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Abstract

We first argue that three fundamental parameters defining transitions from
more general theories to less general ones are not (¢, i, G) ,where G is the grav-
itational constant, but (¢, h, R) where R is the parameter defining contraction
from the de Sitter (dS) or anti-de Sitter (AdS) algebra to the Poincare algebra.
This parameter is fundamental to the same extent as ¢ and A, i.e. a question
why R is as is does not arise, and the the answer is simply that R has its
value because we want to measure distances in meters. On classical level the
cosmological constant is A = +3/R? for dS and AdS spaces, respectively. As a
consequence of the fact that quantum dS and AdS symmetries are more general
than Poincare symmetry, the cosmological constant problem does not arise, A
is necessarily not zero and there is no need to involve dark energy for explain-
ing the cosmological acceleration. We consider a system of two free bodies in
dS invariant quantum mechanics and show that in semiclassical approximation
the dS repulsion is the same as in General Relativity. This result is obtained
without using geometry of dS space, metric and connection but simply as a
consequence of quantum dS symmetry.
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1 Brief overview of the cosmological constant prob-
lem and dark energy

The history of General Relativity (GR) is described in a vast literature. The La-
grangian of GR is linear in Riemannian curvature R., but from the point of view
of symmetry requirements there exist infinitely many Lagrangians satisfying such re-
quirements. For example, f(R.) theories of gravity are widely discussed, where there
can be many possibilities for choosing the function f. Then the effective gravitational
constant G.¢s can considerably differ from standard gravitational constant G. It is
also argued that GR is a low energy approximation of more general theories involv-
ing higher order derivatives. The nature of gravity on quantum level is a problem,
and standard canonical quantum gravity is not renormalizable. For those reasons the
quantity G can be treated only as a phenomenological parameter but not fundamental
one.



Let us restrict ourselves with the consideration of standard GR. Here the
Einstein equations depend on two arbitrary parameters G and A where A is the
cosmological constant (CC). In the formal limit of GR when matter disappears, space-
time becomes Minkowski space when A = 0, de Sitter (dS) space when A > 0, and
anti-de Sitter (AdS) space when A < 0.

Well known historical facts are that first Einstein included A because he
believed that the Universe should be stationary, and this is possible only if A # 0.
However, according to Gamow, after Friedman’s results and Hubble’s discovery of the
Universe expansion, Einstein changed his mind and said that inclusion of A was the
greatest blunder of his life but there are no independent confirmations of this phrase.

The usual philosophy of GR is that curvature is created by matter and
therefore A should be equal to zero. This philosophy has been advocated even in
standard textbooks written before 1998. For example, the authors of Ref. [1] say that
”...there are no convincing reasons, observational and theoretical, for introducing a
nonzero value of A” and that ”... introducing to the density of the Lagrange function
a constant term which does not depend on the field state would mean attributing to
space-time a principally ineradicable curvature which is related neither to matter nor
to gravitational waves”.

However, the data of Ref. [2] on supernovae have shown that A > 0 with
the accuracy better than 5%, and further investigations have improved the accuracy
to 1%. For reconciling this fact with the philosophy of GR, the terms with A in
the left-hand-sides of the Einstein equations have been moved to the right-hand-sides
and interpreted not as the curvature of empty space-time but as a contribution of
unknown matter called dark energy. Then, as follows from the experimental value
of A, dark energy contains approximately 70% of the energy of the Universe. At
present a possible nature of dark energy is discussed in a vast literature and several
experiments have been proposed.

Let us to note the following. In the formalism of GR the coordinates
and curvature are needed for the description of real bodies. One of fundamental
principles of physics is that definition of a physical quantity is the description on
how this quantity should be measured. In the Copenhagen formulation of quantum
theory measurement is an interaction with a classical object. Therefore in empty
space-time nothing can be measured, and the coordinates and curvature of empty
space-time have no physical meaning. This poses a problem whether the formal limit
of GR when matter disappears but space-time remains is physical. Some authors
(see e.g. Ref. [3]) propose approaches such that if matter disappears then space-time
disappears too.

The CC problem is as follows. In standard quantum field theory one starts
from the choice of the space-time background. By analogy with the philosophy of GR,
it is believed that the choice of the Minkowski background is more physical than the
choice of the dS or AdS one. Here the quantity G is treated as fundamental and
the value of A should be extracted from the vacuum expectation value of the energy-
momentum tensor. The theory contains strong divergencies and a reasonable cutoff
gives for A a value exceeding the experimental one by 120 orders of magnitude. This



result is expected because in units ¢ = i = 1 the dimension of G is m?2, the dimension
of A is m™2 and therefore one might think than A is of the order of 1/G what exceeds
the experimental value by 120 orders of magnitude.

Several authors argue that the CC problem does not exists. For exam-
ple, the authors of Ref. [4] titled ”Why all These Prejudices Against a Constant?”
note that since the solution of the Einstein equations depends on two arbitrary phe-
nomenological constants G and A it is not clear why we should choose only a special
case A = 0. If A is as small as given by in Ref. [2] then it has no effect on the
data in Solar System and the contribution of A is important only at cosmological
distances. Also theorists supporting Loop Quantum Gravity say that the preferable
choice of Minkowski background contradicts the background independence principle.
Nevertheless, the majority of physicists working in this field believe that the CC prob-
lem does exist and the solution should be sought in the framework of dark energy,
quintessence and other approaches.

2 Remarks on fundamental theories

In this section we discuss comparisons of fundamental theories. First we compare
special relativity (SR) with nonrelativistic mechanics (NM). One of the reasons why
SR can be treated as more fundamental is that it contains a finite parameter ¢ and
NM can be treated as a special degenerate case of SR in the formal limit ¢ — oo.
Therefore, by choosing a large value of ¢, SR can reproduce any result of NM with
a high accuracy. On the contrary, when the limit is already taken one cannot return
back from NM to SR and NM cannot reproduce all results of SR. It can reproduce
only results obtained when v < c.

Note that for SR itself the quantity c is not needed. One can choose ¢ = 1
and treat velocities v as dimensionless quantities such that v < 1 if tachyons are not
taken into account. One needs c only for transition from SR to NM: we first write
¢ in m/s, take the formal formal limit ¢ — oo and then the dimension of velocities
becomes m/s. The question why ¢ = 3-10%m /s and not, say ¢ = 7-10m/s does not
arise because the answer is: because we want to measure ¢ in m/s.

Compare now de Sitter (dS) and anti-de Sitter (AdS) invariant theories
with SR. One of the reasons why the former can be treated as more fundamental
than the latter is that they contain a finite parameter R and SR can be treated as a
special degenerate case of dS or AdS theories in the formal limit R — oo. Therefore,
by choosing a large value of R, dS and AdS theories can reproduce any result of SR
with a high accuracy. On the contrary, when the limit is already taken one cannot
return back from SR to dS and AdS theories, and SR cannot reproduce all results of
those theories.

In his famous paper "Missed Opportunities” [5] Dyson notes that SR is
more fundamental than NM and dS and AdS theories are more fundamental than
SR not only from physical but also from pure mathematical considerations. Poincare
group is more symmetric than Galilei one and the transition from the former to the



latter at ¢ — oo is called contraction. Analogously dS and AdS groups are more
symmetric than Poincare one and the transition from the former to the latter at
R — oo (described below) also is called contraction. At the same time, since dS and
AdS groups are semisimple they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.

In relativistic quantum theory the usual approach to symmetry on quan-
tum level follows. Since the Poincare group is the group of motions of Minkowski
space, quantum states should be described by representations of this group. This
implies that the representation generators commute according to the commutation
relations of the Poincare group Lie algebra:

[PHPY] =0 [P, M"] = —i(n**P" — 1" P?)
[M#, MP7] = =i MY 4 " MIP — " M2 — 1”P MH7) (1)

where pu,v = 0,1,2,3, P* are the operators of the four-momentum and M* are
the operators of Lorentz angular momenta. This approach is in the spirit of Klein’s
Erlangen program in mathematics.

However, as noted in Sec. 1, the notion of the background space-time
is problematic and, as argued in Ref. [6], the approach should be the opposite.
Each system is described by a set of independent operators. By definition, the rules
how they commute with each other define the symmetry algebra. In particular, by
definition, Poincare symmetry on quantum level means that the operators commute
according to Eq. (1). This definition does not involve Minkowski space at all.

Such a definition of symmetry on quantum level has been proposed in Ref.
[7] and in subsequent publications of those authors. We believe that this replacement
of the standard paradigm is fundamental for understanding quantum theory, and we
did not succeed in finding a similar idea in the literature.

Analogously, the definition of dS symmetry on quantum level should not
involve the fact that the dS group is the group of motions of dS space. Instead, the
definition is that the operators M (a,b = 0,1,2,3,4, M® = —M") describing the
system under consideration satisfy the commutation relations of the dS Lie algebra
so(1,4), i.e.,

[Mab’ Mcd] — _,l-(nachd =+ nbdMac o nadec o 77bcA]M'ad) (2)
where 1% is the diagonal metric tensor such that n®° = —nl! = —p??2 = 93 =
—n* = 1. The definition of AdS symmetry on quantum level is given by the same
equations but n* = 1.

With such a definition of symmetry on quantum level, dS and AdS sym-
metries are more natural than Poincare symmetry. In the dS and AdS cases all the
ten representation operators of the symmetry algebra are angular momenta while in
the Poincare case only six of them are angular momenta and the remaining four op-
erators represent standard energy and momentum. If we define the operators P* as
P* = M* /R where R is a parameter with the dimension length then in the formal
limit when R — oo, M* — oo but the quantities P* are finite, Eqs. (2) become Egs.
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(1). This procedure is called contraction and in the given case it is the same for the
dS or AdS symmetry. We will see below that in classical approximation R becomes
the radius of dS space.

Note that the operators in Eq. (2) do not depend on R at all. This
quantity is needed only for transition from dS quantum theory to Poincare quantum
theory. In full analogy with the quantity ¢ a question why R is as is does not arise
and the answer is: because we want to measure distances in meters.

On classical level, dS space is usually treated as the four-dimensional hy-
persphere in the five-dimensional space such that

22 + a2+ a2+ 22 — 22 = R? (3)

where R’ is the radius of dS space and at this stage it is not clear whether or not
R’ coincide with R. Transformations from the dS group are usual and hyperbolic
rotations of this space. They can be parametrized by usual and hyperbolic angles
and do not depend on R'. In particular, if instead of x, we introduce the quantities
&, = x,/ R’ then the dS space can be represented as a set of points

G+&+6+6-6=1 (4)

Therefore in classical dS theory itself the quantity R’ is not needed at
all. It is needed only for transition from dS space to Minkowski one: we choose
R’ in meters, then the curvature of this space is A = 3/R'? and a vicinity of the
point x4y = R’ or x4 = —R’ becomes Minkowski space in the formal limit R' — oo.
Analogous remarks are valid for the transition from AdS theory to Poincare one, and
in this case A = —3/R2.

Compare now quantum theory with classical one. One of the reasons why
the former can be treated as more fundamental is that it contains a finite parameter
h and classical theory can be treated as a special degenerate case of quantum one in
the formal limit 7 — 0. Therefore, by choosing a small value of #, quantum theory
can reproduce any result of classical one with a high accuracy. On the contrary, when
the limit is already taken one cannot return back from classical to quantum theory
and the former cannot reproduce all results of the latter.

For quantum theory itself the quantity 7 is not needed. As an illustration,
consider a measurement of a component of angular momentum. The result depends
on the system of units. As shown in quantum theory, in units 7/2 = 1 the result
is given by an integer 0,+1,+2,.... We can reverse the order of units and say that
in units where the angular momentum is an integer [, its value in kg - m?/sec is
(1.05457162 - 10734 - 1/2)kg - m?/s.  Which of those two values has more physical
significance? In units where the angular momentum components are integers, the
commutation relations between the components are

(M, M, = 2iM, [M,,M,|=2iM, [M,,M,]=2iM, (5)

and do not depend on any parameters. Then the meaning of [ is clear: it shows how
big the angular momentum is in comparison with the minimum nonzero value 1. At



the same time, the measurement of the angular momentum in units kg - m?/s reflects
only a historic fact that at macroscopic conditions on the Earth in the period between
the 18th and 21st centuries people measured the angular momentum in such units.

Classical theory is a good approximation for quantum one when all angular
momenta in question are very large. From the formal point of view £ is needed only
as a formal intermediate step for getting classical theory from quantum one: we first
write quantum theory with h, then take the limit # — 0 and then in classical theory
the quantity of angular momentum has the dimension kg - m?/s. By analogy with
the discussion of the quantities ¢ and R a question why h is as is does not arise and
the answer is: because we want to measure angular momenta in units kg - m?/s

All the three discussed comparisons have the following common feature.
A more general theory contains a finite parameter and the less general theory can
be treated as a special degenerate case of the former in the formal limit when this
parameter goes to zero or infinity. The more general theory can reproduce all results
of the less general one by choosing some value of the parameter. On the contrary,
when the limit is already taken one cannot return back from the less general theory
to the more general one.

In the literature the notion of the chGG cube of physical theories is some-
times used. The meaning is that any relativistic theory should contain ¢, any quantum
theory should contain i and any gravitation theory should contain G. The more fun-
damental a theory is the greater number of those parameters it contains. In particular,
relativistic quantum theory of gravity is the most fundamental because it contains
all the three parameters ¢, h and G while nonrelativistic classical theory without
gravitation is the least fundamental because it contains none of those parameters.

However, as noted in Sec. 1, since the nature of gravity is not clear yet,
the quantity G is not fundamental. As follows from the above discussion, the three
fundamental parameters are (¢, h, R), and, in contrast to usual statements, the situa-
tion is the opposite: relativistic theory should not contain ¢, quantum theory should
not contain # and dS or AdS theories should not contain R. Those three parameters
are needed only for transitions from more general theories to less general ones. The
most general dS and AdS quantum theory do not contain dimensional quantities while
the least general nonrelativistic classical theory contains three dimensional quantities
(kg,m, s).

3 A system of two bodies in quantum dS theory

Since experimental data indicate that A > 0, in what follows we will consider only the
dS theory and will not consider the AdS one. Our next goal is to show that classical
equations of motions for a system of two free macroscopic bodies on dS space follow
from quantum dS quantum mechanics in semiclassical approximation. We will assume
that the distance between the bodies is much greater than the sizes of the bodies and
the bodies do not have anomalously large internal angular momenta. Then from the
formal point of view the motion of two bodies as a whole can be described by the



same formulas as the motion of two elementary particles with zero spin.

In quantum dS theory elementary particles are described by irreducible
representations (IRs) of the dS algebra. As shown in Ref. [8], one can explicitly
construct IRs of the dS algebra describing elementary particles.

In Poincare theory any massive IR can be implemented in the Hilbert
space of functions x(v) on the Lorenz 4-velocity hyperboloid with the points v =
(vo, V), vo = (1 + v?)Y2 such that [|x(v)[?dp(v) < oo and dp(v) = d>v /vy is the
Lorenz invariant volume element. For positive energy IRs the value of energy is
E = muy where m is the particle mass defined as the positive square root (E* —P?)'/2,
Therefore for massive IRs, m > 0 by definition.

In contrast to Poincare theory, IRs in dS theory can be implemented only
on two Lorenz hyperboloids, i.e. the Hilbert space for such IRs consist of sets of two
functions (x1(v), x2(v)) such that

Jha)E + ha)P)dp(v) < oo

In Poincare limit one dS IR splits into two IRs of the Poincare algebra with positive
and negative energies. As argued in Ref. [8], this implies that one IR of the dS
algebra describes a particle and its antiparticle simultaneously. Since in the present
paper we do not deal with antiparticles, we give only expressions for the action of the
operators on the upper hyperboloid [8]:

.0 0 0 3
M:l(v)a N:_M)Oga B—mdSV+Z[87V+V(V07V)+§V}
. Jg 3
E = mgsvy + wo(va—v + 5) (6)

where M = {M% M3 M2} N = {M° M2 M} B={M*" M2 M3} 1(v) =
—iv x 0/0v, &€ = M* and mys is a positive quantity.

This implementation of the IR is convenient for the transition to Poincare
limit. Indeed, the operators of the Lorenz algebra in Eq. (6) are the same as in
the IR of the Poincare algebra. Suppose that the limit of mgyg/R when R — oo
is finite and denote this limit as m. Then in the limit R — oo we get standard
expressions for the operators of the IR of the Poincare algebra where m is standard
mass, £ = £/R = mvg and P = B/R = mv. For this reason mys has the meaning
of the dS mass. In contrast to m, mgg is dimensionless. Since Poincare symmetry is
a special case of dS one, mgg is more fundamental than m. Since Poincare symmetry
works with a high accuracy, the value of R is supposed to be very large.

Consider the non-relativistic approximation when |v| < 1. If we wish to
work with units where the dimension of velocity is meter/sec, we should replace v by
v/c. If p = mv then it is clear from the expression for B in Eq. (6) that p becomes
the real momentum P only in the limit R — oo. At this stage we do not have
any coordinate space yet. However, if we assume that semiclassical approximation is
valid, then, by analogy with standard quantum mechanics, we can define the position
operator r as i0/0p.



In classical approximation we can treat p and r as usual vectors. Then as
follows from Eq. (6)

P =p+mer/R, H=p?/2m+cpr/R, N = —mr (7)

where H = E —mc? is the classical nonrelativistic Hamiltonian. As follows from these

expressions,
P2 mc’r?
HP,r)= — — ———
(P.r) 2m 2R? (8)

The last term in Eq. (8) is the dS correction to the non-relativistic Hamil-
tonian. It is interesting to note that the non-relativistic Hamiltonian depends on ¢
although it is usually believed that ¢ can be present only in relativistic theory. This
illustrates the fact mentioned in the preceding section that the transition to non-
relativistic theory understood as |v| < 1 is more physical than that understood as
¢ — 00. The presence of ¢ in Eq. (8) is a consequence of the fact that this expression
is written in standard units. In nonrelativistic theory c is usually treated as a very
large quantity. Nevertheless, the last term in Eq. (8) is not large since we assume
that R is very large.

As follows from Eq. (8) and the Hamilton equations, in dS theory a free
body moves with the acceleration given by

a=rc’/R? 9)

where a and r are the acceleration and the radius vector of the particle, respectively.
Since R is very large, the acceleration is not negligible only at cosmological distances
when |r| is of the order of R.

Let us now consider whether the result (9) is compatible with GR. As
noted in the preceding section, the dS space is a four-dimensional manifold in the
five-dimensional space defined by Eq. (3). In the formal limit R" — oo the action of
the dS group in a vicinity of the point (0,0,0,0, 24 = R’) becomes the action of the
Poincare group on Minkowski space. With this parameterization the metric tensor
on dS space is

pw = MNuw — xuxu/(RIQ + 2,27) (10)

where p,v,p = 0,1,2,3, n,, is the Minkowski metric tensor, and a summation over
repeated indices is assumed. It is easy to calculate the Christoffel symbols in the
approximation where all the components of the vector x are much less than R’:
Luvp = =20,/ R2. Then a direct calculation shows that in the nonrelativistic
approximation the equation of motion for a single particle is the same as in Eq. (9)
if R = R.

Another way to show that Eq. (9) is compatible with GR follows. The
known result of GR is that if the metric is stationary and differs slightly from the
Minkowskian one then in the nonrelativistic approximation the curved space-time can
be effectively described by a gravitational potential ¢(r) = (goo(r) — 1)/2¢*. We now



express 7o in Eq. (3) in terms of a new variable t as zo = t + t3/6R? — tx*/2R2.
Then the expression for the interval becomes

ds? = dt*(1 — r*/R?) — dr® — (rdr/R')? (11)

Therefore, the metric becomes stationary and op(r) = —r?/2R? in agreement with
Eq. (9) if R = R.

We conclude that in classical limit the parameter R defining contraction
from quantum dS symmetry to quantum Poincare symmetry indeed equals the radius
of dS space.

Consider now a system of two free bodies in dS space. Let (r;,a;) (i = 1,2)
be their radius vectors and accelerations, respectively. Then Eq. (9) is valid for each
particle if (r,a) is replaced by (r;,a;), respectively. Now if we define the relative
radius vector r = r; — ry and the relative acceleration a = a; — as then they will
satisfy the same Eq. (9) which shows that the dS antigravity is repulsive.

Let us now consider a system of two free bodies in the framework of the
representation of the dS algebra. The particles are described by the variables P; and
r; (j = 1,2). Define standard nonrelativistic variables

Py, =P+ Py, q= (meP1 —mPy)/(mq + my)
ng = (m1r1 + mgrg)/(ml + mg), r=1r1—1TI9 (12)

Then, as follows from Eq. (7), in the nonrelativistic approximation the two-particle
quantities P, E and N are given by

12, +2M 2R2 ) 12 ( )

where

q’ M1

M = M(qa I') =my+ mg + Hnr(ra q)a Hnr<r7 q) = M1 2 R2

(14)

and mq is the reduced two-particle mass. Here the operator M acts in the space of
functions x(q) such that [ |x(q)|*d*q < co and r acts in this space as r = i9/0q.

It now follows from Eq. (6) that M has the meaning of the two-body
mass and therefore M(q,r) is the internal two-body Hamiltonian. Then, by analogy
with the derivation of Eq. (9), it can be shown from the Hamilton equations that in
semiclassical approximation the relative acceleration is given by the same expression
(9) but now a is the relative acceleration and r is the relative radius vector.

4 Discussion and conclusion

The fact that two free bodies have a relative acceleration is known for cosmologists
considering dS symmetry on classical level. This effect is called the dS antigravity.
The term antigravity in this context means that the particles repulse rather than
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attract each other. In the case of the dS antigravity the relative acceleration of two
free particles is proportional (not inversely proportionall) to the distance between
them. As shown above, this classical result is a direct consequence of GR.

At the same time, since GR is pure classical theory and quantum theory is
more general than classical one a problem arises whether the cosmological acceleration
can be obtained from quantum theory in semiclassical approximation. In the present
paper it is shown that this is the case. The result for the cosmological acceleration
has been obtained without using dS space, its metric, connection etc. This result is
simply a consequence of standard dS quantum mechanics of two free bodies and the
calculation does not involve any geometry. The fact that A # 0 is a consequence of dS
symmetry on quantum level: since dS symmetry is more general than Poincare one
then R is finite, on classical level A = 3/R? must be nonzero, and the problem why A
is as is does not arise. This has nothing to do with gravity, existence or nonexistence
of dark energy and with the problem whether or not empty space-time should be
necessarily flat.
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