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1 Abstract

Legendre's conjecture, states that there is a prime number between n2 and
(n+ 1)2 for every positive integer n. In this paper, an equation was derived
that accurately determines the number of prime numbers less than n for large
values of n. Then, using this equation, it was proven by induction that there
is at least one prime number between n2 and (n+ 1)2 for all positive integers
n thus proving Legendre's conjecture for su�ciently large values n. The error
between the derived equation and the actual number of prime numbers less
than n was empirically proven to be very small (0.291% at n = 50,000), and
it was proven that the size of the error declines as n increases, thus validating
the proof.

2 Functions

Before we get into the proof, let me de�ne a few functions that are necessary.
Let the function l(x) represent the largest prime number less than x. For

example, l(10.5) = 7, l(20) = 19 and l(19) = 17.
Let the function λ(x) represent the largest prime number less than or

equal to x. For example, λ(10.5) = 7, λ(20) = 19 and λ(23) = 23.
Let the function zp(n) equal the number of odd integers less than or

equal to n that are evenly divisible by p and not equal to p, and not evenly
divisible by another prime number less than p. For example z5(25) = 1 since,
excluding 5, there are only 2 odd integers {15, 25} less than or equal to 25
that are evenly divisible by 5 and only one of them {25} is not divisible by
a prime lower than 5.
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Let the function k(n) represent the number of composite numbers in the
set of odd integers less than or equal to n excluding 1. For example, k(15) = 2
since there are two composite numbers 9 and 15 that are less than or equal
to 15.

Therefore, if there are x elements in the set of odd integers less than n,
then π(n) = x− k(n) where π(n) is the number of prime numbers less than
n, the prime counting function.

3 Introduction

Legendre's conjecture, proposed by Adrien-Marie Legendre (1752-1833), states
that there is a prime number between n2 and (n + 1)2 for every positive in-
teger n. The conjecture is one of Landau's four problems (1912) on prime
numbers [1]. The Legendre conjecture is the simplest of the Landau prob-
lems, and because all the Landau problems are related, a proof of Legendre's
conjecture may lead to proofs of the other problems. As of this paper, all of
Landau's problems are unproven.

A graph of the number of primes between n2 and (n+ 1)2 (Figure 1) for
all n from 2 to 10,000 shows that the number of primes steadily increase with
increasing n. This is an indication that Legendre's conjecture is likely true.

In order for Legendre's conjecture to be false, there must be a prime gap
g larger than 2n+ 1, the di�erence between n2 and (n+ 1)2. The gap must
start at prime p, such that p < n2 and p + g > (n + 1)2. For example, if
n = 100, the distance between n2 and (n + 1)2 is 201. The �rst prime gap
over 201 occurs at p = 20, 831, 323 [2] which is well beyond n2 or 10,000.
For n = 500, the distance is 1001, and the �rst prime gap greater than 1001
occurs at p = 1, 693, 182, 318, 746, 371 [2] which is even further beyond n2 or
250,000. The prime gaps of size 2n+1 start at a p >> n2, another indication
that Legendre's conjecture is very likely true.

A heuristic proof can be performed using the prime number theorem

which states that n
ln(n)

limn→∞ = π(n). It can easily be proven that (n+1)2

ln((n+1)2)
−

n2

ln(n2)
> 1 for all n > 2. Therefore at a su�ciently large value of n, Legendre's

Conjecture is true. However, the error between n
ln(n)

and π(n) is quite large

(>10% error for n = 50, 000) . So the question arises, what value of n is
su�ciently large? Also, for a given value of n with a small % error, it is
di�cult to prove that the error will not spike to >100% at some greater
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Figure 1: The number of primes between n2 and (n+ 1)2 steadily increases
with increasing n.

value of n. These reasons make it di�cult to accept a proof of Legendre's
conjecture based on the prime number theorem.

4 Methodology

To calculate the number of primes between n2 and (n+1)2, we need a function
that accurately predicts the number of primes less than n. Although the
prime number theorem states that n

ln(n)
limn→∞ = π(n), this equation di�ers

signi�cantly from π(n) even for very large values of n. At n = 1, 000, 000,
the value of n

ln(n)
underestimates π(n) by 7.8%. Even at n = 100, 000, 000,

the value of n
ln(n)

underestimates π(n) by 5.8%. Because the error is so large
and it is di�cult to calculate the precise error for a given value of n, a better
equation for π(n) is necessary.

In this paper, an equation is derived that more precisely determines the
number of prime numbers less than n, and as n increases, the accuracy of
the equation increases very rapidly. Then, using this equation, it is proven
by induction that there is at least one prime number between n2 and (n+1)2

thus proving the Legendre conjecture is true.
To derive an equation to determine the number of prime numbers less

than n, we start with the set of all integers less than n excluding 1. Then we
remove all the even integers from the set. Then we remove all the integers
evenly divisible by 3 from the set. Then we remove all the integers evenly
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divisible by 5, 7, 11, 13 ... λ(
√
n) where λ(

√
n) is the largest prime number

less than or equal to
√
n. We only have to go up to λ(

√
n) because there are

no prime numbers greater than
√
n that evenly divide n that are not evenly

divisible by a lower prime number. By summing up the number of composite
numbers in the set of odd numbers less than n and subtracting this from
the total number of odd numbers less than n, gives us the number of prime
numbers less than n.

Let In represent the set of all integers less than or equal to integer n
excluding 1 as shown below.

In = {2,3, 4 ,5, 6 ,7, 8 ,9, 10 ,11, 12 ,13, 14 ,15, 16 ,17, 18 ,19, 20 ,21,. . . n}
Let the function z2(n) equal the number of integers in In that are evenly

divisible by 2 excluding 2. Notice that every other element beginning with
4 (highlighted in yellow), is divisible by 2. Thus, the number of elements
evenly divisible by 2, excluding 2 is de�ned as follows:

z2(n) = bn
2
c − 1

Notice that 1 is subtracted from bn
2
c since we are excluding 2 from the set of

integers evenly divisible by 2.
As n→∞, the number of even integers in In approaches n/2. This gives

us the following equation:

z2(n) limn→∞ = n
2
.

In the set of integers In, every third element starting with 6 (highlighted
in yellow), is evenly divisible by 3.

In = {2,3,4,5, 6 ,7,8, 9 ,10,11, 12 ,13,14, 15 ,16,17, 18 ,19,20, 21 ,. . . n}
However, the integers 6, 12, 18, etc. are even, so to avoid double counting,

we have to subtract these values out. Let the function z3(n) equal the number
of integers in In that are evenly divisible by 3 excluding 3, and not even. This
gives us the following equation:

z3(n) = bn
3
c − bn

6
c − 1.

Notice that 1 is subtracted since we are excluding 3 from the set of integers
evenly divisible by 3.

As n→∞, z3(n) approaches the following equation:

z3(n) limn→∞ = (1
2
)(n

3
)
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This equation states that as n gets large, the number of odd integers ap-
proaches n/2, and one third of them are evenly divisible by 3.

Looking at those elements in In that are evenly divisible by 5 but not
including 5, we notice that every �fth element after 5 (highlighted in yellow)
beginning with 10, is divisible by 5.

{2,3,4,5,6,7,8,9, 10 ,11,12,13,14, 15 ,16,17,18,19, 20 ,21,22,23,24, 25 ,26,27,
28,29, 30 ,31,32,33,34, 35 ,36,37,. . . ,n}
But notice that, of the set of elements divisible by 5, every other element

is evenly divisble by 2 and every third element is evenly divisible by 3. There
are some elements that are divisible by both 2 and 3. So to avoid double
counting, we have to subtract the elements evenly divisible by 2 and 3 with-
out double counting the elements divisible by both 2 and 3. Let the function
z5(n) equal the number of odd integers less than or equal to n that are evenly
divisible by 5 excluding 5, but not evenly divisible by 3 or 2. Using the prin-
ciple of inclusion/exclusion [3], we get the following equation for z5(n):

z5(n) = bn
5
c − (b n

10
c+ b n

15
c) + b n

30
c − 1

As n→∞, z5(n) approaches the following equation:

z5(n) limn→∞ = (1
2
)(2

3
)(n

5
)

This equation states that as n gets large, of the odd integers that are not
evenly divisible by 3, one �fth of them are evenly divisible by 5.

Looking at those elements in In that are evenly divisible by 7, we notice
that every seventh element after 7 beginning with 14, is divisible by 7.

But notice that every other element is divisible by 2, and every third
element (yellow) is divisible by 3 and every �fth element (green) is divisible
by 5.

{14, 21 ,28, 35 , 42 ,49,56, 63 , 70 ,77, 84 ,91,98, 105 ,112,119, 126 ,133, 140 ,
147 ,154,161, 168 , 175 ,182, 189 ,196. . . n}

So to avoid double counting, we have to subtract the elements evenly
divisible by 2, 3 or 5 without double counting the elements. Let the function
z7(n) equal the number of odd integers less than or equal to n that are evenly
divisible by 7 excluding 7, but not evenly divisible by 2,3 or 5. Using the
principle of inclusion/exclusion, we get the following equation for z7(n):
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z7(n) = bn
7
c − (b n

14
c+ b n

21
c+ b n

35
c) + (b n

42
c+ b n

70
c+ b n

105
c)− b n

210
c − 1

As n→∞, z7(n) approaches the following equation:

z7(n) limn→∞ = (1
2
)(2

3
)(4

5
)(n

7
)

This equation states that as n gets large, of the odd integers that are not
evenly divisible by 3 or 5, one seventh of them are evenly divisible by 7.

The general formula for the number of elements in In that are evenly
divisible by prime number p excluding p, and not evenly divisible by a prime
number less than p is as follows:

zp(n) limn→∞ = (1
2
)(2

3
)(4

5
)(6

7
)(10

11
). . . ( (l(p)−1)

l(p)
)(n
p
)

or

zp(n) lim
n→∞

= (
n

p
)

l(p)∏
q=2

q prime

(q − 1)

q

The total number of composite numbers in the set of odd numbers less
than or equal to n, de�ned as k(n), is thus de�ned as follows:

k(n) limn→∞ = z2(n) + z3(n) + z5(n) + z7(n) + z11(n) + ...+ zλ(√n)(n)

Plugging in the values of zp(n) gives:

k(n) = n

λ(
√
n)∑

p=2
p prime

(
1

p
)

l(p)∏
q=2

q prime

(q − 1)

q


Let us de�ne the function W (x), which represents the fraction of the odd

numbers less than n that are composite numbers:

W (x) =
x∑
p=2

p prime

(
1

p
)

l(p)∏
q=2

q prime

(q − 1)

q


where x = λ(

√
n) and the sum and products are over prime numbers.

Then the equation for k(n) simpli�es to the following:
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k(n) = nW (λ(
√
n))

Let π∗(n) be the predicted number of prime numbers less than n for large
values of n. The number of primes less than n is the number of elements in
In minus k(n):

π∗(n) = |In| − k(n)
As n→∞, |In| approaches n, therefore

π∗(n) = n− k(n)
π∗(n) = n− nW (λ(

√
n))

π∗(n) = n(1−W (λ(
√
n)))

The equation for the number of primes less than n as n→∞ is:

π∗(n) = n(1−W (λ(
√
n))) (1)

To verify that no mistakes were made in the derivation of equation 1 and
to determine at what point the equation converges to the actual number of
prime numbers less than n, the actual number of primes less than n (blue)
was plotted against equation 1 (orange) in Figure 2A. Equation 1 slightly
underestimated the actual number of primes for n <= 5, 000, but for n <=
50, 000 in Figure 2B, the curves were virtually indistinguishable. The curve
for the actual number of primes less than n (blue) was made thicker so it
can be viewed since it was completely obscured by the number of primes
predicted by equation 1 (orange). The curve for the prime number theorem
n

ln(n)
(gray) was also included for comparison and grossly underestimates the

actual number of prime numbers less than n.
A graph of the absolute di�erence between equation 1 and the actual num-

ber of primes less than n for n = 20 to 50,000, shows that as n increases, the
error decreases (Figure 3). As n increases, the di�erence between equation
1 and the actual number of primes decreases down to 0.291% at n = 50, 000
(blue line). The di�erence between the prime number theorem n

ln(n)
and the

actual number of primes decreases at a much slower rate and at n = 50, 000,
the percent di�erence is 10% (orange line). More will be discussed about the
error later in this paper.

5 The Proof of Legendre's Conjecture

Now that we have an equation that accurately determines the number of
primes less than n for large values of n, we can prove Legendre's conjecture
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Figure 2: The actual number of primes less than n (blue) is slightly un-
derestimated by equation 1 (orange) for values of n up to 5,000 (A). But for
values of n up to 50,000, (B) the curves are virtually indistinguishable. The
curve for n/ln(n) (gray) was also included for comparison.

Figure 3: Comparison of equation 1 and n/ln(n) to the actual number of
primes less than n. As n increases, the di�erence between equation 1 and
the actual number of primes rapidly decreases (blue line). The di�erence
between n/ln(n) and the actual number of primes decreases at a much slower
rate (orange line).
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by induction. However, to perform proof by induction, we must �rst get
(1 − W (pi+1)) in terms of W (pi). To do this, we must look at the actual
values of (1−W (pi)).

1−W (2) = 1− (1
2
) = 1

2

1−W (3) = 1− (1
2
)− (1

2
)(1

3
) = (1

2
)(2

3
)

1−W (5) = 1− (1
2
)− (1

2
)(1

3
)− (1

2
)(2

3
)(1

5
) = (1

2
)(2

3
)(4

5
)

1−W (7) = 1− (1
2
)− (1

2
)(1

3
)− (1

2
)(2

3
)(1

5
)− (1

2
)(2

3
)(4

5
)(1

7
) = (1

2
)(2

3
)(4

5
)(6

7
)

Notice the value of 1 − W (pi+1) is the same as 1 − W (pi) minus (1 −
W (pi))(

1
pi+1

). Therefore, these equations for 1−W (pi) can recursively de�ned
as:

1−W (pi+1) = (1−W (pi))− (1−W (pi))(
1

pi+1

)

1−W (pi+1) = (1−W (pi))

(
1− (

1

pi+1

)

)

1−W (pi+1) = (1−W (pi))

(
(pi+1 − 1)

pi+1

)
(2)

or

1−W (p) =

p∏
q=2

q prime

(q − 1)

q

Using equation 1 to determine the number of primes less than n, we can
calculate the number of primes between n2 and (n + 1)2. If this number is
greater than or equal to 1 for all n, then we have proven Legendre's Conjec-
ture.

π∗(n2) = (n2)(1−W (λ(n)))
π∗((n+ 1)2) = ((n+ 1)2)(1−W (λ(n+ 1)))

There are two cases. The �rst case is where pi ≤ n < pi+1 − 1 in which case
λ(n) = λ(n + 1) = pi. The second case is where n = pi − 1 in which case
λ(n) = pi−1 and λ(n+ 1) = pi.

9



Case 1: Let us look at the case where pi ≤ n < pi+1 − 1.
Let us prove for all pi ≤ n < pi+1 − 1, there is at least 1 prime number
between n2 and (n + 1)2. That means the di�erence between π∗((n + 1)2)
and π∗(n2) must be greater than or equal to 1.

π∗(n2) = (n2)(1−W (λ(n)))
π∗((n+ 1)2) = ((n+ 1)2)(1−W (λ(n+ 1))) = ((n+ 1)2)(1−W (λ(n)))

Let ∆π(n2) be the di�erence between π((n+ 1)2) and π(n2).
∆π(n2) = π∗((n+ 1)2)− π∗(n2)
∆π(n2) = ((n+ 1)2)(1−W (λ(n)))− (n2)(1−W (λ(n)))
∆π(n2) = ((n+ 1)2 − n2)(1−W (λ(n)))
∆π(n2) = ((n2 + 2n+ 1)− n2)(1−W (λ(n)))

∆π(n2) = (2n+ 1)(1−W (λ(n))) (3)

To prove ∆π(n2) ≥ 1 for all pi ≤ n < pi+1 − 1, we will use induction.
Base case n = 3. Plugging 3 for n into equation 3 gives us the following:

∆π(n2) = (2n+ 1)(1−W (λ(n)))
∆π(22) = (2× 3 + 1)(1−W (λ(3)))
∆π(22) = (7)(1− (1

2
)− (1

2
)(1

3
))

∆π(22) = (7
3
) > 1

Assuming ∆π(n2) > 1 for all pi ≤ n < pi+1 − 1, we must prove that
∆π((n+ 1)2) > 1.
Plugging n+ 1 for n in equation 3 gives the following:

∆π(n2) = (2n+ 1)(1−W (λ(n)))
∆π((n+ 1)2) = (2(n+ 1) + 1)(1−W (λ(n+ 1)))
∆π((n+ 1)2) = (2n+ 3)(1−W (λ(n)))

Taking the ratio of ∆π((n+ 1)2)/∆π(n2) gives
∆π((n+ 1)2)/∆π(n2) = (2n+ 3)(1−W (λ(n)))/(2n+ 1)(1−W (λ(n)))

∆π((n+ 1)2)/∆π(n2) = (2n+3)
(2n+1)

> 1
This proves that for all pi ≤ n < pi+1 − 1 where p, there is at least 1 prime
number between n2 and (n+ 1)2. In fact, since ∆π((n+ 1)2) > ∆π(n2), this
proves that the number of primes between n2 and (n + 1)2 increases with
increasing n, which is corroborated by the data in Figure 1.

Case 2: Let us look at the case where n = p− 1.
π∗(n2) = (n2)(1−W (λ(n)))
π∗((n+ 1)2) = ((n+ 1)2)(1−W (λ(n+ 1)))
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Suppose n = pi+1 − 1, then λ(n) = pi and λ(n+ 1) = pi+1.
Substituting pi for λ(n) and substituting pi+1 for λ(n+1) gives the following:

π∗(n2) = (n2)(1−W (pi))
π∗((n+ 1)2) = ((n+ 1)2)(1−W (pi+1))

π∗((n+ 1)2) = ((n+ 1)2)( (pi+1−1)
pi+1

)(1−W (pi)) using equation 2

Let ∆π(n2) be the di�erence between π∗(n2) and π∗((n+ 1)2).
∆π(n2) = π∗((n+ 1)2)− π∗(n2)

∆π(n2) = ((n+ 1)2)( (pi+1−1)
pi+1

)(1−W (pi))− (n2)(1−W (pi))

∆π(n2) = ( (n+1)2(pi+1−1)
pi+1

− n2)(1−W (pi))
Substituting n with pi+1 − 1 gives the following:

∆π(n2) = (
p2i+1(pi+1−1)

pi+1
− (pi+1 − 1)2)(1−W (pi))

∆π(n2) = (p2i+1 − pi+1 − (p2i+1 − 2pi+1 + 1))(1−W (pi))
∆π(n2) = (p2i+1 − pi+1 − p2i+1 + 2pi+1 − 1))(1−W (pi))
∆π(n2) = (pi+1 − 1)(1−W (pi))

∆π(n2) = (pi+1 − 1)(1−W (pi)) (4)

To prove ∆π(n2) ≥ 1 for all n = pi+1 − 1, we will use induction.
Base case pi+1 = 3, pi = 2 and n = pi+1 − 1 = 2.
Plugging 2 for n, and 3 for pi+1 and 2 for pi into equation 4 gives:

∆π(22) = (3− 1)(1−W (2))
∆π(22) = 2(1− (1

2
))

∆π(22) = 1
Assuming ∆π(n2) > 1 for all n = pi+1 − 1
we must prove ∆π(n2) > 1 for all n = pi+2 − 1

∆π((pi+2 − 1)2) = (pi+2 − 1)(1−W (pi+1))

∆π((pi+2 − 1)2) = (pi+2 − 1)( (pi+1−1)
pi+1

)(1−W (pi)) using equation 2

∆π((pi+2 − 1)2) = (pi+2−1)
pi+1

(pi+1 − 1)(1−W (pi))

Since we know (pi+2−1)
pi+1

> 1 and we assumed (pi+1 − 1)(1 −W (pi)) > 1, the
product must be greater than 1. This proves that for all n = p− 1 where p
is a prime number, there is at least 1 prime number between n2 and (n+ 1)2

and that the number of prime numbers between n2 and (n+1)2 also increases
with increasing n.
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6 Error Analysis

Unlike the prime number theorem, equation 1 is very accurate (0.291% error
at n = 50, 000) and the limits on the error can be precisely determined.
Figure 3 shows that the relative di�erence between the actual number of
primes and the number of primes predicted by equation 1, decreases as n
increases. This is expected since the limit n → ∞ was used to estimate
number of composite numbers less than n. However, a �gure does not make
a proof. To prove the error does decreases as n increases, we have to look at
each source of error in the derivation of equation 1.

The W (
√
n) function estimates the fraction of composite integers less

than n. Determining the di�erence between W (
√
n) and the actual number

of composite integers less than n will determine the error in the π∗(n) func-
tion. Then proving that this error declines with increasing n will con�rm
the proof of Legendre's conjecture. Expanding the W(x) function, gives the
following equation:

W (λ(
√
n)) = (1

2
)+(1

2
)(1

3
)+(1

2
)(2

3
)(1

5
)+(1

2
)(2

3
)(4

5
)(1

7
)+...+ 1

λ(
√
n)

∏l(λ(
√
n))

q=2 ( q−1)
q

).
where the product is over prime numbers.

The �rst fraction (1
2
), is an estimate for the fraction of elements in In that

are evenly divisible by 2, excluding 2. This means that (1
2
) is an estimate

for z2(n)/n, or (n
2
) is an estimate for z2(n). The di�erence between (n

2
) and

z2(n) is the error. A graph of di�erence between (n
2
) and z2(n) (Figure 4A)

shows that the di�erence is either 1 or 1.5 depending on whether n is even or
odd. This di�erence occurs because 2 is excluded in z2(n) giving a di�erence
of 1, and if n is odd and addition 0.5 is added to the error. Though there
will always be an absolute error of 1 or 1.5, as n gets large, the relative error
(Figure 4B) becomes insigni�cant.

The next pair of fractions is (1
2
)(1

3
) or (1

6
). This is an estimate for the

number of elements in In that are evenly divisible by 3 and not evenly divisible
by 2, excluding 3. This means that (1

6
) is an estimate for z3(n)/n, or (n

6
) is an

estimate for z3(n). A graph of di�erence between z3(n) and (n
6
) (Figure 4C)

shows that the di�erence ranges from (1/2) to (4/3). The average di�erence is
11/12 and the curve is cyclical with a period of 6. That means the di�erence
between z3(n) and (n

6
) is the same as the di�erence between z3(n + 6) and

(n+6
6

). Though there will always be an absolute error of at least (1/2), as n
gets large, the relative error (Figure 4D) becomes insigni�cant.

The next set of fractions is (1
2
)(2

3
)(1

5
) or ( 2

30
). This is an estimate for
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Figure 4: Graph of the error from estimating the fraction of elements evenly
divisible by 2 as 1/2 (A and B) and the fraction of elements evenly divisible
by 3, 5 and 7 as 1/3, 1/5 and 1/7 respectively (C through H). The red line
denotes the average error.

13



the number of elements in In that are evenly divisible by 5 and not 3 or 2,
excluding 5. This means that ( 2

30
) is an estimate for z5(n)/n, or ( n

15
) is an

estimate for z5(n). A graph of di�erence between z5(n) and ( n
15

) (Figure 4E)
shows that the di�erence ranges from (1/3) to (8/5). The average di�erence is
29/30 and the curve is cyclical with a period of 30. That means the di�erence
between z5(n) and ( n

15
) is the same as the di�erence between z5(n + 6) and

(n+6
15

). Though there will always be an absolute error of at least (1/3), as n
gets large, the relative error (Figure 4F) becomes insigni�cant.

For the set of fractions (1
2
)(2

3
)(4

5
)(1

7
) or 8

210
, the average di�erence between

this and z7(n) is 1− (1
2
)( 8

210
) or (103

105
) with a period of 210.

For all prime numbers p > 2, the general formula for the average di�er-
ence, εp(n), between 1

p

∏l(p)
q=2(

q−1)
q

) and zp(n) is given by the equation below.

εp(n) = 1− 1

2p

l(p)∏
q=2

(
q − 1)

q
)

For p = 2, the average di�erence between 1
2
and z2(n) is 1.25.

The general formula for the period Pp of εp(n) is given by

Pp =

p∏
q=2

q

Since the average di�erence is always less than 1 for p > 2, estimating
the average di�erence of 1, errs on the side of caution. Using an error of
1.25 for p = 2 and an error of 1 for p > 2, we can combine all the curves
in Figure 4 to get a combined average error (Figure 5A) and the combined
average relative error (Figure 5B).

The formula for the curve of the combined error E(n) in Figure 5A is

E(n) = (1/4) + π(λ(
√
n))

where π is the prime counting function.

The formula for the curve of the combined relative eror RE(n) in Figure
5B is

RE(n) =
(1/4) + π(λ(

√
n))

n

Since we know that π(n)
n

goes to 0 as n increases, then the error π(λ(
√
n))

n

must also go to 0 as n increases. Therefore, the error declines as n increases.
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Figure 5: Graph of the combined errors in Figure 4. Graph of the absolute
error 5A and graph of the relative error 5B.

7 Summary

In summary, the following equation was derived that accurately determines
the number of prime numbers less than n for large values of n.

π∗(n) = n(1−W (λ(
√
n)))

where λ(
√
n) is the largest prime number less than or equal to

√
n and W (x)

is de�ned as follows:

W (x) =
x∑
p=2

p prime

(
1

p
)

l(p)∏
q=2

q prime

(q − 1)

q


where x is a prime number, l(p) is the largest prime number less than p, and
the sum and products are over prime numbers.

It was then proven by induction, that the number of prime numbers
between n2 and (n + 1)2 is greater than 1 for all positive integers n, thus
con�rming the Legendre Conjecture.

It was empirically shown that the error between equation 1 and the actual
number of primes less than n is very small (ε = 0.291% for n = 50, 000). It
was proven that the relative error in the W (λ(

√
n)) approaches 0 as n→∞.
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8 Future Directions

Future work will involve applying this technique to prove other prime number
conjectures such as the Twin Prime Conjecture and Polignac's Conjecture [4].
Polignac's Conjecture states that there is an in�nite number of prime pairs
(p1, p2) such that |p2 − p1| = 2i where i is an integer greater than 0. The
Twin Prime Conjecture is the case where i = 1.

To prove the Twin Prime conjecture, we need to �nd the number of twin
primes less than an integer n, (π2(n)) . To do this, we �rst pair odd numbers
(x, y) such that x+2 = y and y <= n. For example, (3,5),(5,7),(7,9),(9,11)...,(n-
4,n-2),(n-2,n). Then by eliminating pairs that are divisible by 3, 5, 7, 11 etc,
the remaining pairs are twin primes.
The number of twin primes less than n will approach the following equation
as n gets large:

π2(n) = P (1− 2W (λ(
√
n)))

where

W (x) =
x∑
p=3

p prime

(1/p)

l(p)∏
q=3

q prime

(q − 2)

q
.

Using proof by induction, it can be shown that the number of twin primes
increases inde�nitely as n increases.
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