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Abstract  

 In physics, there exits the massive Proton and much less massive Electron.  And thus, a Particle Mass Ratio, 
when comparing them, about 1836.15 to 1.  And there exists many other important particles, too, although 
unstable, such as the major Pion and major Kaon particles classes.  And they have mass ratios, too, relative to 
the electron, of about 270.1 to 1, and 970.0 to 1, respectively.  Interestingly, all those Particle Mass Ratios 
nearly equal basic Solid Geometry Ratios, some of which we likely saw in High School Geometry class, 
when viewing sphere patterns.  (Or the average of two major solid geometry ratios.)  This article lists 
prominent Particle Mass Ratios and shows the basic Ratio in Solid Geometry that each one nearly equals.  
Some simple comments are made.  (Less specialized readers may skip my more technical comments.)     

Introduction and examples of nearly Matching Ratios  

Some sketches, below, may exaggerate some main features just so they show up better.  In some sketches, 
we use cross-sectional views or indicate partially ‘cut-away’ regions to hopefully clarify the view. 

Some of the sketches also appear on old plaques in old Japanese Buddhist temples or Shinto shrines.  Some 
similar ones and relationships also appeared in an article in a prominent peer-reviewed Journal in 1995. [1] 

Please, SCROLL DOWN to view the sketches, displays, and relationships: 
 



  
Figure 1   
   In the upper sketch, we show 1 big sphere around 3 equal medium-sized spheres and those around 1 small 
sphere.  For the middle sketch, 1 big sphere around 4 equal spheres and those around 1 small sphere.  Sphere 
volume ratios thus result, based on those patterns which the mathematician, Courant, considered the most 
basic structure in 2 dimensions (the equilateral triangle) – and in 3 dimensions (the equilateral tetrahedron) 
, respectively. [2]  We next discuss which geometric sphere volume ratios nearly match which mass ratios of 
the most prominent particles found in nature!  

And since we can’t decide if the triangle or tetrahedron is the more basic, we average together, the sphere 
volumes ratios that those two patterns helped us generate: (970 + 2702)/2 = 1836.00/1.  And then we note 
that that average geometric ratio, 1836.00/1, nearly equals the proton to electron mass ratio, 1836.15/1.   

And the volume ratio in the middle sketch, where 1 big sphere surrounds 4 medium-sized spheres, around 1 
small sphere, gives a geometric ratio, 970.0/1, (outer sphere to centered sphere).  And that geometric ratio 
virtually equals the ave. Kaon particle to electron mass ratio, 970.0/1.   

And in the upper sketch, where 3 medium-size spheres surrounds one small sphere -- that gives (for each 
medium-sized to small sphere) a geometric ratio, 270.1/1, virtually equaling the ave. Pion to electron mass 
ratio, 270.1/1.  

 
 



 
Figure 2   
   Some other patterns, as shown above, give the same sphere volume ratios as in the previous drawing, 
‘Figure 1’. (It seems like the greater the number of different geometric patterns that lead to the same sphere 
volume ratio, or nearly so, the greater the chance of also finding in nature -- particles with mass ratio nearly 
equaling those geometric ratios.  And the longer the life, or half-half, of those particles.)   

   See first footnote for a drawing, like the above, by author, appearing in a prominent journal, in 1995. 
Except Fig. 2, above, leaves out a few details for simplicity.  

 
 



 
Figure 3   
    In the above, we attempt to nearly match a major particle mass ratio, the 'Muon particle to electron 
particle' mass ratio -- with a geometric average.  We average together two sphere volumes -- the first sphere 
being one that appears inside a proton shown in the upper sketch, and the second sphere being one that 
appears inside a proton shown in the lower sketch.  And each proton is shown as having the volume of 
1836.15 'electron volumes', (since the empirical proton mass really does equals 1836.15 'electron masses').  
In the upper sketch, the 1 of the 2 equal spheres inside a proton is calculated to equal 229.52 electrons, and in 
the lower sketch, the 1 of the 3 equal spheres inside a proton is calculated to equal 183.55 electrons.  So the 
average of the two is: (229.52 + 183.55)/2 = 206.54 electron volumes (or electron masses).  

   So our resulting estimate gives: 206.54 electron masses, vs. the empirical reality of 206.77 electron 
masses for the Muon mass. [We also find, although this article is too short to also show it, that there are other 
pairs of sphere volume ratios in other patterns -- giving volume ratio averages close to our 206.54/1 estimate 
given above.]  The method of averaging together, two basic geometric sphere volume ratios, to nearly match 
a major empirical particle mass ratio, found in nature -- is successful very often.  And the cases very 
impressive.  I.e., so much so, that it is unlikely to be 'just luck'.  

  
 



 
Figure 4   
   The above illustrates two different patterns giving the same volume ratio, (outer biggest sphere to each of 
the four small spheres nearer its center). That rather basic sphere volume ratio turns out to be 2180.19/1, and 
motivates our expectation and hope of finding a major particle mass ratio nearly equaling that geometric 
ratio. And we do find one!  The most prominent Lambda Hyperon has an empirical mass ratio, relative to 
the electron mass, of 2183.34/1, and was one of the earlier particles discovered. 
  
   The lower sketch shows one big outer sphere close packed around 4 medium-sized spheres, and those close 
packed around 4 small touching spheres. The upper sketch shows the one outer sphere close packed around 4 
medium-sized spheres, and each of those 4 around 6 platonically positioned spheres, and each of those 6 
around a small sphere. All small spheres, shown above, are equal.  

 



 

Figure 5 
   The above illustrates one more of many existing ways to construct the Volume Ratio (or mass ratio) equal 
to 2702/1. That 2702/1 volume ratio is also very close to the mass equivalent value of the lowest of the very 
prominent ‘Sigma Hyperon Resonance’ energies -- as compared to 1 ‘rest mass’ electron: a 2706/1 ratio.  

 



 

Figure 6 
   The above cross-sectional sketch gives a volume ratio (outer sphere to inner core sphere) of 2995.03/1. 
That 2995.03 is very close to the empirical mass equivalence of the lower of two very prominent Xi 
Hyperon resonance energies, 2997.7 and 3003.9 electron masses compared to 1 rest mass electron. (So that 
lower resonance, 2997.7 electrons (the empirical result), can be compared with our abstract sketch result, 
above, 2995.03 electrons, a pretty impressive close match.)  

   Interesting note: If the sphere layering between the big outer sphere and core sphere were 8 spheres around 
6, instead of the 6 spheres around 8 shown, that would not change the outer sphere to core sphere volume 
ratio. Those positioning possibilities, 6 spheres around 8, vs. 8 spheres around 6, may be compared to 
‘platonic Duals’. That is – they are analogous to very symmetrical platonic solids with 6 vertices & 8 faces 
and with 8 vertices & 6 faces. I.e., Those platonic solids are termed ‘Duals’ in solid geometry, and described 
in Wikipedia and elsewhere  

  



 

Figure 7, (the Higgs particle) 
   The above sketch gives a volume ratio, (Outer sphere to inner centered dark sphere), of 133.65/1. It 
involves one very big outer sphere around 12 platonically positioned large spheres -- close packed around 20 
platonically positioned very small spheres (but rather hidden and therefore shown near top of the page). And 
that bundle of 20 spheres surrounds and touches one somewhat bigger dark sphere, which we’ll regard as a 
Proton because its bigger than each of the 20 spheres. That 133.65/1 volume ratio is very close to the Higgs 
particle mass empirically estimated to equal about 133.54 protons (compared to the 1 unit proton mass). [3] 

   Of course the above discussed 'close packed fitting' comes out perfect, and the geometrical symmetry -  
perfect.   

    (Additional information is provided under the heading, ‘Interesting Discussion’, at the end of the all 
sketched illustrations and figures.) 

  
 
 
 
 
 
 



(Opt’l.) Figure 8 below:  

 

 Figure 8 (Optional), the 'Xi Double Charm Baryon’, (Ξcc++), 
   The above Drawing shows how the “Averaging of two already known Particle masses” – tends to predict a 
good mass candidate that ‘Nature’ is more likely to match than otherwise– that is, by Nature's creating a new 
particle with a mass nearly equal to that ‘average’. Especially if averaging each of 2 pairs of already known 
particles gives nearly the same mass (for a candidate), not just 1 pair ‘making the nomination’.                                                                                                                                                                                                                 

   The newly discovered particle, the ‘Xi Double Charm Baryon’, (Ξcc++), with the mass of 7,086.1 
electrons, is virtually matched, as shown above, by using such 'averaging method' -- i.e., to propose a good, 
mass value, and thus probable mass value, for a new particle to be found in nature.     

   Interesting Discussion continues after scrolling below:                                                                                                                                                                                               

 

 

 

 

 

 



 

Interesting Discussion (Some of the discourse below may be too technical for the non-specialist.  They 
may just skim over or bypass those parts.) 

   In our 'Figure 7', we addressed the Higgs mass, and we used helpful patterns, based on a Platonic solid that 
was the goal of the first 8 books of Euclid.  And which Plato thought god used to help lay out the universe. 
[4]  So Euclid's and Plato's works helped us here to estimate the mass of the so-called ‘god’ particle, the 
Higgs mass, (our 'Figure 7').  That Higgs mass was a major goal of the mainstream’s Standard Model of 
Particle Physics.  (Our article’s third footnote provides more details.) The icosahedron & dodecahedron 
patterns are termed platonic ‘Duals’. And corresponding to those platonic layouts, our Figure 7 shows 12 
spheres and 20 spheres, in 'close-packed arrays' -- to help us nearly match that 'Higgs to proton mass ratio'.  

   The upper sphere pattern in Figure 7 (crucial to our Higgs discussion) appears also on an old tablet in an 
old Japanese Buddhist temple. One of the sphere patterns, used in our Figure 1, also appears on an old tablet 
in an old Japanese Shinto shrine. Those sketches and information about them appear in a book, Sacred 
Mathematics -- Japanese Temple Geometry, with a forward written by Freeman Dyson. [5]  Unfortunately, 
many other such old tablets (having other sketches and discourses on them) – have long been lost, no longer 
to be found on old Japanese temples and shrines.  

   Mass ratios presented in this article are based on particle mass values found in Wikipedia, 11-28-2016 in 
articles entitled Electron, Pion, Kaon, Proton, Muon, and Hyperon, and may also be found with adequate 
accuracy using other Internet searches. And that is true for many other particles, too.  When we say, for 
example, “the mass ratio of the average prominent Pion particle, relative to the 1 electron mass” – we mean 
the following: We add up the mass of each of the three very prominent Pions in that class (those that were 
‘discovered early-on’): the positively charged Pion (139.570 MeV/c2), the negatively charged Pion (also 
139.570 MeV/c2), and the uncharged Pion (134.977 MeV/c2). We divide that by 3, (the number of particles 
in the group), and then we divide that MeV/c2 value by the mass of 1 electron (0.510999 MeV/c2). That gives 
us, as expected, a ‘mass’ ratio that is ‘dimensionless’, since that seemingly awkward unit of mass, (MeV/c2), 
cancels out -- because our mass comparison is to the electron mass which we also expressed in units of 
(MeV/c2).  

   It is interesting that before quark theory was well-developed, older physics books often expressed the mass 
of major mesons and other particle masses – in equivalent numbers of electron masses. [6]  This tended to 
somewhat sensitize this article’s author to the possibility that the mass of the electron, itself, might partially 
contribute to the mass value of other particles of greater mass -- some with perhaps short lives, but plenty 
long enough to be very important. And that by considering basic geometric patterns, including some 
positions ‘platonically directed’, and by considering the concept of ‘close packing of spheres’ – that both 
those considerations might help us generate fairly close estimates of the relative masses of prominent 
particles.  

     That sort of approach has been likely considered by quite a few scientists, historically.  For example, the 
Nobel Laureate, John Wheeler, once wrote, "I was so enchanted with the electron, with its beautiful exact 
Dirac Theory and its ultimate simplicity, that I couldn't help wondering: Is everything made out of 
electrons?" [7]  And he also wrote, "What else is there out of which to build a particle except geometry 
itself?" [8]  (So, in a sense, my article extends ideas similar to those which Wheeler and others suggested.)  

   Discourse continues below under the heading, ‘Important Considerations’ 

Important Considerations  

   In order for this article’s methodology to work, we must assume the following:  The greater the volume of 
one of our outer spheres relative to one of our inner spheres (both appearing in the same close-packed sphere 
pattern we display) -- the, similarly greater, the mass of one particle is to the mass of different particle, that 
we find 'in Nature'.  Thus, for two different particles, whose relative masses we meaningfully compare in this 



article -- we must assume that the density of material making up both particles is virtually the same.  And 
'that same density assumption' also applies to all particle mass values we address, that are in-between those 
two values, too. That is similar to an assumption in the simple and early developed ‘Liquid Drop Model of 
the Nucleus’, that was rather successfully developed by Niels Bohr. In that model, the nucleus of the atom is 
regarded as like a water drop. The density of material making up each of the various particles in the nucleus 
is regarded as practically incompressible and the same for the various particles comprising the nucleus.  

   (Or to speculate and try to extend that approach further, consider this possibility: If the particle’s mass is 
determined by the amount of energy in an ethereal-like sphere pattern adjacent it, then the amount of energy 
in that ethereal sphere is proportion the volume of that ethereal sphere.)  

   There seems to be no compact, free particles existing in the range of “less than 200 electrons worth of 
mass but greater than 1 electron mass”.  I believe the reason why relates to Heisenberg’s uncertainly 
principle and the ‘reduced Planck constant’, and is roughly as follows: Even if such small compact, free 
particle mass tried to exist and harmonically vibrate or spin roughly at the speed of light, ‘c’; its 
corresponding angular momentum generated -- would still not equal as much as a ‘reduced Planck constant’ 
worth of angular momentum. Thus, I think that not only would such a particle be difficult to measure 
accurately – the particle would even find it difficult to exist at all. (The ‘free’ electron, however, is like a 
puffball or thin doughnut, and thus is not a compact particle. Thus when it spins at roughly ‘c’, it finds it 
easier to create sufficiently great angular momentum to aid its stability.)  

   The methodology, demonstrated and advocated in this article, has great merit, but yet has some limitations 
which we now discuss: When two different volumetric ratios in two different basic patterns are averaged 
together, the result doesn’t always correspond to the mass ratio of two prominent particles. This article could 
use the help of special ‘selection rules’ predicting when our ‘methodology of averaging patterns’ will work 
and when it will fail. And explaining why.  

   Also, sometimes our basic geometric volume ratio lands midway between two nearly equal, important 
particle mass ratios. But one of those particles, say, the neutral one, has a few electrons worth of mass more 
than our geometric ratio predicts, and the other particle, say, the charged one, has a few less electrons worth 
of mass than our midpoint. This article could likely use the help of an aspect of quark theory to predict how 
such small subtleties as ‘charge’ could cause such very small mass offsets, slightly away from the value 
predicted. Or the help of a somewhat similar theory.  

   Suppose we use many sub-patterns to create one huge pattern.  And thus create one super-large sphere, 
having a volume that is many thousands of times greater than the smallest sphere in the pattern?  Then our 
chances of finding a prominent mass ratio to match such super-large geometric ratio is much less than for a 
more modest ratio.  It is as if one small sphere or electron can bare only a limited load or big burden mass or 
volume around it -- before instability of the out-most sphere escalates rapidly, and a hoped-for match tends to 
fail 'to materialize'. And there are other subtle considerations that affect the effectiveness of the methodology 
advocated in this article, but not coverable here.   

   The author realizes that this limited length article raises some questions, problems or issues not thoroughly 
addressed here. And that some difficult issues may defy simple solutions, including some speculations that 
the author might propose if this article was longer.  

   In this article, when we use the term, ‘resonance’ as applied to a particle -- the following is roughly what 
we mean: A resonance energy is a special lump of energy in space with slightly greater mean lifetime and 
other special characteristics – compared to lumps of energy slightly greater or slightly less.  Or alternately, 
we can say, “there is an equivalent resonance mass, 'm', corresponding with that special energy lump, 'E', and 
that ‘E’ and ‘m’ are related by the famous equation, E = mc2.  In particular, in scattering experiments, where 
an incident high-speed particle mass interacts with a target particle mass, there is more scattering for the 
special total (mc2) energy value of the target particle plus incident particle. That is – more so, than for other 
total energy values, i.e., those which total either a little more or a little less energy than that special 
‘resonance’ energy. (Or the energy's equivalent mass – to express that in another way.)  



Conclusion  

There are dozens of examples of sphere volume ratios in geometric patterns (or the average of 2 such 
geometric ratios) – that nearly equal the mass ratios of prominent particles found in nature. [9]  About 8 of 
the most interesting cases were presented here.  They were selected because they exemplified the most basic 
patterns -- and, thus, their geometric volume ratios came out especially close to matching prominent particle 
mass ratios.  (Or nearly equal to a ratio, given by averaging a prominent group of nearly equal particle 
masses – and comparing that to a small electron mass.)  

Those examples are so basic, important and striking that the near matches are very unlikely to be just 
coincidental!  There were enough sphere patterns selected so that geometric analogies with all 5 famous 
platonic solids was exemplified.  

There are some limitations in the success of the methodology advocated in this article – regarding 
predictions, or preciseness of predictions.  Especially when tackling less prominent particle mass ratios and 
more complicated patterns, and when averaging two different patterns having different geometric ratios.  
Successful matches are then not always achieved. Some aspects of the use of quarks, or the like, might help 
further to ‘fine tune’ the preciseness of many close matches. That is because the slight deviations seem 
related to whether a particle is charged or uncharged, has spin or lacks spin. And it would be especially 
helpful to discover special ‘selection rules’ that predict when the averaging of 2 different geometric ratios 
will succeed, or fail, in nearly matching a particle mass ratio. And to understand why. Further research might 
be helpful to help resolve those issues.  

The author has attempted to probe deeply into why the methodology, as advocated in this article, works so 
impressively in the most basic cases.  Those cases involve the simplest symmetry, and include the cases 
associated with the long-known 5 platonic solids. Thus, he recommends that the reader consider the 
following speculation: What we often regarded as ‘empty space’ – is really not totally empty. There is 
probably something like an ‘electron-positron sea’, or some super-rarefied so-called ‘aether’ out there, 
regardless of what it is called. And it likely momentarily forms energized ethereal sphere-like structures with 
‘close packing of sphere’ features. And the energy of those ethereal spheres interacts with dense globs of 
matter to help determine the amount of energy and mass that the particle candidate will evolve with.  

To keep this article’s length limited, we have not pursued that causal speculation further, here.  Instead, we 
have concentrated on our article’s main theme, i.e., our matching methodology -- each geometric ratio with 
each particle mass ratio, and the effectiveness of that matching. 
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