $c < rad^2(abc)$ ([3]). Here we will give a proof of it.

Conjecture 2 Let a, b, c positive integers relatively prime with c = a + b, then:

$$c < rad^2(abc) \Longrightarrow \frac{Logc}{Log(rad(abc))} < 2$$
 (4)

This result, I think is the key to obtain a proof of the veracity of the ABC conjecture.

2 A Proof of the conjecture (2)

Let a, b, c positive integers, relatively prime, with c = a + b. We suppose that b < a.

If c < rad(ab) then we obtain:

$$c < rad(ab) < rad^2(abc) \tag{5}$$

and the condition (4) is verified.

In the following, we suppose that $c \geq rad(ab)$.

2.1 Case c = a + 1

$$c = a + 1 = \mu_a rad(a) + 1 \stackrel{?}{<} rad^2(ac)$$
 (6)

 $2.1.1 \mu_a = 1$

In this case, a = rad(a), it is immediately truth that :

$$c = a + 1 < 2a < rad(a)rad(c) < rad^{2}(ac)$$

$$(7)$$

Then (6) is verified.

 $2.1.2 \ \mu_a \neq 1 \ , \mu_a < rad(a)$

we obtain:

$$c = a + 1 < 2\mu_a \cdot rad(a) \Rightarrow c < 2rad^2(a) \Rightarrow c < rad^2(ac)$$
(8)

Then (6) is verified.

 $2.1.3 \ \mu_a \geq rad(a)$

We have $c=a+1=\mu_a.rad(a)+1\leq \mu_a^2+1\stackrel{?}{<} rad^2(ac).$ We suppose that $\mu_a^2+1\geq rad^2(ac)\Longrightarrow \mu_a^2>rad^2(a).rad(c)>rad^2(a)$ as rad(c)>1, then $\mu_a>rad(a)$, that is the contradiction with $\mu_a\geq rad(a)$. We deduce that $c<\mu_a^2+1< rad^2(ac)$ and the condition (6) is verified.

$$2.2 \ c = a + b$$

We can write that c verifies:

$$c = a + b = rad(a).\mu_a + rad(b).\mu_b = rad(a).rad(b) \left(\frac{\mu_a}{rad(b)} + \frac{\mu_b}{rad(a)}\right)$$

$$\implies c = rad(a).rad(b).rad(c) \left(\frac{\mu_a}{rad(b).rad(c)} + \frac{\mu_b}{rad(a).rad(c)}\right)$$
(9)

We can write also:

$$c = rad(abc) \left(\frac{\mu_a}{rad(b).rad(c)} + \frac{\mu_b}{rad(a).rad(c)} \right)$$
 (10)

To obtain a proof of (4), one method is to prove that:

$$\frac{\mu_a}{rad(b).rad(c)} + \frac{\mu_b}{rad(a).rad(c)} < rad(abc) \tag{11}$$

 $2.2.1 \ \mu_a = \mu_b = 1$

In this case, it is immediately truth that :

$$\frac{1}{rad(a)} + \frac{1}{rad(b)} \le \frac{5}{6} < rad(c).rad(abc) \tag{12}$$

Then (4) is verified.

 $2.2.2 \ \mu_a = 1 \ and \ \mu_b > 1$

As $b < a \Longrightarrow \mu_b rad(b) < rad(a) \Longrightarrow \frac{\mu_b}{rad(a)} < \frac{1}{rad(b)}$, then we deduce that:

$$\frac{1}{rad(b)} + \frac{\mu_b}{rad(a)} < \frac{2}{rad(b)} < rad(c).rad(abc) \tag{13}$$

Then (4) is verified.

2.2.3
$$\mu_b = 1$$
 and $\mu_a \leq (b = rad(b))$

In this case we obtain:

$$\frac{1}{rad(a)} + \frac{\mu_a}{rad(b)} \le \frac{1}{rad(a)} + 1 < rad(c).rad(abc)$$
 (14)

Then (4) is verified.

2.2.4
$$\mu_b = 1$$
 and $\mu_a > (b = rad(b))$

As $\mu_a > rad(b)$, we can write $\mu_a = rad(b) + n$ where $n \ge 1$. We obtain:

$$c = \mu_a rad(a) + rad(b) = (rad(b) + n)rad(a) + rad(b) = rad(ab) + nrad(a) + rad(b)$$
(15)

We have n < b, if not $n \ge b \Longrightarrow \mu_a \ge 2b \Longrightarrow a \ge 2brad(a) \Longrightarrow a \ge 3b \Longrightarrow c > 3b$, then the contradiction with c > 2b. We can write:

$$c < 2rad(ab) + rad(b) \Longrightarrow c < rad(abc) + rad(abc) < rad^{2}(abc) \Longrightarrow c < rad^{2}(abc)$$

$$\tag{16}$$

$$2.2.5 \ \mu_a.\mu_b \neq 1, \mu_a < rad(a) \ and \ \mu_b < rad(b)$$

we obtain:

$$c = \mu_c rad(c) = \mu_a . rad(a) + \mu_b . rad(b) < rad^2(a) + rad^2(b) < rad^2(abc)$$
 (17)

$$2.2.6 \ \mu_a.\mu_b \neq 1, \mu_a \leq rad(a) \ and \ \mu_b \geq rad(b)$$

We have:

$$c = \mu_a \cdot rad(a) + \mu_b \cdot rad(b) < \mu_a \mu_b rad(a) rad(b) \le \mu_b rad^2(a) rad(b)$$
 (18)

Then if we give a proof that $\mu_b < rad(b)rad^2(c)$, we obtain $c < rad^2(abc)$. As $\mu_b \ge rad(b) \Longrightarrow \mu_b = rad(b) + \alpha$ with α a positive integer ≥ 0 . Supposing that $\mu_b \ge rad(b)rad^2(c) \Longrightarrow \mu_b = rad(b)rad^2(c) + \beta$ with $\beta \ge 0$ a positive integer. We can write:

$$rad(b)rad^{2}(c) + \beta = rad(b) + \alpha \Longrightarrow \beta < \alpha$$

$$\alpha - \beta = rad(b)(rad^{2}(c) - 1) > 3rad(b) \Longrightarrow \mu_{b} = rad(b) + \alpha > 4rad(b)$$
(19)

Finally, we obtain:

$$\begin{cases} \mu_b \ge rad(b) \\ \mu_b > 4rad(b) \end{cases} \tag{20}$$

Then the contradiction and the hypothesis $\mu_b \geq rad(b)rad^2(c)$ is false. Hence:

$$\mu_b < rad(b)rad^2(c) \Longrightarrow c < rad^2(abc)$$
 (21)

2.2.7
$$\mu_a.\mu_b \neq 1, \mu_a \geq rad(a) \text{ and } \mu_b \leq rad(b)$$

The proof is identical to the case above.

$$2.2.8 \ \mu_a.\mu_b \neq 1, \mu_a \geq rad(a) \ and \ \mu_b \geq rad(b)$$

We write:

$$c = \mu_a rad(a) + \mu_b rad(b) \le \mu_a^2 + \mu_b^2 < \mu_a^2 \cdot \mu_b^2 \stackrel{?}{<} rad^2(a) \cdot rad^2(b) \cdot rad^2(c) = rad^2(abc)$$
(22)

Supposing that $\mu_a.\mu_b \geq rad(abc)$, we obtain:

$$\mu_{a}.\mu_{b} \geq rad(abc) \Rightarrow rad(a).rad(b).\mu_{a}.\mu_{b} \geq rad^{2}(ab)rad(c) \Longrightarrow$$

$$ab \geq rad^{2}(ab).rad(c) \Rightarrow a^{2} > ab \geq rad^{2}(ab).rad(c)$$

$$\Rightarrow a > rad(ab)\sqrt{rad(c)} \geq rad(ab)\sqrt{7} \Rightarrow$$

$$\begin{cases} c > \sqrt{7}rad(ab) \geq 3rad(ab) \\ c \geq rad(ab) \end{cases}$$
(23)

The inequality $c \geq 3rad(ab)$ gives the contradiction with the condition $c \geq rad(ab)$ supposed at the beginning of this section. Then we obtain $\mu_a.\mu_b - rad(abc) < 0 \Longrightarrow c < rad^2(abc)$.

We announce the theorem:

Theorem 1 (Abdelmajid Ben Hadj Salem, 2019) Let a, b, c positive integers relatively prime with c = a + b and $1 \le b < a$, then $c < rad^2(abc)$.

3 The Proof of The ABC Conjecture (1)

We denote R = rad(abc).

3.1 Case: $\epsilon \geq 1$

Using the result of the theorem above, we have $\forall \epsilon \geq 1$:

$$c < R^2 \le R^{1+\epsilon} < K(\epsilon).R^{1+\epsilon}, \quad K(\epsilon) = 6^{1+\epsilon}e^{\left(\frac{1}{\epsilon^2} - \epsilon\right)}, \ \epsilon \ge 1$$
 (24)

3.2 Case: $\epsilon < 1$

3.2.1 Case: $c \leq R$

In this case, we can write:

$$c \le R < R^{1+\epsilon} < K(\epsilon).R^{1+\epsilon}, \quad K(\epsilon) = 6^{1+\epsilon}e^{\left(\frac{1}{\epsilon^2} - \epsilon\right)}, \ \epsilon < 1$$
 (25)

and the ABC conjecture is true.

 $3.2.2 \ Case: c > R$

In this case, we confirm that:

$$c < K(\epsilon).R^{1+\epsilon}, \quad K(\epsilon) = 6^{1+\epsilon}e^{\left(\frac{1}{\epsilon^2} - \epsilon\right)}, 0 < \epsilon < 1$$
 (26)

If not, then $\exists \epsilon_0 \in]0,1[$, so that the triplets (a,b,c) checking c>R and:

$$c \ge R^{1+\epsilon_0}.K(\epsilon_0) \tag{27}$$

are in finite number. We have:

$$c \ge R^{1+\epsilon_0}.K(\epsilon_0) \Longrightarrow R^{1-\epsilon_0}.c \ge R^{1-\epsilon_0}.R^{1+\epsilon_0}.K(\epsilon_0) \Longrightarrow R^{1-\epsilon_0}.c \ge R^2.K(\epsilon_0) > c.K(\epsilon_0) \Longrightarrow R^{1-\epsilon_0} > K(\epsilon_0)$$
(28)

As c > R, we obtain:

$$c^{1-\epsilon_0} > K(\epsilon_0) \Longrightarrow c > K(\epsilon_0) \left(\frac{1}{1-\epsilon_0}\right)$$
 (29)

We deduce that it exists an infinity of triples (a, b, c) verifying (27), hence the contradiction. Then the proof of the ABC conjecture is finished. We obtain that $\forall \epsilon > 0$, c = a + b with a, b, c relatively coprime:

$$c < K(\epsilon).rad(abc)^{1+\epsilon}$$
 with $K(\epsilon) = 6^{1+\epsilon}e^{\left(\frac{1}{\epsilon^2} - \epsilon\right)}$ Q.E.D

4 Examples

In this section, we are going to verify some numerical examples.

4.1 Example of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

$$3^{10} \times 109 + 2 = 23^5 = 6436343 \tag{31}$$

 $a = 3^{10}.109 \Rightarrow \mu_a = 3^9 = 19683$ and $rad(a) = 3 \times 109$,

 $b=2 \Rightarrow \mu_b=1 \text{ and } rad(b)=2,$

 $c = 23^5 = 6436343 \Rightarrow rad(c) = 23$. Then $rad(abc) = 2 \times 3 \times 109 \times 23 = 15042$.

For example, we take $\epsilon = 0.01$, the expression of $K(\epsilon)$ becomes:

$$K(\epsilon) = 6^{1.01}e^{9999.99} = 1.8884880155640644914779227374022e + 4343$$
 (32)

Let us verify (30):

$$c \stackrel{?}{<} K(\epsilon).rad(abc)^{1+\epsilon} \Longrightarrow c = 6436343 \stackrel{?}{<} K(0.01) \times (3 \times 109 \times 2 \times 23)^{1.01} \Longrightarrow 6436343 \ll K(0.01) \times 15042$$
 (33)

Hence (30) is verified.

4.2 Example of A. Nitaj

4.2.1 Case 1

The example of Nitaj about the ABC conjecture [1] is:

$$a = 11^{16}.13^{2}.79 = 613474843408551921511 \Rightarrow rad(a) = 11.13.79$$
 (34)

$$b = 7^2.41^2.311^3 = 2477678547239 \Rightarrow rad(b) = 7.41.311$$
 (35)

$$c = 2.3^3.5^{23}.953 = 613474845886230468750 \Rightarrow rad(c) = 2.3.5.953$$
 (36)

$$rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28828335646110$$
 (37)

we take $\epsilon = 100$ we have:

$$c \stackrel{?}{<} K(\epsilon).rad(abc)^{1+\epsilon} \Longrightarrow$$

 $613\,474\,845\,886\,230\,468\,750 \stackrel{?}{<} 6^{101}e^{-99.9999}.(2.3.5.7.11.13.41.79.311.953)^{101} \Longrightarrow 613\,474\,845\,886\,230\,468\,750 < 8.2558649305610435609546415285004e + 48$ then (30) is verified.

4.2.2 Case 2

We take $\epsilon = 0.5$, then:

$$c \stackrel{?}{<} K(\epsilon).rad(abc)^{1+\epsilon} \Longrightarrow$$
 (38)

$$613\,474\,845\,886\,230\,468\,750 \stackrel{?}{<} 6^{1.5}.e^{3.5}.(2.3.5.7.11.13.41.79.311.953)^{1.5} \Longrightarrow$$

$$613\,474\,845\,886\,230\,468\,750 < 75\,333\,109\,597\,556\,257\,182\,261.66 \qquad (39)$$

We obtain that (30) is verified.

4.2.3 Case 3

We take $\epsilon = 1$, then

$$c \stackrel{?}{<} K(\epsilon).rad(abc)^{1+\epsilon} \Longrightarrow$$

$$613\,474\,845\,886\,230\,468\,750 \stackrel{?}{<} 6^2.(2.3.5.7.11.13.41.79.311.953)^2 \Longrightarrow$$

$$613\,474\,845\,886\,230\,468\,750 < 29\,918\,625\,700\,491\,952\,961\,692\,755\,600 \quad (40)$$
 We obtain that (30) is verified.

4.3 Example of Ralf Bonse

The example of Ralf Bonse about the ABC conjecture [2] is:

$$2543^4.182587.2802983.85813163 + 2^{15}.3^{77}.11.173 = 5^{56}.245983 \qquad (41)$$

$$a = 2543^4.182587.2802983.85813163$$

$$b = 2^{15}.3^{77}.11.173$$

$$c = 5^{56}.245983$$

$$rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163$$

 $rad(abc) = 1.5683959920004546031461002610848e + 33$ (42)

For example, we take $\epsilon = 0.01$, the expression of $K(\epsilon)$ becomes:

$$K(\epsilon) = 6^{1.01}.e^{9999.99} = 5.2903884296336672264108948608106e + 4343$$

Let us verify (30):

$$c \stackrel{?}{<} K(\epsilon).rad(abc)^{1+\epsilon} \Rightarrow c = 5^{56}.245983 \stackrel{?}{<} 6^{1.01}.e^{9999.99}.(2.3.5.11.173.2543.182587.245983.2802983.85813163)^{1.01}$$

$$\implies 3.4136998783296235160378273576498e + 44 < 1.7819595478010681971905561514574e + 4377 \tag{43}$$

The equation (30) is verified.

Ouf, end of the mystery!

5 Conclusion

This is an elementary proof of the ABC conjecture, confirmed by four numerical examples. We can announce the important theorem:

Theorem 2 (David Masser, Joseph Æsterlé & Abdelmajid Ben Hadj Salem; 2019) Let a, b, c positive integers relatively prime with c = a + b, then for each $\epsilon > 0$, there exists $K(\epsilon)$ such that :

$$c < K(\epsilon).rad(abc)^{1+\epsilon} \tag{44}$$

where $K(\epsilon)$ is a constant depending of ϵ equal to $6^{1+\epsilon}.e^{\left(\frac{1}{\epsilon^2} - \epsilon\right)}$.

References

- 1. Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
- 2. Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).
- 3. Mihăilescu P.: Around ABC. European Mathematical Society Newsletter \mathbf{N}° 93, September 2014. 29-34, (2014)