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1 Abstract

Legendre's conjecture, states that there is a prime number between n2 and
(n+ 1)2 for every positive integer n. In this paper, an equation was derived
that determines the number of prime numbers less than n for large values
of n. Then it is proven by mathematical induction that there is at least 1
prime number between n2 and (n+1)2 for all positive integers n thus proving
Legendre's conjecture.

2 Functions

Before we get into the proof, let me de�ne a few functions that are necessary.
Let the function l(x) represent the largest prime number less than x. For

example, l(10.5) = 7, l(20) = 19 and l(19) = 17.
Let the function λ(x) represent the largest prime number less than or

equal to x. For example, λ(10.5) = 7, λ(20) = 19 and λ(23) = 23.
Let the function k(n) represent the number of composite numbers in

the set of odd numbers less than or equal to n excluding 1. For example,
k(15) = 2 since there are two composite numbers 9 and 15 that are less than
ot equal to 15.

Let the function π(n) represent the number of prime numbers in the set
of odd numbers less than or equal to n. For example, for n = 15, π(n) = 5
since there are 5 prime numbers {3,5,7,11,13} less than 15.

Let capital P represent the number of all the odd integers less than n
excluding 1.

Therefore π(n) = P − k(n).
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3 Methodology

Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there
is a prime number between n2 and (n+ 1)2 for every positive integer n. The
conjecture is one of Landau's problems (1912) on prime numbers. In this
paper, an equation is derived to determine the number of prime numbers less
than n2. Then by mathematical induction, it is shown that there is at least
1 prime between n2 and (n+1)2 thus proving the Legendre conjecture is true.

Let us start with the list all odd numbers less than n excluding 1 as shown
below. {3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,. . . n}
There are P = (n-1)/2 numbers in the list.
Excluding 3, every third number (highlighted in yellow) beginning with 9 is
divisible by 3.
3,5,7, 9 ,11,13, 15 ,17,19, 21 ,23,25, 27 ,29,31, 33 ,35,37,. . . n
Number of numbers divisible by 3 limn→∞ = P/3

Excluding 5, every �fth number beginning with 15 is divisible by 5.
{3,5,7,9,11,13, 15 ,17,19,21,23, 25 ,27,29,31,33, 35 ,37,. . . ,n}
But notice that, of the set of numbers divisible by 5, every third number is
also divisible by 3.
{ 15 ,25,35, 45 ,55,65, 75 ,85,95, 105 ,. . . ,n}
So to avoid double counting, we must multiply by (2/3) giving the following:
Number of numbers divisible by 5 and not 3 limn→∞ = P (2/3)(1/5)

Excluding 7, every seventh number beginning with 21 is divisible by 7.
But notice that every 3rd number (yellow) is also divisible by 3 and every
5th number (green) is divisible by 5.
{ 21 ,35,49, 63 ,77,91, 105 ,119,133, 147 ,161,175. . . n}
{21, 35 ,49,63,77,91, 105 ,119,133,147,161, 175 . . . n}
So to avoid double counting, we must multiply by (2/3) and (4/5) giving the
following:
The number of numbers divisible by 7 and not 5 or 3 limn→∞ = P (2/3)(4/5)(1/7)

The general formula for the number of numbers divisible by prime num-
ber p but not equal to p as n→∞ is as follows:
Number of numbers divisible only by p limn→∞ = P (2/3)(4/5)(6/7)(10/11). . . ((l(p)−
1)/l(p))(1/p)
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Number of numbers divisible only by p limn→∞ = P (1/p)
∏l(p)

q=3(q − 1)/q

The total number of composite numbers in the set of odd numbers less
than or equal to n, de�ned as k(n), is thus de�ned as follows:
k(n) = P{1/3+(2/3)(1/5)+(2/3)(4/5)(1/7)+(2/3)(4/5)(6/7)(1/11)+ . . . +
(2/3)(4/5)(6/7)(10/11). . . ((l(λ(

√
n))− 1)/l(λ(

√
n)))(1/λ(

√
n))}

This can be written as
k(n) = P

∑λ(
√
n))

p=3 (1/p)
∏l(p)

q=3(q − 1)/q
Let us de�ne the function W (x) as follows:

W (x) =
∑x

p=3(1/p)
∏l(p)

q=3(q − 1)/q

where x is a prime number and the sum and products are over prime numbers
Then the equation for k(n) simpli�es to the following:
k(n) = PW (λ(

√
n))

The number of primes less than or equal to n limn→∞ is:
π(n) = P − k(n)
= P − PW (λ(

√
n))

= P (1−W (λ(
√
n)))

As n approaches ∞, the value of P approaches (n/2). Substituting P with
(n/2) in the above equation gives the following equation for the number of
primes less than n as n approaches ∞.

Equation 1: π(n) = (n/2)(1−W (λ(
√
n)))

To verify that no mistakes were made in the derivation of equation 1, I
plotted the actual number of primes less than n (blue) against equation 1
(orange) in Figure 1. Equation 1 slightly underestimated the actual number
of primes for n <= 5, 000, but for n <= 50, 000, the curves were virtually
indistinguishable. The curve for the actual number of primes less than n
was made thicker so it can be viewed since it was completely hidden by the
number of primes predicted by equation 1.

4 The Proof of Legendre's Conjecture

In order to use proof by induction, we must �rst get (1− 2W (pi+1)) in terms
of W (pi). To do this, we must look at the actual values of 2W (pi).
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Figure 1: The actual number of primes less than n (blue) is slightly un-
derestimated by equation 1 (orange) for values of n up to 5,000 (A). But for
values of n up to 50,000, (B) the curves are virtually indistinguishable.

1−W (3) = 1− (1/3) = 2/3

1−W (5) = 1 � (1/3) − (2/3)(1/5) = (2/3)(4/5)

1−W (7) = 1 � (1/3) � (2/3)(1/5) − (2/3)(4/5)(1/7) = (2/3)(4/5)(6/7)

1−W (11) = 1 � (1/3) � (2/3)(1/5) - (2/3)(4/5)(1/7) −(2/3)(4/5)(6/7)(1/11) =

(2/3)(4/5)(6/7)(10/11)

Notice the value of 1−W (pi) (yellow) can be substituted into the green part
of 1−W (pi+1). Therefore, these equations can be simpli�ed to:

Equaton 2: 1−W (pi+1) = [(pi+1 − 1)/pi+1](1−W (pi))

Now that we have a formula for number of primes less than n, we can
calculate the number of primes between n2 and (n+ 1)2.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
There are two cases. The �rst case is where n 6= pi − 1 in which case
λ(n) = λ(n+1). The second case is where n = pi−1 in which case λ(n) = pi−1
and λ(n+ 1) = pi.

Case 1: Let us look at the case where n 6= p− 1.
Let us prove for all n 6= p − 1, there is at least 1 prime number between n2

and (n+ 1)2. That means the di�erence between π((n+ 1)2) and π(n2) must
be greater than 1.
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π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1))) = ((n+ 1)2/2)(1−W (λ(n)))
Let ∆π(n2) be the di�erence between π((n+ 1)2) and π(n2).
∆π(n2) = π((n+ 1)2)− π(n2)
∆π(n2) = ((n+ 1)2/2)(1−W (λ(n)))− (n2/2)(1−W (λ(n)))
∆π(n2) = {((n+ 1)2/2)− (n2/2)}(1−W (λ(n)))
∆π(n2) = {((n+ 1)2 − n2)/2)}(1−W (λ(n)))
∆π(n2) = {((n2 + 2n+ 1)− n2)/2)}(1−W (λ(n)))
∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n))) Equation 3
To prove ∆π(n2) > 1 for all n 6= p− 1, we will use mathematical induction.
Base case n = 3. Plugging 3 for n into equation 3 gives us the following:
∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n)))
∆π(32) = ((2× 3 + 1)/2)(1−W (λ(3)))
∆π(32) = (7/2)(1− (1/3))
∆π(32) = (7/2)(2/3)
∆π(32) = (7/3) > 1

Let's assume ∆π(n2) = ((2n+ 1)/2)(1−W (λ(n))) > 1 for all n 6= p− 1
Prove that ∆π((n+ 1)2) > 1
Plugging n+ 1 for n in equation 3 gives the following:
∆π(n2) = ((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2) = ((2(n+ 1) + 1)/2)(1−W (λ(n+ 1)))
∆π((n+ 1)2) = ((2n+ 3)/2)(1−W (λ(n)))
Taking the ratio of ∆π((n+ 1)2)/∆π(n2) gives
∆π((n+1)2)/∆π(n2) = ((2n+ 3)/2)(1−W (λ(n)))/((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2)/∆π(n2) = ((2n+ 3)/2)/((2n+ 1)/2)
∆π((n+ 1)2)/∆π(n2) = (2n+ 3)/(2n+ 1) > 1
This proves that for all n 6= p−1 where p is a prime number, there is at least
1 prime number between n2 and (n+ 1)2.

Case 2: Let us look at the case where n = p− 1.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
Suppose n = pi+1 − 1, then λ(n) = pi and λ(n+ 1) = pi+1.
Substituting pi for λ(n) and substituting pi+1 for λ(n+1) gives the following:
π(n2) = (n2/2)(1−W (pi))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (pi+1))
π((n+ 1)2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi)) using equation 2
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The di�erence between π(n2) and π((n+ 1)2) gives:
∆π(n2) = π((n+ 1)2)− π(n2)
∆π(n2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi))− [n2/2](1−W (pi))
= {((n+ 1)2)(pi+1 − 1)/pi+1 − n2}(1−W (pi))/2
Substituting n with pi+1 − 1 gives the following:
= {p2i+1(pi+1 − 1)/pi+1 − (pi+1 − 1)2}(1−W (pi))/2
= {p2i+1 − pi+1 − (p2i+1 − 2pi+1 + 1)}(1−W (pi))/2
= {p2i+1 − pi+1 − p2i+1 + 2pi+1 − 1)}(1−W (pi))/2
= {pi+1 − 1}(1−W (pi))/2
To prove ∆π(n2) > 1 for all n = pi+1−1, we will use mathematical induction.
Base case pi+1 = 5, pi = 3 and n = pi+1 − 1 = 4.
Plugging 4 for n, and 5 for pi+1 and 3 for pi gives:
∆π(42) = (5− 1)(1−W (3))/2
∆π(42) = 4(1− (1/3))/2
∆π(42) = 4(2/3)/2
∆π(42) = 4/3 > 1

Assume ∆π(n2) > 1 for all n = pi+1 − 1
Prove ∆π(n2) > 1 for all n = pi+2 − 1
∆π((pi+1 − 1)2) = (pi+1 − 1)(1−W (pi))/2
∆π((pi+2− 1)2) = {(pi+2− 1)(1−W (pi))(pi+1− 1)/pi+1}/2 Using equation 2
∆π((pi+2 − 1)2) = {(pi+2 − 1)/pi+1}{(pi+1 − 1)(1−W (pi))/2}
Since we know (pi+2−1)/pi+1 > 1 and we assumed (pi+1−1)(1−W (pi))/2 > 1,
the product must be greater than 1. This proves that for all n = p−1 where p
is a prime number, there is at least 1 prime number between n2 and (n+ 1)2.

5 Summary

In summary, I derived the following equation for the number of prime num-
bers less than n for large values of n.
π(n) = (n/2)(1−W (λ(

√
n)))

where λ(
√
n) is the largest prime number less than or equal to

√
n and W (x)

is de�ned as follows:
W (x) =

∑x
p=3(1/p)

∏l(p))
q=3 (q − 1)/q

where x is a prime number and the sum and products are over prime num-
bers.
I have proven by mathematical induction, that the number of prime num-
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bers between n2 and (n+1)2 is greater than 1 for all positive integers n, thus
con�rming the Legendre Conjecture.

6 Copyright Notice

This document is protected by U.S. and International copyright laws. Re-
production and distribution of this document or any part thereof without
written permission by the author (Kenneth A. Watanabe) is strictly prohib-
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