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1 Abstract

Legendre's conjecture, states that there is a prime number between n2 and
(n+ 1)2 for every positive integer n. In this paper, an equation was derived
that accurately determines the number of prime numbers less than n for
large values of n. Then it is proven by induction that there is at least one
prime number between n2 and (n+1)2 for all positive integers n thus proving
Legendre's conjecture.

2 Functions

Before we get into the proof, let me de�ne a few functions that are necessary.
Let the function l(x) represent the largest prime number less than x. For

example, l(10.5) = 7, l(20) = 19 and l(19) = 17.
Let the function λ(x) represent the largest prime number less than or

equal to x. For example, λ(10.5) = 7, λ(20) = 19 and λ(23) = 23.
Let the function k(n) represent the number of composite numbers in the

set of odd integers less than or equal to n excluding 1. For example, k(15) = 2
since there are two composite numbers 9 and 15 that are less than or equal
to 15.

Let the function π(n) represent the number of prime numbers in the set
of odd integers less than or equal to n. For example, π(15) = 5 since there
are 5 prime numbers {3,5,7,11,13} that are less than or equal to 15.

Therefore, if there are P elements in the set of odd integers less than n,
then π(n) = P − k(n).
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Figure 1: The number of primes between n2 and (n+ 1)2 steadily increases
with increasing n.

3 Methodology

Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there
is a prime number between n2 and (n+ 1)2 for every positive integer n. The
conjecture is one of Landau's problems (1912) on prime numbers.

A quick look at the prime numbers between n2 and (n + 1)2 shows that
validity of Legendre's conjecture is very plausible (Figure 1). The di�erence
between n2 and (n+ 1)2 and the number of primes between n2 and (n+ 1)2

steadily increase with increasing n. For n = 999, the di�erence between 9992

and 10002 is 1999 and there are 139 primes between them. For n = 9, 999, the
di�erence between 9, 9992 and 10, 0002 is 19,999 with 1077 primes between
them.

To calculate the number of primes between n2 and (n + 1)2, we need
a formula that accurately predicts the number of primes less than n. Al-
though the prime number theorem states that π(n) limn→∞ = n/ln(n), this
equation di�ers signi�cantly from π(n) even for very large values of n. At
n = 1, 000, 000, the value of n/ln(n) underestimates π(n) by 7.8%. Even
at n = 100, 000, 000, the value of n/ln(n) underestimates π(n) by 5.8%. A
better equation for π(n) is necessary.

In this paper, an equation is derived that determines the number of prime
numbers less than n and, as n increases, the accuracy of the equation in-
creases very rapidly. Then by induction, it is shown that there is at least one
prime number between n2 and (n+ 1)2 thus proving the Legendre conjecture

2



is true.
To derive an equation to determine the number of prime numbers less

than n, we start with the set of all odd numbers less than n. Then all the
composite numbers in the set that are evenly divisible by 3 are identi�ed.
Then all the composite numbers evenly divisible by 5, 7, 11 ... λ(

√
n) are

identi�ed where λ(
√
n is the largest prime number less than or equal to n.

We only have to go up to λ(
√
n) because there are no prime numbers greater

than
√
n that evenly divide n that are not evenly divisible by a lower prime

number. By summing up the number of composite numbers in the set of
odd numbers less than n and subtracting this from the total number of odd
numbers less than n, gives us the number of prime numbers less than n.

Let us start with the set of all odd integers less than or equal to integer
n excluding 1 as shown below.
{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,. . . n}

If n is odd, there are (n − 1)/2 elements in the list. If n is even, there
are (n− 2)/2 elements in the list with n− 1 as the largest element. In either
case, as n→∞, the number of elements in the list approaches n/2.

Looking at those elements in the set that are divisible by 3, we notice
that every third element after 3 (highlighted in yellow) beginning with 9, is
divisible by 3.

{3,5,7, 9 ,11,13, 15 ,17,19, 21 ,23,25, 27 ,29,31, 33 ,35,37,. . . n}
Thus, as n→∞, the number of elements evenly divisible by 3, approaches

the following equation:

Number of elements divisible by 3 limn→∞ = (n/2)(1/3)

Looking at those elements in the set that are divisible by 5, we notice
that every �fth element after 5 (highlighted in yellow) beginning with 15, is
divisible by 5.

{3,5,7,9,11,13, 15 ,17,19,21,23, 25 ,27,29,31,33, 35 ,37,. . . ,n}
But notice that, of the set of elements divisible by 5, every third element

is also divisible by 3.
{ 15 ,25,35, 45 ,55,65, 75 ,85,95, 105 ,. . . ,n}
So to avoid double counting, we must multiply the number of elements

evenly divisible by 5 by (2/3) giving the following equation:

Number of elements divisible by 5 and not 3 limn→∞ = (n/2)(2/3)(1/5)
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Looking at those elements in the set that are divisible by 7, we notice
that every seventh element after 7 (highlighted in yellow) beginning with 21,
is divisible by 7.

But notice that every 3rd element (yellow) is also divisible by 3 and every
5th element (green) is divisible by 5.

{ 21 ,35,49, 63 ,77,91, 105 ,119,133, 147 ,161,175. . . n}
{21, 35 ,49,63,77,91, 105 ,119,133,147,161, 175 . . . n}

So to avoid double counting, we must multiply the number of elements
evenly divisible by 7 by (2/3) and (4/5) giving the following equation:

Number of elements divisible by 7 and not 5 or
3 limn→∞ = (n/2)(2/3)(4/5)(1/7)

The general formula for the number of elements in the set of odd numbers
less than n that are evenly divisible by prime number p and no lower prime
number as n→∞ is as follows:

Number of elements divisible only by
p limn→∞ = (n/2)(2/3)(4/5)(6/7)(10/11). . . ((l(p)− 1)/l(p))(1/p)

or
Number of elements divisible only by p limn→∞ = (n/2)(1/p)

∏l(p)
q=3(q − 1)/q

The total number of composite numbers in the set of odd numbers less
than or equal to n, de�ned as k(n), is thus de�ned as follows:
k(n) = (n/2){1/3 + (2/3)(1/5) + (2/3)(4/5)(1/7) + (2/3)(4/5)(6/7)(1/11) +
. . . + (2/3)(4/5)(6/7)(10/11). . . ((l(λ(

√
n))− 1)/l(λ(

√
n)))(1/λ(

√
n))}

This can be written as

k(n) = (n/2)
∑λ(

√
n))

p=3 (1/p)
∏l(p)

q=3(q − 1)/q

Let us de�ne the function W (x) as follows:

W (x) =
∑x

p=3(1/p)
∏l(p)

q=3(q − 1)/q

where x is a prime number and the sum and products are over prime numbers.
Then the equation for k(n) simpli�es to the following:

k(n) = (n/2)W (λ(
√
n))
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Thus, the number of primes less than or equal to n limn→∞ is the total
number of odd numbers less than n minus k(n):
π(n) = (n/2)− k(n)
π(n) = (n/2)− (n/2)W (λ(

√
n))

π(n) = (n/2)(1−W (λ(
√
n)))

The equation for the number of primes less than n as n→∞ is:

Equation 1: π(n) = (n/2)(1−W (λ(
√
n)))

To verify that no mistakes were made in the derivation of equation 1 and
to determine at what point the equation converges to the actual number of
prime numbers less than n, the actual number of primes less than n (blue)
was plotted against equation 1 (orange) in Figure 2. Equation 1 slightly
underestimated the actual number of primes for n <= 5, 000, but for n <=
50, 000, the curves were virtually indistinguishable. The curve for the actual
number of primes less than n was made thicker so it can be viewed since it
was completely obscured by the number of primes predicted by equation 1.
The curve for n/ln(n) (gray) was also included for comparison and grossly
underestimates the actual number of prime numbers less than n.

A graph of the absolute di�erence between equation 1 and the actual
number of primes less than n for n = 20 to 50,000, shows that as n in-
creases, the error decreases (Figure 3). As n increases, the di�erence be-
tween equation 1 and the actual number of primes decreases down to 0.291%
at n = 50, 000 (blue line). The di�erence between the prime number the-
orem n/ln(n) and the actual number of primes decreases at a much slower
rate and at n = 50, 000, the percent di�erence is 10% (orange line). More
will be discussed about the error later in this paper.

4 The Proof of Legendre's Conjecture

Now that we have an equation that accurately determines the number of
primes less than n for large values of n, we can prove Legendre's conjecture
by induction. However, to perform proof by induction, we must �rst get
(1 − W (pi+1)) in terms of W (pi). To do this, we must look at the actual
values of (1−W (pi)).

1−W (3) = 1− (1/3) = 2/3

1−W (5) = 1 � (1/3) − (2/3)(1/5) = (2/3)(4/5)
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Figure 2: The actual number of primes less than n (blue) is slightly un-
derestimated by equation 1 (orange) for values of n up to 5,000 (A). But for
values of n up to 50,000, (B) the curves are virtually indistinguishable. The
curve for n/ln(n) (gray) was also included for comparison.

Figure 3: Comparison of equation 1 and n/ln(n) to the actual number of
primes less than n. As n increases, the di�erence between equation 1 and
the actual number of primes rapidly decreases (blue line). The di�erence
between n/ln(n) and the actual number of primes decreases at a much slower
rate (orange line).
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1−W (7) = 1 � (1/3) � (2/3)(1/5) − (2/3)(4/5)(1/7) = (2/3)(4/5)(6/7)

1−W (11) = 1 � (1/3) � (2/3)(1/5) - (2/3)(4/5)(1/7) −(2/3)(4/5)(6/7)(1/11) =

(2/3)(4/5)(6/7)(10/11)

Notice the value of 1−W (pi) (yellow) can be substituted into the green part
of 1−W (pi+1). Therefore, these equations can be simpli�ed to:

Equaton 2: 1−W (pi+1) = [(pi+1 − 1)/pi+1](1−W (pi))

Using equation 1 to determine the number of primes less than n, we can
calculate the number of primes between n2 and (n+ 1)2.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
There are two cases. The �rst case is where pi ≤ n < pi+1 − 1 in which case
λ(n) = λ(n + 1) = pi. The second case is where n = pi − 1 in which case
λ(n) = pi−1 and λ(n+ 1) = pi.

Case 1: Let us look at the case where pi ≤ n < pi+1 − 1.
Let us prove for all pi ≤ n < pi+1 − 1, there is at least 1 prime number
between n2 and (n+ 1)2. That means the di�erence between π((n+ 1)2) and
π(n2) must be greater than 1.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1))) = ((n+ 1)2/2)(1−W (λ(n)))
Let ∆π(n2) be the di�erence between π((n+ 1)2) and π(n2).
∆π(n2) = π((n+ 1)2)− π(n2)
∆π(n2) = ((n+ 1)2/2)(1−W (λ(n)))− (n2/2)(1−W (λ(n)))
∆π(n2) = {((n+ 1)2/2)− (n2/2)}(1−W (λ(n)))
∆π(n2) = {((n+ 1)2 − n2)/2)}(1−W (λ(n)))
∆π(n2) = {((n2 + 2n+ 1)− n2)/2)}(1−W (λ(n)))

Equation 3: ∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n)))

To prove ∆π(n2) > 1 for all pi ≤ n < pi+1 − 1, we will use induction.
Base case n = 3. Plugging 3 for n into equation 3 gives us the following:
∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n)))
∆π(32) = ((2× 3 + 1)/2)(1−W (λ(3)))
∆π(32) = (7/2)(1− (1/3))
∆π(32) = (7/2)(2/3)
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∆π(32) = (7/3) > 1

Let's assume ∆π(n2) = ((2n+ 1)/2)(1 −W (λ(n))) > 1 for all pi ≤ n <
pi+1 − 1
Prove that ∆π((n+ 1)2) > 1
Plugging n+ 1 for n in equation 3 gives the following:
∆π(n2) = ((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2) = ((2(n+ 1) + 1)/2)(1−W (λ(n+ 1)))
∆π((n+ 1)2) = ((2n+ 3)/2)(1−W (λ(n)))
Taking the ratio of ∆π((n+ 1)2)/∆π(n2) gives
∆π((n+1)2)/∆π(n2) = ((2n+ 3)/2)(1−W (λ(n)))/((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2)/∆π(n2) = ((2n+ 3)/2)/((2n+ 1)/2)
∆π((n+ 1)2)/∆π(n2) = (2n+ 3)/(2n+ 1) > 1
This proves that for all pi ≤ n < pi+1 − 1 where p is a prime number,
there is at least 1 prime number between n2 and (n + 1)2. In fact, since
∆π((n + 1)2) > ∆π(n2), this proves that the number of primes between n2

and (n + 1)2 increases with increasing n, which is corroborated by the data
in Figure 1.

Case 2: Let us look at the case where n = p− 1.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
Suppose n = pi+1 − 1, then λ(n) = pi and λ(n+ 1) = pi+1.
Substituting pi for λ(n) and substituting pi+1 for λ(n+1) gives the following:
π(n2) = (n2/2)(1−W (pi))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (pi+1))
π((n+ 1)2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi)) using equation 2
The di�erence between π(n2) and π((n+ 1)2) gives:
∆π(n2) = π((n+ 1)2)− π(n2)
∆π(n2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi))− [n2/2](1−W (pi))
= {((n+ 1)2)(pi+1 − 1)/pi+1 − n2}(1−W (pi))/2
Substituting n with pi+1 − 1 gives the following:
= {p2i+1(pi+1 − 1)/pi+1 − (pi+1 − 1)2}(1−W (pi))/2
= {p2i+1 − pi+1 − (p2i+1 − 2pi+1 + 1)}(1−W (pi))/2
= {p2i+1 − pi+1 − p2i+1 + 2pi+1 − 1)}(1−W (pi))/2
= {pi+1 − 1}(1−W (pi))/2
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Equation 4: ∆π(n2) = {pi+1 − 1}(1−W (pi))/2

To prove ∆π(n2) > 1 for all n = pi+1 − 1, we will use induction.
Base case pi+1 = 5, pi = 3 and n = pi+1 − 1 = 4.
Plugging 4 for n, and 5 for pi+1 and 3 for pi into equation 4 gives:
∆π(42) = (5− 1)(1−W (3))/2
∆π(42) = 4(1− (1/3))/2
∆π(42) = 4(2/3)/2
∆π(42) = 4/3 > 1

Assume ∆π(n2) > 1 for all n = pi+1 − 1
Prove ∆π(n2) > 1 for all n = pi+2 − 1
∆π((pi+2 − 1)2) = (pi+2 − 1)(1−W (pi+1))/2
∆π((pi+2 − 1)2) = (pi+2 − 1)((pi+1 − 1)/pi+1)(1−W (pi))/2 using equation 2
∆π((pi+2 − 1)2) = {(pi+2 − 1)/pi+1}{(pi+1 − 1)(1−W (pi))/2}
Since we know (pi+2−1)/pi+1 > 1 and we assumed (pi+1−1)(1−W (pi))/2 > 1,
the product must be greater than 1. This proves that for all n = p− 1 where
p is a prime number, there is at least 1 prime number between n2 and (n+1)2

and that the number of prime numbers between n2 and (n+1)2 also increases
with increasing n.

5 Error Analysis

This same analysis could be done with the prime number theorem and it
could be proven that (n+ 1)2/ln((n+ 1)2)− n2/ln(n2) > 1 for all n greater
than some value. However, the error between n/ln(n) and π(n) is very large
even when n is large. Also, it may be di�cult to prove that the error decreases
as n increases since the error decreases at such a slow rate. These factors
would make it di�cult for any proof using the prime number theorem to gain
acceptance.

However, equation 1 is very accurate at n = 50, 000 with an error of
0.291%. Figure 3 also shows that the absolute di�erence between the actual
number of primes and the number of primes predicted by equation 1, de-
creases as n increases. This is expected since the limit n → ∞ was used to
estimate number of composite numbers less than n. However, a �gure does
not make a proof. To prove the error does decreases as n increases, we have
to look at each source of error in the derivation of equation 1.
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The �rst source of error was the estimate for the number of elements in
the set of odd numbers less than or equal to n. For large values of n, this
was estimated as n/2 where the actual number of elements is (n− 1)/2 if n
is odd or (n − 2)/2 if n is even. The di�erence between n/2 and (n − 1)/2
or (n − 2)/2 is either 0.5 or 1.0. This is a static error and as n gets very
large, this error becomes insigni�cant since we are only trying to prove that
π((n+ 1)2) exceeds π(n2) by 1. For su�ciently large values of n, for example
at n = 10, 000 there are over 1000 primes between π((n+ 1)2) and π(n2), an
error of 0.5 or 1 will not invalidate the proof.

Expanding equation 1 out, we get:

π(n) = (n/2)−(n/2){1/3+(2/3)(1/5)+(2/3)(4/5)(1/7)+(2/3)(4/5)(6/7)(1/11)+
. . . + (2/3)(4/5)(6/7)(10/11). . . ((l(λ(

√
n))− 1)/l(λ(

√
n)))(1/λ(

√
n))}

The sources of error occur at the fractions 1/3, 1/5, 1/7, 1/11 etc... The
�rst fraction 1/3, is an estimate for the number of elements in the set of odd
integers less than or equal to n that are evenly divisible by 3. This is not a
static error since it depends on n. A graph of di�erence between the actual
fraction of elements evenly divisible by 3 excluding 3, versus 1/3 (Figure 4A)
shows that the di�erence decreases as n gets large. Only odd values of n
were plotted since even values of n have the same number of odd integers as
n − 1 and does not add additional information. The graph starts at n = 9
since W (λ(

√
n)) is not de�ned for values of n less than 9.

For example, for n = 9, there are 4 odd integers less than or equal to n, 1 of
which (9) is evenly divisible by 3. So the di�erence is (1/3)−(1/4) = 0.08333.
For n = 11, there are 5 odd integers less than or equal to n, 1 of which (9)
is evenly divisible by 3. So the di�erence is (1/3)− (1/5) = 0.13333.
For n = 13, there are 6 odd integers less than or equal to n, 1 of which (9)
is evenly divisible by 3. So the di�erence is (1/3)− (1/6)) = 0.16667.
For n = 15, there are 7 odd integers less than or equal to n, 2 of which (9,15)
are evenly divisible by 3. So the di�erence is (1/3)− (2/7) = 0.04762.

Though it is quite obvious that Figure 4A is a declining curve, to be rig-
orous, we must prove that the curve declines. Notice that in Figure 4A, the
local maxima occur at ni = 7 + 6i where i is an integer greater than or equal
to 0. The value of i also corresponds to the number of composite integers less
than n that are evenly divisible by 3. If we prove that the local maxima will
continually decrease ad infinitum, then this proves the curve in general will
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Figure 4: Graph of the error from estimating the fraction of elements evenly
divisible by 3 as 1/3 (A) and the fraction of elements evenly divisible by 3,
5, 7 and 11 as 1/3, 1/5, 1/7 and 1/11 respectively (B).

decline. Let the function f3(ni) represent the fraction of integers less than
ni that are evenly divisible by 3 excluding 3. Since ni is odd, the number of
odd integers less than ni is (ni − 1)/2.
f3(ni) = i/((ni − 1)/2)
f3(ni) = 2i/(ni − 1)

Looking at the local maxima, ni = 7 + 6i, the value of i is (ni − 7)/6.
Plugging (ni − 7)/6 into the above equation gives:
f3(ni) = 2[(ni − 7)/6]/(ni − 1)
f3(ni) = (ni − 7)/3(ni − 1)

Let the function ε3(ni) equal the di�erence between f3(ni) and (1/3) at
the local maxima.
ε3(ni) = ((1/3)− f3(ni))
ε3(ni) = ((1/3)− (ni − 7)/3(n1 − 1))

Let's de�ne ∆ε3(ni) as the di�erence between ε(ni+1) and ε(ni).
∆ε3(ni) = ((1/3)− (ni+1 − 7)/3(ni+1 − 1))− ((1/3)− (ni − 7)/3(ni − 1))
∆ε3(ni) = −(ni − 7)/3(ni − 1))− (ni+1 − 7)/3(ni+1 − 1))
Since ni+1 = ni + 6, we can substitute for ni+1 to get the following:
∆ε3(ni) = (ni − 7)/(ni − 1))− (ni + 6− 7)/(ni + 6− 1))
∆ε3(ni) = (ni − 7)/(ni − 1))− (ni − 1)/(ni + 5))
∆ε3(ni) = [(ni − 7)(ni + 5)− (ni − 1)2]/[(ni − 1)(ni + 5)]
∆ε3(ni) = [(n2

i − 2ni − 35)− (n2
i − 2ni + 1)]/[(ni − 1)(ni + 5)]
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∆ε3(ni) = −36/[(ni − 1)(ni + 5)]
Since ∆ε3(ni) is a negative number for all ni, the value of ε3(ni+1) < ε3(ni)
for all ni. This means that the error will continually decrease as n increases,
therefore, the error due to the approximation of 1/3 as the fraction of ele-
ments divisible by 3 decreases.

The next fraction in the equation is 2/3 which represents the number
of elements in the set of odd integers less than or equal to n that are not
evenly divisible by 3. The error in this estimate has the same magnitude as
the error 1/3 and since we have proven the error for 1/3 decreases, the error
for 2/3 must also decreases. The next fraction 1/5, is an estimate for the
number of elements in the set of odd integers less than or equal to n that are
evenly divisible by 5. As can be seen in Figure 4B, this curve also appears
to be declining with local maxima at ni = 13 + 10i. The same proof can
be performed by de�ning f5(n) and ε5(n) and ∆ε5(n). It can proven that
∆ε5(ni) = −120/[(ni − 1)(ni + 9)] which is also less than 0.

In fact, for all prime numbers p less than λ(
√
n), it can be proven that the

di�erence between 1/p and the fraction of odd integes less than or equal to n
that are evenly divisible by p, decreases as n increases. The local maxima will
occur at ni = (3p−2)+2p× i. The functions fp(n) and εp(n) and ∆εp(n) can
be de�ned and it can be proven that ∆εp(ni) = −6(p2−p)/[(ni−1)(ni+2p−1)]
which is less than 0 for all p. Therefore, εp(ni+1) < εp(ni) for all p.

Since all sources of error decline as n increases, the overall error must
decline as n increases. The local maxima may align in some areas and not
align in other areas resulting in peaks in Figure 3. However, since local
maxima of all the curves in Figure 4B decline with increasing n, subsequent
alignments of local maxima will result in peaks with a lower magnitude.

6 Summary

In summary, the following equation was derived that accurately determines
the number of prime numbers less than n for large values of n.

π(n) = (n/2)(1−W (λ(
√
n)))

where λ(
√
n) is the largest prime number less than or equal to

√
n and W (x)

is de�ned as follows:
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W (x) =
∑x

p=3(1/p)
∏l(p))

q=3 (q − 1)/q

where x is a prime number, l(p) is the largest prime number less than p, and
the sum and products are over prime numbers.

It was then proven by induction, that the number of prime numbers
between n2 and (n + 1)2 is greater than 1 for all positive integers n, thus
con�rming the Legendre Conjecture.

It was also shown that the error between equation 1 and the actual number
of primes less than n is very small (ε = 0.291% for n = 50, 000) and it was
proven that as n increases, the error decreases.
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