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Abstract

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric assumes perfect isotropy and homogeneity in its
derivation, assumptions that are necessary to provide a reasonably accurate description of the universe as a
whole. But there is one other assumption implicit in its derivation, which is the apparently unintentional in-
clusion of a constant curvature (Ricci) scalar in the term that determines whether the universe is open, closed
or flat. Resolving this issue requires an awareness of this difficulty, which is presented as an open problem.

1. Summary of the Friedmann-Lemaître-Robertson-Walker (FLRW) Spacetime

The FLRW walker metric is traditionally presented as

ds2 = c2d t2 − S2

�

dr2

1− k2r2
+ r2dθ 2 + r2 sin2 θdφ2

�

(1.1)

where S = S(t) is a time-dependent scale factor (often appearing as a(t) in the literature) that measures the rate
of expansion (or contraction) of the universe and k2 is a constant (usually just expressed as 0 or ±1) having the
dimension length−2. Invariably, the seemingly innocuous k2 term in the FLRW metric is presented as the main
determinator of the fate of the universe: if k2 > 0, the universe will expand forever; if k2 < 0 then the universe
will close in on itself; and if k2 = 0 then the universe is Minkowski-flat.

One might logically assume that k2 should also make its presence known in the scale factor S, since it is also
associated with expansion and contraction. That this is indeed the case is shown by the familiar Friedmann
equations, which relate the scale factor to the matter density ρ(t) and pressure P(t):
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Ṡ
S
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=
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3c2
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k2
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(1.2)

S̈
S
= −

4πG
3c2

�

ρ(t) +
3P(t)

c2

�

(1.3)

where Ṡ = dS/d t. These equations are exceedingly difficult to solve without specifying certain simplying
assumptions, which typically involve specifying a simple cosmological equation of state (such as P/c2 =ωρ,
where ω is a dimensionless parameter), setting the pressure P to zero or imposing static conditions on the
equations. Indeed, the traditional setting of the term Ṡ/S to the Hubble ‘‘constant’’ H0 refers to present conditions
only. However, assuming an average density of the universe of something like 10−30 kg·m−3, the inverse of the
Hubble constant gives roughly the correct observed age of the universe. This fact alone provides substantial
evidence that the Friedmann metric is a reliable model of the universe.

2. The Problem in Outline

That there is a flaw in the FLRW metric can be shown by considering a detailed derivation of the metric using a
constant curvature scalar R, which considerably simplifies the calculations. In a previous paper 3 the writer
derived the FLRW metric assuming R to be a non-zero constant, and showed that the metric effectvely describes a
de Sitter-like universe:

ds2 = c2d t2 − cosh2(β c t)

�

dr2

1− β2r2
+ r2dθ 2 + r2 sin2 θdφ2

�

(2.1)
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where the (constant) parameter β is defined as

β =

√

√ R
12

(2.2)

and R= gµν Rµν is the Ricci scalar, having the dimension of length−2. Comparing this with (1.1), we see that the
FLRW parameter k2 is proportional to R (note that their dimensions are identical). The resulting analysis showed
that a universe with constant R would occur only in its very early, radiation-dominated stage (with the
cosmological equation of state parameter ω= 1/3) and in a very late, dark-energy stage with ω= −1. In
between, then, it must be assumed that the curvature scalar R is time dependent, complicating the analysis. If that
is the case, then the k2 parameter in the traditional FLRW metric cannot be considered a constant, as it must be
proportional to R.

The source of the problem can be traced to the fact that the r-dependent term in the denominator of (1.1) results
from solving the simple differential equation

d2 f
d r2
−

1
2

�

d f
dr

�2

−
1
r

d f
dr
= 0 (2.3)

where f (r) is a parameter specifying the FLRW metric’s radial dependence (see Adler et al.1 or Straub for details).
The general solution is

e f =
1

(1+ ar2)2
(2.4)

where a is a constant with respect to r. This does not alleviate its dependence on the time, however, and we are
allowed to consider the possibility that a = a(c t). In recognition of (2.1), it is tempting to set

a(c t) = β2(c t) =
R(c t)

12
(2.5)

which does not invalidate the general solution (2.4).

Unfortunately, the Friedmann equations associated with the revised metric

ds2 = c2d t2 − S2

�

dr2

1− β2r2
+ r2dθ 2 + r2 sin2 θdφ2

�

(2.6)

with β = β(c t) are now far more difficult to express, much less solve. It is hoped that some valid identification for
R will eventually be found, allowing for a more accurate set of Friedmann equations in the future.

3. Comments

In their derivation of the FLRW metric, Adler et al. and others have assumed that a separation of the time and
radial parameters in the metric can be expressed

ds2 = c2d t2 − eg e f
�

dr2 + r2dθ 2 + r2 sin2 θdφ2
�

(3.1)

where the scale parameters eg and e f are functions of c t and r, respectively. The proposed revision of the metric
would invalidate this separation, resulting in a new scale factor that might appear as S2 = eG , where G = G(c t, r).
This greatly complicates the derivation of the metric, since the Christoffel symbols needed to express Rµν and R in
the Einstein field equations are far more complicated. A further complication arises from pure symmetry principles:
in a perfectly isotropic and homogeneous universe, two observers A and B separated in space must simultaneously
observe the same distribution of matter and energy, so the ratio of e fA and e fB should be independent of time.
Consequently, the factor e f must be independent of time as well, in contradiction to the above argument.
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