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Abstract 

Since the time of Newton, physicists have imagined a background "stage" called space and 

time (later spacetime) permeating the entire universe. The contents of the world around us are 

then seen as objects embedded in this background at a defined location, and with a defined 

size and other properties (color, mass, spin etc.). We refer to this traditional view as the 

Objects in Space and Time (OST) model. It works very well for picturing classical physics; 

but once we move into the quantum domain it is no longer of much use. In the quantum realm 

objects no longer have defined locations at all times, their properties can become entangled 

and undefined until observed. In this paper, we seek to present an alternative to the OST 

model in which the "weirdness" of quantum phenomena goes away and is replaced by clarity, 

obviousness and inescapability. In this model the world is viewed as a network of 

fundamental processes by which indivisible units called tomas bring each other into and out 

of existence. We show that this model yields the same equations and predictions as the 

current OST-based formalism of quantum mechanics. While not contradicting the success of 

quantum theory, the toma model lets us get rid of the "weirdness" of the quantum world and 

understand reality at a deeper level than the OST model. We illustrate this by discussing two 

classic quantum experiments and their interpretations. 

Keywords:  spacetime, quantum mechanics, process philosophy, philosophy of physics, 

toma, ontic network, quantic network. 

 

1. Introduction 

The near-universal view of the nature of reality among physicists and most scientists is what 

we refer to as the Objects in Space and Time (OST) model. In it, we imagine an all-pervasive, 

all-penetrating background "stage" called space and time (or spacetime). Embedded in this 

background are the everyday physical objects making up the world. These objects all have 

independent continuous existence, a defined location on the "stage" of spacetime, a defined 

size and defined properties (color, mass, spin, etc.). The OST model is the foundation for 

materialism and atomism and is taken to be so obvious, intuitive and successful that it is 

rarely questioned. Indeed, for many physicists it is a sort of dogma, and the OST model, 

which is just a model we have made up in our heads, is often confused with, and taken to be 

the same as, reality. 

Yet cracks in the universal applicability of OST are numerous. In the domain of physics, this 

is evidenced by how "weird" quantum phenomena appear when viewed through the OST 

lens. How can a particle be in two places at once? How can a cat be in a superposition of 

being dead and alive? How can properties of particles become dependent on each other 

(entangled) even when no information can travel between them at the speed of light? How 

can properties be undefined until measured by an "observer" at which point they are chosen 

at random according to some probability distribution? How can the choice of what we 

measure affect the very properties we measure? 
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At a more fundamental level, the OST model is an inadequate explanation of the universe. It 

does not explain what spacetime is, nor what atoms or particles are, nor fields or forces. Their 

existence is just taken as an axiom of the model. Yet no one has ever seen or experienced a 

particle, a field, or spacetime itself―these are all our inventions. What, fundamentally, is 

space made of? What is a vacuum? These questions are not answerable by the OST model. 

At a deeper level still, in the realm of metaphysics and philosophy, the OST model is weaker 

yet. Where do thoughts reside? Is love made of particles? Where does a perfect Platonic 

triangle exist? Does math exist in spacetime or outside it―if so, what is outside spacetime? 

What are feelings? Is consciousness made up of particles? The OST model has nearly no 

explanatory power when it comes to these sorts of questions. Yet, if we are serious about the 

project of physics, we should want one fundamental model of nature that has the potential to 

encompass all these layers, from physics to biology to psychology to philosophy. 

The OST model, while successful in many domains, simply cannot be the last word on the 

nature of reality. There must exist a deeper reality, a way we can understand nature at a more 

fundamental level. As Quine [1] notes, physical objects, things, particles "are postulated 

entities which round out and simplify our account of the flux of existence ... The conceptual 

scheme of physical objects is a convenient myth, simpler than the literal truth and yet 

containing that literal truth as a scattered part." 

It is the goal of this paper to present such a deeper model of reality. To be successful this new 

model must first of all match the experimentally-verified predictions of existing physics, 

specifically quantum mechanics, as viewed using the OST model. It must provide a structure 

of reality that makes the "weirdness" of quantum phenomena understandable. Most 

important, it must bring a new vantage point, a deeper reality, a new set of techniques to bear 

on the project of physics, so that we have a chance of making new discoveries and 

predictions which are unreachable from within the OST model. 

So, how do we begin to construct an alternative to OST? What is the "literal truth" to which 

Quine refers to? How can we describe a theory without, or at a deeper level than, particles, 

space and time? In answering this question, we initially find common ground with Wheeler 

[2]: "Can we deduce the quantum from an understanding of existence?". Wheeler makes 

progress on this goal by stating the following working hypothesis: It From Bit. "... every 

it―every particle, every field of force, even the spacetime continuum itself―derives its 

function, its meaning, its very existence entirely―even if in some contexts indirectly―from 

the apparatus-elicited answers to yes or no questions, binary choices, bits.". 

We strongly agree with a foundational role of yes-or-no questions in the nature of the literal 

truth of reality. Wheeler goes on to ask, "But how come existence? Its as bits, yes; and 

physics as information, yes; but whose information? How does the vision of one world arise 

out of the information-gathering activities of many observer-participants?" Now this is 

problematic: what is an "observer-participant?" A "conscious" being? And what, precisely, is 

that? How can different observer-participants agree on one world? Or does each one exist in 

solipsistic isolation, each with their own truth about the world? 

It is at this point where we part company with Wheeler in our thinking. Our key idea is to 

answer the question "whose information" not with "observer-participants' ", but "reality's". By 

this we mean, that if the bit is 1, the it is a fundamental indivisible entity which 

exists―which manifests in reality, is an actuality. It is. If the bit is 0, the it does not 

exist―does not manifest in reality, it is a potentiality. It is not. 
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We will call this it which exists if the bit is 1 a toma. A "toma" is like the philosopher's 

"atom", in that it is a fundamental indivisible unit of existence, but different in that it can pop 

into and out of existence. It is not eternal. 

Where to now? How do we develop "a derivation of the structure of quantum theory from the 

requirement that everything have a way to come into being[?] ... We can ask ourselves if it is 

not absolutely preposterous to put into a formula anything at first sight so vague as law 

without law and substance without substance. How can we hope to move forward with no 

solid ground at all under our feet?" [3] 

We propose to meet this challenge by founding our theory of reality on the Principle of 

Dependent Origination [4]: "Every toma depends for its existence on the existence of other 

tomas." Recall a toma is a bit which, when 1, becomes an it, a unit which exists. The 

principle of dependent origination states that the values of all these bits depend on each other. 

That is, there exist Boolean functions which determine the status of each bit taking as input 

the state of some set of bits. As these Boolean functions get evaluated, the status of the bits is 

updated, and the corresponding its come into existence or cease to be. Instead of the static, 

eternal philosopher's "atoms", we have dynamic, interdependent fundamental units, "tomas". 

By Occam's razor, there is no global "clock" to synchronize the evaluation of all these 

Boolean functions. The functions can be evaluated at any time, in any order. The universe, in 

our view, is just a vast asynchronous network of logical dependencies between tomas. 

You may quite reasonably ask, who or what "evaluates" these Boolean functions? By 

assuming that something must exist which does the evaluating, this question reveals how 

ingrained the OST model is in our thinking, especially in the form of materialism. A 

contrasting view, process philosophy, with roots in ancient Eastern philosophy [5], has been 

developed by Whitehead [6] and others [7]. It claims that processes, change, relationships are 

fundamental, and substance or matter, if it even exists and is not mythical as per Quine, is 

secondary. 

In the OST model, matter (atoms, particles) is taken as fundamental, and it just happens to 

undergo change through the occurrence of processes. In the process-based toma model, the 

processes (Boolean functions) are fundamental and there just happen to be tomas which these 

processes act on. 

Process philosophy has developed into a very rich and complex body of work with many 

variants. A simple illustration should capture the basic idea at this worldview's core. Consider 

the question "what is a cat?". In the OST model, we would say that it is a collection of 

billions of atoms. A furry bag of "stuff" weighing so-and-so much and with such-and-such 

dimensions embedded at a given location in space. In this model, a dead cat would be 

essentially the same as a live cat―same dimensions, same weight, same atoms, same place in 

space. Clearly though, a live cat is very different from a dead cat. The OST model does not 

provide a lens through which we can clearly distinguish a live and dead cat - therefore the 

OST model is simply incomplete. 

Process philosophy answers this question differently. We don't take the cat to be a furry bag 

of atoms. Instead, we look at it as a network of processes: respiration, digestion, circulation, 

movement, cognition and so on. In this view, a dead cat consists of a dramatically different 

network of processes to the live cat: cooling, cell breakdown and so on. By placing process as 

the foundation, we can correctly identify the dramatic difference between a live cat and a 

dead cat. 
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The contrast between process philosophy and the OST model  is even more stark when we 

consider everyday inanimate objects. Consider a box of matches [8]. On the OST view, this is 

an arrangement of real physical inanimate matter made up of individual atomic units at 

defined locations in space which endures in time. In contrast, on the process view, the box of 

matches is the result of, that is depends on, many processes by which it was manufactured, as 

well as a set of processes it can give rise to. Thus, the flame which results when a match from 

the box is struck is already contained in the process description of the box of matches. On the 

OST view, we see the box of matches is some "stuff" somewhere "out there" in space. On the 

process view, the box of matches is a description of everything that needs to be done to create 

it, and everything it can do. Matter is, processes do. 

An analogy with computer science is appropriate. One way to describe a computer program is 

as a map from the set of all possible input sequences of bits to the set of output sequences of 

bits which the program generates for each possible input sequence. This corresponds to the 

OST model―the program takes the form of arrangements of "stuff," bits in this case, of 

inanimate, concrete units. But there is another way to represent a program, as an 

algorithm―a set of processes, transformations, which take place depending on the input and 

each other and give rise to to the output of the program. This corresponds to the process 

view―there is no inanimate "stuff", no "matter", but only a network of interdependent 

processes, a description of how things are created and what they can create. An algorithm, or 

a network of processes, can be equally well executed on a computer, or with pencil and 

paper, or using an abacus―it is the network of processes that is key, not the "stuff" which 

performs the processes. 

The central tenet of process philosophy can thus be expressed as follows: If you completely 

describe what an object does in relation to what all other objects do, that description is a 

complete specification of what that object is―no further specification is necessary or 

possible. 

In physics, we almost exclusively look at the world as arrangements of units of matter, of 

physical "stuff" in space and not at the algorithm, the network of interdependent processes 

taking place all around us. It is the goal of this paper to show that such a process description 

of reality can lead to a mathematically precise model of reality which matches the predictions 

of the current best OST-based fundamental theory of motion―quantum mechanics. 

The reader may well still insist that we must provide in the process model something 

corresponding to physical objects in a physical space. Even if we are to view everyday 

physical objects (chairs, boxes of matches, socks) as networks of processes, we still must 

explain why they seem to have a physical size, a physical extension and location in some sort 

of space. We answer this potential criticism by taking Bohm's [9] view of perception. Bohm 

points out that we never perceive matter as a thing in itself. What we do perceive are 

invariants. For example, we never "see" a whole pencil, all sides and the interior of it at the 

same time. Instead, from multiple views of it we infer that the endpoints of the pencil are, 

say, 20 cm apart in space. This  model of perception allows us to view physical objects not as 

arrangements of "matter" somewhere "out there", but as a set of invariants, or relationships, 

among their parts. On the process view, these relationships or dependencies between the parts 

of a physical object are a network of processes, which is only one subnetwork of the 

complete description of the object, which also includes all the processes that give rise to it 

and it can give rise to, such as the flame contained in the box of matches. We will see in 

section 5 of this paper that any network of relationships among parts naturally leads to 

observations (measurements) of the parts being located at points separated by invariant 
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distances in a three dimensional space. Thus we will recover physical extension in space as a 

consequence of one part of the description of an object in our process model of reality. 

Many authors have noted that adopting a process philosophy viewpoint may be useful in 

creating a theory of reality that makes sense of quantum phenomena. Folse [10] compares 

Whitehead's process philosophy with Bohr's principle of complementarity [11]. He 

summarizes his conclusion thus: "In stipulating that what is described by the state equations 

of quantum mechanics is not the properties of a substance but a process of interaction which 

cannot be unarbitrarily subdivided into separate physical systems in determinate states, the 

framework of complementarity essentially puts the notion of process at the heart of its 

characterization of the ontological status of the objects of experimental observation, or in 

other words, of experience." There is a large body of work trying to reframe quantum 

mechanics in terms of process philosophy, a sample of which is given in the references [12 - 

14], but none of these attempts to date which we are aware of have, in our view, been entirely 

satisfying. 

Our model of interdependent tomas is an instance of process philosophy. So, back to the 

question, "who, or what, evaluates the Boolean functions that determine the status of all the 

bits and its?" Answer: nobody―processes are all that there is―they are the fundamental 

building blocks of reality. The tomas are secondary, a by-product of the processes having to 

have something to act on. 

We develop these ideas as they apply to space, time and quantum mechanics in the remainder 

of this paper. We begin by introducing a mathematical model of interdependent tomas called 

an "ontic network" in section 2. We then reinterpret the number system in process terms thus 

creating the "quantic networks" of section 3. In section 4 we examine the process of 

measurement as being one by which a number (in a quantic network) depends on the state of 

a system (an ontic network). In section 5 we build on to this to understand what motion is in 

the process worldview and how velocity can be measured. In the final section, we discuss two 

key "mysteries" of quantum mechanics: Schrödinger's cat and entanglement, and how these 

can be straightforwardly understood by taking processes, not substance, as fundamental. 

 

2. Ontic Networks 

So far, we have argued that the universe is an interdependent set of tomas which depend on 

each other to come into, or out of, existence. We will refer to such a set of tomas and 

dependencies as an ontic network. The word "ontic" signifies "related to existence" and the 

word "network" captures the dependencies among the tomas. We define the terms toma and 

process dependency as follows: 

A toma is an entity which can be in one of two states: 

"1" - when it is an indivisible unit which manifests in reality, or exists―an actuality. 

"0" - when it does not manifest in reality―a potentiality. 

A process dependency is a Boolean function of the states of some subset of all tomas in the 

ontic network (the input tomas) and which is associated with one specific toma, the 

dependant toma. 

An update is when a dependency function is evaluated, the values of the arguments being the 

current states of the input tomas. At least one of the input tomas must be in state 1; an update 

can only occur if at least one input toma exists. The result of the evaluation of the function is 
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assigned to the dependant toma, replacing its previous state. Through such an update, a toma 

may come into existence or cease to be. The evolution of the state of an ontic network is the 

occurrence of an ongoing sequence of updates. The order in which the updates are performed, 

that is to say, in what order the dependency functions are evaluated, is random, with each 

possible update having equal probability of being selected to occur next. We justify this 

mechanism by symmetry: since in accord with process philosophy we view every process as 

a fundamental and indivisible entity, there is nothing to favor the selection of any one specific 

process over any other one. If a toma is the dependent toma of more than one process, then its 

state is the result of the dependency function which was evaluated last: the most recent 

update "wins." 

Each process dependency can be thought of in two ways. First, as a process, it is something 

that brings a toma into or out of existence. Secondly, as a dependency, it is that by which a 

toma's state depends on other tomas' states. Using the term "process" emphasizes the 

"forward" aspect of a process dependency, from input to the dependant toma. The term 

"dependency" emphasizes the "reverse" aspect, from the dependant to the input tomas. Both 

terms, however, should be understood to refer to the same construct, a process dependency. 

In order to be able to talk about a specific toma or dependency we will need to refer to it by 

some label. The primary label of a toma or dependency will be how we refer to it in text and 

diagrams. For a toma, it will typically be a Latin letter or short piece of descriptive text; while 

for a dependency it will typically be a lower case Greek letter or short piece of descriptive 

text. 

All tomas and processes in a given ontic network also have a unique index label which is a 

natural number. Consider an ontic network with n tomas and m processes. The tomas' index 

labels will range from 1 to n, while those of the processes will range from 1 to m. We are not 

particularly interested in the specific mapping of the tomas to particular values of these 

numbers. Rather, we will denote the index label of a toma as its primary label indexed with 

the symbol #. For example, if we have an ontic network with n = 3 tomas with primary labels 

A, B and C, then we refer to their index labels by A#, B# and C# respectively. The actual 

index labels will be 1, 2 and 3, although which specific numerical value corresponds to which 

specific toma is not important to us. Similarly, a process's index label will be referred to by 

its primary label indexed with a #. 

The state of an ontic network with n tomas is given by a column vector 𝜣 ∈ 𝔹𝑛. The entry at 

row i of 𝜣 will be denoted 𝜣[𝑖]. The state of a toma, for example toma B, will be given by 
𝜣 𝐵# . Here, "B" is the primary label of the toma. By adding a # index we make reference to 

this toma's index label, a unique number which we then use to index the state vector. Thus, if 

𝜣 𝐵# = 1 then toma B exists, and if 𝜣 𝐵# = 0, it does not. 

There is an important nuance here, in that the state of a real ontic network (e.g. the universe) 

at an instant is, in general, not knowable. Since the network is asynchronous―the updates are 

performed in a random order―there is no way for any one part of the network to learn the 

instantaneous state of every other toma in the network. From within the network, therefore, 

there is no way to capture a global snapshot of the entire network's state. 

The only time it makes sense to talk about the state of an ontic network, and to give a specific 

value for the vector 𝜣, is when we are dealing with the simulation of such a network (e.g. 

performed on a computer), or when we study a hypothetical ontic network mathematically. 

The state of the network is only "visible" from a vantage point "outside" the network, and is 

meaningless if no such place exists. 
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Ontic networks lend themselves easily to being visualized. We can draw each toma as an oval 

with its primary label inside it. Connecting the tomas are the dependencies represented by 

arrows from the input tomas to the dependent toma. These arrows may, optionally, display 

the dependency's primary label. Different Boolean dependency functions are represented 

using standard logic gate symbols. If we wish to indicate the state of a toma, we write a 0 or 1 

in a circle placed at the left side of the interior of the oval representing the toma. If the circle 

is omitted or left blank, the state of the toma is not known, or not significant for the 

discussion at hand. Examples of diagrams of ontic networks are presented in figures 1 - 4. 

Note that nothing prevents there being more than one dependency between two tomas, as 

illustrated in figure 5. 

    

Fig. 1: a) Toma A is in state 1, toma B is in state 0. The function μ is 𝜣 𝐵# ∶= 𝜣 𝐴# . 
 b) When μ is selected for an update, this function is evaluated and the state of toma B 

changes to 1. 

    

Fig. 2: A small bubble represents a logical NOT: 

 a) Tomas A and B are both in state 1. The function μ is 𝜣 𝐵# ∶= ¬𝜣 𝐴# . 
 b) When μ is selected for an update, this function is evaluated and the state of toma B 

changes to 0. 

   

Fig. 3: The logic gate representing the AND operation: 

 a) Toma A is in state 0, tomas B and C are in state 1. The function μ is 

 𝜣 𝐶# ∶= 𝜣 𝐴# ∧ 𝜣 𝐵# . 
 b) When μ is selected for an update, this function is evaluated and the state of toma C 

changes to 0. 

   

Fig. 4: The logic gate representing the OR operation: 

 a) Toma B is in state 1, tomas A and C are in state 0. The function μ is 

𝜣 𝐶# ∶= 𝜣 𝐴# ∨ 𝜣 𝐵#  
 b) When μ is selected for an update, this function is evaluated and the state of toma C 

changes to 1. 
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Fig. 5: There can be more than one dependency between two tomas: 

 a) Tomas A and B are in state 1. The function μ is 𝜣 𝐵# ∶= 𝜣 𝐴#  and λ is 

 𝜣 𝐵# ∶= ¬𝜣 𝐴# . Either μ or λ can be randomly selected for an update. If μ is 

selected, B remains in state 1 but if λ is selected, it changes to state 0. The evolution 

of the state of the network continues through an ongoing sequence of such selections 

and updates. 

 b) Tomas A and C are in state 1, toma B is in state 0. The function  μ is 

 𝜣 𝐶# ∶= 𝜣 𝐴#  and λ is 𝜣 𝐶# ∶= 𝜣 𝐴# ∨ 𝜣 𝐵# . Either one can be randomly 

selected for an update, and the state of the network continues to evolve through an 

ongoing sequence of such selections and updates. 

 

3. Quantic Networks 

To build our ontic network based theory of reality we will first need to develop an ontic 

network version of the number system, wherein each toma corresponds to a specific 

numerical value. We will call such an ontic network version of the number system a quantic 

network, indicating that the tomas in this network correspond to specific quantities. 

In detail, a quantic network is an ontic network with n tomas and m processes, together with 

two functions, 𝑁 𝑖  and 𝐷 𝑗 . For every toma t in the network, 𝑁 𝑡#  gives the specific 

numerical value this toma corresponds to. Since ontic networks are fundamentally discrete 

structures, these values will be integers or vectors of integers. 

Furthermore, in a quantic network all the processes are of a very simple kind. Every process 

has exactly one input toma and one dependant toma. Let the input toma be denoted by p and 

the dependant toma by q, and let the process's primary label be μpq. Then all the processes in 

a quantic network are functions 𝜣 𝑞# ∶= 𝜣 𝑝# . For every process μpq in the quantic 

network, 𝐷(𝜇𝑝𝑞#) gives the difference between the numerical values corresponding to tomas 

p and q. Specifically: 

𝐷(𝜇𝑝𝑞#) = 𝑁 𝑞# − 𝑁(𝑝#)                                                                 (1) 

An example of a quantic network is shown in figure 6. Let us suppose the state 𝜣 of the 

network starts off equal to zero―no tomas exist. We take this as corresponding to a null set 

of integers. Suppose a process from outside this network, not shown in the figure, brings 

toma C into existence, by setting 𝜣 𝐶# = 1. The value corresponding to toma C is 2 because 

𝑁 𝐶# = 2. We take this network as corresponding to the set of integers {2}. Now if process 

μCA is selected for an update, toma A will come into existence, and the network will 

correspond to the set {0, 2}, since 𝑁 𝐴# = 0. Then if, for example μAB is selected for an 

update, toma B will come into existence and the network will correspond to the set {0, 1, 2}. 

Thus we see each toma can be thought of as a specific value of a number, and each process an 

increase or decrease of this number by a specific value. 

Thus far we have used integers as the specific numerical values which the tomas correspond 

to. It is straightforward to use vectors of integers of a given dimension instead. Each toma 

b) 

λ 

μ 
A 1 

B 0 

C 1 a) 

μ 

A 1 B 1 

λ 
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will then correspond to a specific value of a vector―that is one in which every entry is a 

specific value of an integer. The processes connecting the tomas then correspond to vector 

differences between the vectors corresponding to the tomas. Figure 7 shows an example of 

such a quantic network, in which the tomas correspond to specific values of two-dimensional 

vectors of integers. 

 

𝑁 𝑌# = −2          𝐷 𝜇𝑌𝑍# = 𝐷 𝜇𝑍𝐴# = 𝐷 𝜇𝐴𝐵# = 𝐷 𝜇𝐵𝐶# = 1 
𝑁 𝑍# = −1         𝐷 𝜇𝑍𝑌# = 𝐷 𝜇𝐴𝑍# = 𝐷 𝜇𝐵𝐴# = 𝐷 𝜇𝐶𝐵# = −1 
𝑁 𝐴# = 0            𝐷 𝜇𝐶𝐴# = −2 
𝑁 𝐵# = 1 
𝑁 𝐶# = 2  

Fig. 6: A quantic network with 6 tomas and 9 processes. 

 

𝑁 𝐴# =  
0
0
           𝐷 𝜇𝐴𝐵# =  

1
0
  

𝑁 𝐵# =  
1
0
           𝐷 𝜇𝐴𝐶# =  

0
1
  

𝑁 𝐶# =  
0
1
           𝐷 𝜇𝐶𝐷# =  

1
0
  

𝑁 𝐷# =  
1
1
           𝐷 𝜇𝐷𝐴# =  

−1
−1

  

Fig. 7: A quantic network wherein each toma corresponds to a specific value of two-

dimensional vector of integers. 

 

4. Measurement 

In physics we perform experiments. In these, a result is a numerical quantity that depends on 

the state of a system through a process of measurement. Let us now examine each of these 

three key parts of every experiment in our process worldview using ontic and quantic 

networks. 

A system can be defined as a "regularly interacting or interdependent group of items forming 

a unified whole." [15] This is exactly what an ontic network is―a set of interdependent 
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items. We will refer to this system ontic network by the script letter S and its state vector by 

𝜣. 

A result is a numerical quantity; that is, it corresponds to a toma in a quantic network. Only 

one result can exist at a time, and once a result exists it cannot cease to exist. Therefore, we 

must use a special type of quantic network. In this type of quantic network, all the tomas start 

off in state 0, non existing. The dependencies in the network are arranged so that each toma 

depends for its existence on all the other tomas not existing. Additionally, the dependencies 

are such that once a toma comes into existence it cannot then cease to exist―it "latches on". 

We will call such a network a mutually exclusive, or for short a mex quantic network. We will 

refer to the mex quantic network in which the result is a toma by the script letter R. Its state 

vector will be denoted by 𝜴. If no result exists, as before an experiment is performed, then 𝜴 

is zero. Once a result comes into existence, 𝜴 will contain exactly one entry equal to 1, with 

all the other entries 0. The result of the experiment will be the numerical value which 

corresponds to the toma with the entry equal to 1 through the function 𝑁 𝑖  as discussed in 

section 3. 

We define measurement as a set of dependencies by which result tomas in R depend on the 

system tomas in S. We will call this set of dependencies the interconnect and denote it by the 

script letter M, standing for measurement. 

Consider the experiment shown in figure 8. The system S consists of two tomas A and B each 

of which can be in state 0 or 1. These states are determined by processes which prepare the 

system prior to the measurement; they are not shown here as we are only interested in the 

measurement itself. The state of the system is given by the vector 𝜣 which may or may not be 

known to the experimenter. 

 

Fig. 8: A measurement of a system S with two tomas and three possible results in the result 

quantic network R. The interconnect M consists of the dependencies of the result 

tomas on the system tomas. The dashed boxes delimit the tomas belonging to the 

networks S and R. Dependencies between tomas within R have been omitted for 

S 

M 

R 

 A  B 

 a  b  c 

ε1 ε2 ε3 ε4 
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clarity. The OR gates ensure that once a toma in R comes to exist it cannot then cease 

to exist, while the AND gates ensure only one toma in R can exist. 

The three possible results of this experiment are 1, 2 and 3, corresponding to the tomas a, b 

and c in the quantic network R. We denote the state of this network by 𝜴. Before a 

measurement is made, the state of this network is zero―no tomas exist in R; before a 

measurement is made, there is no result. When a measurement is made, exactly one toma will 

come into existence. The numerical value corresponding to this toma is what we call the 

result of the measurement. 

While the logic of the mex network R is simple, it leads to visual clutter as can be seen in 

figure 8. We therefore introduce a simplified representation of a mex network in figure 9. 

 

Fig. 9: To reduce visual clutter, we use a solid box labelled mex to indicate the 

dependencies of the tomas contained in it are structured so that at most one of them 

can exist, and once it exists it cannot cease to exist. The network shown here is 

logically identical to that of figure 8. 

In our example experiment, there are four processes ε1 ... ε4 which constitute the interconnect 

M. Through these processes the states of the result tomas in R depend on the states of the 

system tomas in S. Recall that according to the toma model and process philosophy these 

processes are the fundamental units of reality and that, by symmetry, any one of them can be 

selected at random with equal probability for an update during the evolution of the state of 

the network. That is, any one of these four processes can "happen" first. When one of them 

does happen, it will bring one toma in R into existence. Because R is mex, this toma cannot 

then cease to exist and no other result toma can come into existence. The first result to come 

into existence is thus "latched on". This corresponds to the common sense notion that once 

we have made a measurement, the result is fixed. 

We see therefore that in the toma model the result of measurement depends on the state of the 

system in a fundamentally non-deterministic fashion. The core reason for this is that there is 

nothing to distinguish any one process in the interconnect M from any other one, as they are 

all considered fundamental indivisible units of reality. Thus which process happens first and 

whose result is "latched on" by the mex network R is random. However, since the different 

result tomas in R depend on different subsets and through different Boolean functions of the 

S 

M 

R 

MEX 

 A  B 

 a  c  b 

ε1 ε2 ε3 ε4 
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system tomas, the state of the system affects the probabilities of each result coming into 

existence, by affecting which of the processes in M can bring a result toma into existence. 

Let us examine this in more detail and develop some formalism to keep track of these 

changing probabilities in our example. The system S can be in one of four possible states: 

𝜣1 =  
0
0
         𝜣2 =  

1
0
         𝜣3 =  

0
1
         𝜣4 =  

1
1
                                         (2) 

where we use the index labels A# = 1 and B# = 2 to index the vectors. For the network R we 

will use the index labels a# = 1, b# = 2 and c# = 3. 

Let us take each one of these system states in turn. With the system in state 𝜣1, both system 

tomas A and B do not exist. Thus there is no way for any of the result tomas to come into 

existence. We define the ways vector 𝜱 as a column vector with the same dimensions as the 

state vector 𝜴 of the result network R. The entry at a given row in 𝜱 is a non-negative 

integer equal to the number of ways the toma with this row's index label can come into 

existence with the system in a given state. This is just the number of processes in M which 

can bring the result toma into existence with the system in a given state. In our example, with 

the system in state 𝜣1, the corresponding ways vector will be zero: 

𝜱1 =  
0
0
0
                                                                                     (3) 

In the system state 𝜣2, toma A exists and B does not. The only possible result toma that can 

come to exist is a, via the process ε1. Thus the ways vector with the system in this state is: 

𝜱2 =  
1
0
0
                                                                                     (4) 

In the system state 𝜣3, toma B exists but toma A does not. The only result toma that can 

come into existence is c, and it can do so through either of two processes ε3 or ε4. Thus the 

ways vector with the system in this state is: 

𝜱3 =  
0
0
2
                                                                                     (5) 

Finally, with the system in state 𝜣4 both tomas A and B exist. Any of the result tomas can 

come into existence. Toma a can do so through one process ε1, toma b through one process ε2 

and toma c through either of two processes ε3 or ε4. The ways vector with the system in this 

state is therefore: 

𝜱4 =  
1
1
2
                                                                                     (6) 

Let r be the number of tomas in the result network R. In our example from figures 8 and 9, 

r = 3. We define the 1-normalized ways vector 𝜱′ as: 
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𝜱′ =
𝜱

 𝜱[𝑖]
𝑟

𝑖=1

                                                                          (7) 

Given a result toma t, the entry 𝜱′  𝑡#  gives the probability that toma t will come into 

existence first and become "latched on" in the mex result network. Thus, this entry is the 

probability that the result of the measurement is the numerical value corresponding to t, 

namely 𝑁 𝑡# . We represent this probability by 𝑃(𝑁 𝑡# ) so that: 

𝑃(𝑁 𝑡# ) = 𝜱′ [𝑡#]                                                                    (8) 

In our example, the 1-normalized ways vectors corresponding to each of the four possible 

system states are: 

𝜱′1 =  
0
0
0
         𝜱′2 =  

1
0
0
         𝜱′3 =  

0
0
1
         𝜱′4 =  

0.25
0.25
0.5

                             (9) 

With the system in state 𝜣1 we see 𝜱′1 is zero and so no result toma can come into existence. 

We see from 𝜱′2 that with the system in state 𝜣2 toma a will come to exist with 

probability 1. With the system in state 𝜣3 we see from 𝜱′3 that toma c will come to exist 

with probability 1, Examining 𝜱′4 we see that when the system is in state 𝜣4, result tomas a 

and b each have a 0.25 probability of coming into existence, while toma c has a 0.5 

probability of doing so. Therefore, in a large number of runs of the experiment with the 

system in state 𝜣4 we expect the result of the measurement to be 1 in a quarter of the runs, 2 

in another quarter, and 3 in the remaining half of the runs. These results (1, 2, 3) are the 

numerical values corresponding to each result toma, respectively: 𝑁 𝑎# , 𝑁 𝑏#  and 𝑁 𝑐# . 

When working with vectors it is more common to normalize them using the 2-norm: 

|𝒂| =    𝒂 𝑖  2

𝑖

                                                                (10) 

rather than the 1-norm as we used in equation (7). So that we can rewrite that equation using 

the 2-norm, we define a vector 𝜳, called the wavefunction, of the same dimensions as the 

ways vector 𝜱 and with elements given by: 

∀𝑖 ∈ {1,2,...,𝑟}      𝜳[𝑖] =  𝜱[𝑖]                                                        (11) 

We can normalize the wavefunction 𝜳 using the 2-norm: 

𝜳 =
𝜳

|𝜳|
                                                                            (12) 

Given a toma t in the result network R and using equations (10), (11) and (12) we find that: 

𝜳  𝑡# =
𝜳 𝑡# 

   𝜳 𝑖  2𝑟
𝑖=1

=
 𝜱 𝑡# 

  𝜱 𝑖 𝑟
𝑖=1

                                                (13) 

and so using equations (7), (8) and (13) we have: 
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 𝜳  𝑡#  
𝟐

=
𝜱 𝑡# 

 𝜱 𝑖 𝑟
𝑖=1

= 𝜱′ 𝑡# = 𝑃(𝑁 𝑡# )                                          (14) 

Now let us define an r×r diagonal matrix 𝑿 as follows: 

𝑿 =

 
 
 
 
𝑁(1)

𝑁(2)

⋱
𝑁(𝑟) 

 
 
 

𝒓×𝒓

                                                  (15) 

The entries on the diagonal of 𝑿 are the numerical values corresponding to each result toma 

in the quantic network R. This matrix has r eigenvectors 𝜳1 …𝜳𝑟  such that: 

∀𝑖 ∈ {1,2,...,𝑟}      𝑿𝜳𝑖 = 𝑁(𝑖)𝜳𝑖                                                          (16) 

where the eigenvectors are given by: 

∀𝑖,𝑗  ∈ {1,2,…,𝑟}      𝜳𝑖[𝑗] =  
1     𝑖𝑓     𝑖 = 𝑗
0     𝑖𝑓     𝑖 ≠ 𝑗

                                                (17) 

We note that for any normalized wavefunction 𝚿  we have: 

𝜳 𝑿𝜳 =  𝜳 [𝑖]𝑁 𝑖 𝜳 [𝑖]

𝑟

𝑖=1

=  𝑁 𝑖 𝑃(𝑁 𝑖 )

𝑟

𝑖=1

                                     (18) 

which is the average numerical result of measurement we expect to obtain from a large 

number of runs of the experiment. We refer to this average as the expectation value and 

denote it by  𝑋  so that: 

 𝑋 = 𝜳 𝑿𝜳                                                                       (19) 

Let us now summarize the above toma-based theory of measurement and compare it to the 

quantum mechanical idea of the "collapse of the wavefunction". In the toma model of 

measurement, there is no result until the measurement is made. This is a radical departure 

from the OST model, in which we believe all things have well-defined properties, whether or 

not we have measured them. We see in the toma model that a result of measurement comes 

into existence only as a result of a process happening in the measurement interconnect M. 

Which of these processes happens is, by symmetry, random, thus explaining the deep reason 

why measurement is non-deterministic. The probability of obtaining a given result with the 

system in a given state is given by the square of the corresponding entry in the normalized 

wavefunction―see equation (14). If the wavefunction is one of the eigenvectors 𝜳𝑖 , we 

know the result of measurement will be 𝑁 𝑖  with probability 1. The average result we would 

obtain in a large number of runs of the experiment is the expectation value given by 

equation (19), which is the toma model equivalent of the quantum mechanical equation for 

the expectation value: 

 𝑋 =  𝜳|𝑿|𝜳                                                                  (20) 

In the toma model, the wavefunction is related via equation (11) to the number of processes 

in M that can bring each result toma into existence. In quantum mechanics, we call the 
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wavefunction the "state of the system". In the toma model, it is more accurate to call it the 

"state of the experiment", this encompassing the entire ontic network made up of the system 

network S, the result network R and the interconnect M. 

In the OST model, when we measure, say, x = 42, we think x must "be" 42 "out there" as a 

property of some physical "stuff." We believe that our model of the world "x = 42," derived 

from observations, is how things really are "out there." In the process view, "x = 42" is not a 

property of any "stuff" but just one possible toma that can come to exist depending on what 

processes happen, and how they relate to each other. 

In quantum mechanics, we would call a wavefunction with more than one non-zero entry a 

"superposition of states" or a "mixed state". Then, when a measurement is made, we would 

say that the wavefunction "collapsed" so it only has one non-zero entry, corresponding to the 

actual value of measurement obtained. This terminology is influenced heavily by the OST 

model, wherein every thing, every system, "has" a determinate state. In contrast, in the toma 

model, we don't view such a mixed wavefunction as a superposition of system states; rather 

we see it as as accounting of the number of different processes in the interconnect M which 

can bring each result toma into existence. The wavefunction, in the toma view, is a 

distillation of the structure of the experimental ontic network composed of S, R and M which 

contains only the information needed to compute the probabilities of each result through 

equation (14). 

The wavefunction as discussed in this section is a vector of real numbers, while we know that 

in quantum mechanics the wavefunction is a complex vector. The reason for this is that in 

this section we have not considered motion or time. In the next section we see how we can 

understand motion and time in the toma model. We will derive time-evolution equations and 

find these equations introduce an imaginary component to the wavefunction, and so we will 

end up with complex wavefunctions as in quantum theory. 

 

5. Motion, Space and Time 

Motion is a process in a system S. A key property of motion is that it has a start and an 

end―a motion is from here to there. That is, motion is a process in the network S from a 

single specified input toma A to a specific dependant toma B. Recall from section 2 that in 

general a process in an ontic network can have any number of input tomas. Therefore, not all 

processes in the network can be considered to be motion. In this section of this paper, we will 

focus on how to measure motion-type processes, that is those with just one input toma. 

The simplest such process between two tomas A and B is one with the dependency function 

𝜣 𝐵# ∶= 𝜣 𝐴# . This we call a 1-hop motion and it is illustrated in figure 10a. We can also 

have a motion-type process made up of several 1-hop motions in series, as shown in figure 

10b. If such a multi-hop motion is made up of h 1-hop motions, we call it an h-hop motion. 

  

Fig. 10: Examples of motion-type processes: 

 a) a 1-hop motion from A to B, 

 b) a 3-hop motion from A to B. 

b)  A  Y  Z  B a)  A  B 
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Fig. 11: A simple system S consists of one 2-hop motion from A to B. These endpoints give 

rise to two numerical results in the quantic network R through the interconnect M. 

The p-mex nature of R ensures the two results always correspond to the endpoints of 

the same motion-type process in S in cases where the system consists of more than 

just one motion-type process as shown here. See text for details. 

To measure a motion-type process, we need to make two measurements, one of the start toma 

and one of the end toma. Therefore, the result network R must be structured so that at most 

two tomas corresponding to numerical quantities can come to exist in it. Consider figure 11 

which illustrates a measurement of a process. As before, the network R starts with all tomas 

in state 0, without existence. When a process in M occurs, with its input toma in the system 

denoted A, a toma, denoted A', will come into existence in R and become "latched on". The 

interconnect M is structured so that this toma's existence will disable all processes in M 

except those whose input tomas are  the end tomas of motion-type processes in the system 

with the start toma A, such as toma B in figure 11. One of the remaining processes which has 

not been disabled will occur and another toma in R, denoted B', will come into existence and 

be "latched on". The logic of the network R ensures that once two tomas in it exist, no more 

can come to exist. We call a network structured in this way for measuring processes a p-mex 

network, and indicate it visually as a box labelled P-MEX as in figure 11. The key point of this 

paragraph is that to measure a process of motion, we make two numerical measurements, one 

of the start toma and one of the end toma of the same motion-type process. 

Now that we know that to measure motion we use a p-mex network R, let us discuss the type 

of numerical values and changes in values that correspond via the functions 𝑁 𝑖  and 𝐷 𝑗  to 

the tomas and processes in R. 

The guiding principle in structuring R is what we call faithfulness: for any motion-type 

process in S there exists a corresponding process of change in numerical value in R. That is, 

there is a map from the set of all motion-type processes in S to the set of all change-of-

numerical-value processes in R. Consider any two tomas A and B in S with a process μAB 

connecting them. A' and B' are tomas in R which depend on A and B respectively through M. 

Faithfulness requires that there is a change-of-numerical-value process μA'B' in R such that 

 𝐷 𝜇𝐴′ 𝐵′ #  > 0. This must hold for all pairs of tomas in S with a process connecting them. 

S 

M 

R 

P-MEX 

μAZ μZB 

μA'B' 

 A  Z  B 

 A'  B' 
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We justify the principle of faithfulness by noting that not all possible interconnects between a 

system and a network of results will yield useful measurements. A theoretical physicist in the 

lab may successfully form a network of dependencies between results and a system; yet if the 

experiment is not well-conducted, the results will not reflect the processes taking place in the 

system; the results will not be faithful. In theoretical work, we assume that S, M and R are 

structured to be faithful. 

A further important point about the result quantic network R is that no processes of change in 

numerical value in it can "intersect". To explain what we mean by this, consider any pair of 

motion-type processes in S, μAB (from A to B) and μCD (from C to D). These are faithful via 

M to two processes of change in numerical value μA'B' and μC'D' in R. If the numerical 

quantity corresponding to each toma in R is an n-dimensional vector, then we can think of the 

processes μA'B' and μC'D' as line segments with endpoints  𝑁 𝐴′# , 𝑁 𝐵′#   and 

 𝑁 𝐶′# , 𝑁 𝐷′#   in n-dimensional space. We require that for any pair of motion-type 

process in S, which have no tomas in common, the corresponding line segments in the n-

dimensional space do not intersect. This is because if there existed a point of intersection in 

common to both line segments, it would correspond to a numerical value which belongs to 

both motions μAB and μCD; yet we assumed these motions have nothing (i.e. no tomas) in 

common. The lowest dimension in which such a non-intersecting faithfulness can be 

maintained between an arbitrary system network and a quantic network whose tomas 

correspond to n-dimensional vectors is n = 3. This follows from the standard result in graph 

theory that any network can be embedded in 3-dimensional space with no links crossing, but 

not in a space of less than 3 dimensions. 

So far, we have argued that the tomas in R should correspond to 3-vectors. Each toma then 

corresponds to a point in a 3D space, and each motion in the system to a line segment 

connecting the endpoints. There is, however, one more property of every motion-type process 

in the system which we need to measure. This is the number of hops h in the motion-type 

process between the start and the end system tomas. Only when we include the quantity h in 

our results in the network R can we say we have measured everything there is to know about 

a motion in a system. 

Let us refer back to figure 11. Consider the two result tomas A' and B', and especially the 

process of change in numerical value μA'B' connecting them. This process must now reflect 

parallel changes in two quantities: the change in the 3-vector corresponding to the start and 

end tomas (i.e. 𝐷 𝜇𝐴′ 𝐵′ # ), and the change ∆ℎ in the number of hops that have occurred in 

the motion (∆ℎ = 2 in the example of figure 11). That is, B' must be able to be thought of, 

equivalently, as ∆ℎ hops away from A' or as a point 𝑁 𝐵′#  in 3-space separated by 

𝐷 𝜇𝐴′ 𝐵′ #  from the point 𝑁 𝐴′# . 

This naturally leads us to consider using 4-vectors instead of the 3-vectors as the numerical 

values which correspond to the tomas in the result network R. The 4-vector corresponding to 

toma A' in R is given by the function 𝑁4 𝐴′  and the change in value corresponding to a 

process μA'B' by 𝐷4 𝜇𝐴′ 𝐵′ # . If the components of the 3-vector corresponding to a toma A' are 

𝑥, 𝑦 and 𝑧: 

𝑁(𝐴′#) =  
𝑥
𝑦
𝑧
                                                                                   (21) 

then the 4-vector 𝑁4(𝐴′#) is given by: 
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𝑁4(𝐴′#) =  

𝑠ℎ
𝑥
𝑦
𝑧

                                                                                   (22) 

where s is a constant. It is as if we are gluing together one "ruler" for measuring the number 

of hops, and one for measuring the distance in 3-space. The constant s is the relative size 

(scaling) of the distances between the graduations of one ruler with respect to those of the 

other. 

As discussed above, B' must be ∆ℎ hops away from A'. Taking the scaling into consideration, 

we obtain: 

𝑁4 𝐵
′
# = 𝑁4 𝐴

′
# +  

𝑠𝛥ℎ
0
0
0

                                                                   (23) 

and, equivalently, B' must be 𝐷(𝜇𝐴′ 𝐵′ #) =  
𝛥𝑥
𝛥𝑦
𝛥𝑧

  away from A' in 3-space: 

𝑁′
4 𝐵

′
# = 𝑁4 𝐴

′
# +  

0
𝛥𝑥
𝛥𝑦
𝛥𝑧

                                                                    (24) 

The distance between a point and itself in this space must be 0, so we must have: 

|𝑁4 𝐵
′
# −𝑁′

4 𝐵
′
# | = 0                                                                   (25) 

Substituting equation (23) and (24) into the above gives: 

  

𝑠𝛥ℎ
0
0
0

 −  

0
𝛥𝑥
𝛥𝑦
𝛥𝑧

  = 0                                                                  (26) 

so: 

(sΔℎ)2 + (Δ𝑥)2 + (Δ𝑦)2 + (Δ𝑧)2 = 0                                             (27) 

Given that ∆ℎ ≥ 1 for any motion-type process, equation (27) can only hold if one or more of 

the variables in it is complex. We choose by convention to make h purely imaginary, and 

keep x, y and z real. We do this by making the substitution ℎ = 𝑖𝑡 where i=  −1. 

Our 4-vectors now become: 

𝑁4(𝐴′#) =  

𝑖𝑠𝑡
𝑥
𝑦
𝑧

                                                                                   (28) 

and equation (27) becomes: 



 

19 
 

−(𝑠𝛥𝑡)2 + (𝛥𝑥)2 + (𝛥𝑦)2 + (𝛥𝑧)2 = 0                                             (29) 

which can hold even if 𝛥𝑡 ≥ 1. Rearranging, we obtain: 

(𝛥𝑥)2 + (𝛥𝑦)2 + (𝛥𝑧)2 = (𝑠𝛥𝑡)2                                             (30) 

or: 

|𝐷(𝜇𝐴′ 𝐵′ #)| = 𝑠𝛥𝑡                                                                   (31) 

We recognize this is the fundamental equation of Newtonian kinematics: the magnitude of 

the displacement in 3-space is equal to a real number s times the change in time. We thus 

identify s as the speed of the motion. We also recognize we are working in a Newtonian 

space of three dimensions and, as we are only considering a single motion, a single global 

fourth time dimension. Starting with equation (29) we could develop a Minkowskian 

spacetime instead, but this would take us beyond the focus of the present paper on non-

relativistic quantum mechanics, and so will be deferred to a future paper. 

The fundamental reason time enters equation (29) with a negative sign is that the end of a 

motion must be "reachable" both through a passage of time or a change in position in space. 

If we imagine ourselves "at" the start of a motion, we can either make h hops (i.e. wait a 

duration of time) or we can change our position in space; yet in both cases we must end up at 

the same end point. Motion in spacetime is thus the parallel occurrence of two processes: a 

change of position 𝐷(𝜇𝐴′ 𝐵′ #) and a change in time 𝛥𝑡, both of which terminate at the same 

endpoint. Spacetime is simply the set of all possible numerical results of measurements of 

motion in a system. The system is not a "thing" in spacetime as the OST model has it. Rather, 

in the toma model, the system is an ontic network which is depended on by, that is gives rise 

to, a quantic network of possible results of measurements of motion―and it is this result 

quantic network which corresponds to the "spacetime" of the OST model. 

Let us now use the insights of section 4 of this paper to study the probabilities of obtaining 

the various possible results of measurements of motion. As discussed in that section, the 

structure of the networks S, M and R can be distilled down to a wavefunction 𝜳 such that the 

probability of getting a result corresponding to toma A', given that previously no result tomas 

existed, is: 

𝑃 𝑁 𝐴′#  =  𝜳  𝐴′#  
𝟐

                                                             (32) 

Unlike in section 4, in this section our result network is p-mex. Given that the first result 

toma to come to exist in R is A', only one of a subset of all remaining tomas may now come 

into existence. Recall that the first result toma A' (which depends on the system toma A) 

coming into existence has the effect of disabling all the processes in M other than those 

starting at tomas which are end tomas for motion-type processes starting at A. That is, both 

results have to belong to the endpoints of the same motion in the system, so once a specific 

start toma is measured (via a process in M happening), only end tomas of motions sharing 

this start toma may be measured. 

Thus, the probabilities of which second result toma will come to exist depend on which first 

result toma came to exist. To keep track of this, let us define an r×r matrix 𝑭, where r is the 

number of tomas in the result network R: 
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𝑭 ≡  𝐹𝑗𝑘  𝒓×𝒓                                                                         (33) 

where 𝐹𝑗𝑘  is 1 if the result toma with index label equal to k is not disabled from coming into 

existence if the first result toma to come to exist was the one with index label equal to j, and 0 

otherwise. The matrix 𝑭 captures the structure of which end tomas are connected to which 

start tomas by motion-type processes in the system. Let us now define another r×r matrix 𝑮: 

𝑮 ≡  𝐺𝑗𝑘  𝒓×𝒓                                                                         (34) 

where the elements are given by: 

𝐺𝑗𝑘 = 𝜳 [𝑗]𝐹𝑗𝑘 𝜳 [𝑘]                                                          (35) 

By equation (32) we see that: 

𝜳  𝑗 𝐺𝑗𝑘 𝜳  𝑘 = 𝑃 𝑁 𝑗  𝑃 𝑁 𝑘  𝐹𝑗𝑘                                                   (36) 

Consider the quantity given by: 

𝜳 𝑮𝑿𝜳 =   𝜳  𝑗 𝐺𝑗𝑘 𝑁(𝑘)𝜳  𝑘 

𝑟

𝑘=1

𝑟

𝑗 =1

=   𝑃 𝑁 𝑗  𝑃 𝑁 𝑘  𝐹𝑗𝑘 𝑁(𝑘)

𝑟

𝑘=1

𝑟

𝑗=1

          (37) 

with 𝑿 defined in formula (15). Let us introduce the notation: 

𝑃 𝑗 → 𝑘 ≡ 𝑃 𝑁 𝑗  𝑃 𝑁 𝑘  𝐹𝑗𝑘                                                             (38) 

which gives the probability of the two tomas with index labels j and k both coming into 

existence in R, these being measurements of the endpoints of the same motion-type process 

in the system. Using this notation, we can write equation (37) as: 

𝜳 𝑮𝑿𝜳 =   𝑃 𝑗 → 𝑘 𝑁(𝑘)

𝑟

𝑘=1

𝑟

𝑗 =1

                                                 (39) 

Similarly, it can be shown that: 

𝜳 𝑿𝑮𝜳 =   𝑃 𝑗 → 𝑘 𝑁(𝑗)

𝑟

𝑘=1

𝑟

𝑗 =1

                                                 (40) 

Therefore: 

𝜳 (𝑮𝑿 − 𝑿𝑮)𝜳 =   𝑃 𝑗 → 𝑘 (𝑁 𝑘 − 𝑁 𝑗 )

𝑟

𝑘=1

𝑟

𝑗 =1

                                       (41) 

Now, 𝑁 𝑘 − 𝑁 𝑗  is the change between the 3-vectors corresponding to the start and end 

tomas, which we denote: 

𝛥𝑋 𝑗 → 𝑘 ≡ 𝑁 𝑘 − 𝑁 𝑗                                                         (42) 
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Also, let: 

[𝑮, 𝑿] ≡ 𝑿𝑮 − 𝑿𝑮                                                             (43) 

We can now write equation (41) as: 

𝜳 [𝑮, 𝑿]𝜳 =   𝑃 𝑗 → 𝑘 𝛥𝑋 𝑗 → 𝑘 

𝑟

𝑘=1

𝑟

𝑗 =1

                                       (44) 

This is just the average change 𝛥𝑋 we expect to measure in a large number of runs of the 

experiment. We denote this average by (compare with equation (19)): 

 𝛥𝑋 = 𝜳 [𝑮, 𝑿]𝜳                                                                      (45) 

So far, we have only looked at changes in the 3-vectors corresponding to the start and end 

tomas. Let us now incorporate the fourth dimension we discussed above, namely the number 

of hops in a motion. We denote this change between two result tomas with index labels j and 

k as follows: 

𝛥ℎ 𝑗 → 𝑘 ≡ 𝑁4 𝑘 [0] − 𝑁4 𝑗 [0]                                                        (46) 

Now let us define one more r×r matrix: 

𝑯 ≡  𝐻𝑗𝑘  𝒓×𝒓                                                                         (47) 

with elements: 

𝐻𝑗𝑘 =
𝐺𝑗𝑘

𝛥ℎ 𝑗 → 𝑘 
                                                                    (48) 

By a derivation similar to that of equation (41), it can be shown that: 

𝜳  𝑯, 𝑿 𝜳 =   𝑃 𝑗 → 𝑘 
𝛥𝑋 𝑗 → 𝑘 

𝛥ℎ 𝑗 → 𝑘 

𝑟

𝑘=1

𝑟

𝑗=1

                                               (49) 

which is the average change between the 3-vectors corresponding to the start and end tomas 

divided by the number of hops between them. Using ℎ = 𝑖𝑡, we can define the average 

velocity: 

 𝑉 ≡  
𝛥𝑋

𝛥𝑡
 = 𝑖  

𝛥𝑋

𝛥ℎ
 = 𝜳 (𝑖 𝑯, 𝑿 )𝜳                                                         (50) 

By following a similar derivation, but considering two sequential motion-type processes in 

the system instead of just one as we did above, we can show the expectation value of the 

acceleration to be: 

 𝐴 = 𝜳 (𝑖 𝑯, 𝑽 )𝜳                                                                     (51) 

where: 

𝑽 = 𝑖 𝑯, 𝑿                                                                                 (52) 
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We recognize equations (50) and (51) as the Heisenberg picture equations of motion of 

quantum mechanics, with 𝑯 as the Hamiltonian, and units chosen so that ħ = 1. We have thus 

derived the equations underpinning quantum mechanics, from which Schrödinger's equation 

follows, by viewing the universe as an ontic network of processes. 

Note that in our model time is discrete, not continuous. That is, every change in time Δt is 

small but finite and the velocity and acceleration given by equations (50) and (51) are not true 

derivatives. They are not "instantaneous" measurements over an "infinitesimal" change in the 

system, but rather over a finite discrete process. This has important consequences. To 

measure the velocity or acceleration we will necessarily take measurements a finite time 

apart; therefore, we will obtain different results if we first measure position, then velocity, or 

velocity first, then position. The Heisenberg uncertainty principle follows directly from this 

non-commutation of velocity and position [16]. By viewing the universe as a vast network of 

finite discrete processes we see the deep reason why this non-commutation is inescapable, 

why there is no such property of an object as a determined "instantaneous" velocity of it 

through some background all-permeating "space", and thus why quantum mechanics must be 

true. 

 

6. Discussion 

In this section we discuss two situations where the "weirdness" of quantum mechanics is 

most clearly manifested: the Schrödinger's cat thought experiment and quantum 

entanglement. We will see in all these cases that the "weirdness" arises only because we are 

accustomed to using the Objects in Space and Time (OST) model of reality. We will show 

how switching to using the process-based ontic network model resolves this weirdness, and, 

in our view, makes quantum phenomena appear intuitive and inescapable. 

Let us begin with the Schrödinger's cat thought experiment: "A cat is placed in a steel 

chamber, together with the following hellish contraption ... In a Geiger counter there is a tiny 

amount of radioactive substance, so tiny that maybe within an hour one of the atoms decays, 

but equally probably none of them decays. If one decays then the counter triggers and via a 

relay activates a little hammer which breaks a container of cyanide. If one has left this entire 

system for an hour, then one would say the cat is living if no atom decayed. The first decay 

would have poisoned it. The wave function of the entire system would express this by 

containing equal parts of the living and dead cat." [17] (italics added) 

When we use the OST model, we picture that there is a cat made of physical "stuff" 

somewhere "out there" with its own independent physical existence, and in a well-defined 

state: either dead or alive. Yet, as Schrödinger points out, the wavefunction describing this 

system contains equal parts of live and dead cat. This superposition of two mutually 

exclusive states for a cat to be in is simply nonsensical when seen in the OST model. We 

conclude, therefore, that the OST model is an incorrect account of reality and switch to the 

process-based ontic network model we introduced in this paper. 

In the process view, the Schrödinger's cat apparatus is not to be thought of as physical "stuff" 

in space and time. Instead, we focus on the key processes in the apparatus and how they 

depend on each other. One of two things can happen with the radioactive atoms: there can be 

a radioactive decay (which process we denote by α) or there can be no radioactive decay 

(which process we denote β). Only one of these two processes can happen - if one happens, 

the other is barred from happening by its logical structure (dependency function). The cat is 

involved in two possible processes: if there is no decay, the cat will live (which process we 
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label γ), or if there is a decay, the cat will be poisoned (which process we label by δ). From 

these four key processes, we can build an ontic network model of the thought experiment, as 

is shown in figure 12. 

In the ontic network model, the process α is the function 
𝜣 𝑁𝑂𝑇_𝐷𝐸𝐶𝐴𝑌𝐸𝐷# ∶= 𝜣 𝐴𝑇𝑂𝑀𝑆#  ∧ ¬𝜣 𝐷𝐸𝐶𝐴𝑌𝐸𝐷# . 
Process β is 𝜣 𝐷𝐸𝐶𝐴𝑌𝐸𝐷# ∶= 𝜣 𝐴𝑇𝑂𝑀𝑆#  ∧ ¬𝜣 𝑁𝑂𝑇_𝐷𝐸𝐶𝐴𝑌𝐸𝐷# . 
Meanwhile, process γ is 𝜣 𝐿𝐼𝑉𝐸𝐷# ∶= 𝜣 𝐶𝐴𝑇#  ∧ 𝜣 𝑁𝑂𝑇_𝐷𝐸𝐶𝐴𝑌𝐸𝐷#  
and δ is 𝜣 𝐷𝐼𝐸𝐷# ∶= 𝜣 𝐶𝐴𝑇#  ∧ 𝜣 𝐷𝐸𝐶𝐴𝑌𝐸𝐷# . 

 

Fig. 12: An ontic network model of the Schrödinger's cat thought experiment, showing the 

states of the tomas at the start of the experiment. See text for details. 

In contrast, in the OST model, β corresponds to one of the atoms undergoing decay at some 

determinate instant of time between the start time and the end time of the experiment. 

Meanwhile, α corresponds to there being no decay for the entire duration of the experiment. 

In the process view, we do not picture the atoms "out there" sitting in space and time and 

decaying at some specific time. Instead, we take the two processes that can happen as 

fundamental, and demote space and time to being just a quantic network of results of 

measurement. 

The CAT and ATOMS tomas, as all tomas, should not be thought of as physical objects 

somewhere "out there." Rather, they are just placeholders whose only ontological status is as 

anchors, or endpoints, for processes. It is the processes that carry the entire ontological 

burden in our model; the tomas are just a convenient tool, a type of notation we use to 

describe the relations among the processes. 

We see that at the start of the experiment, only the ATOMS and CAT tomas exist. Given this 

starting state, the only processes that can happen are β bringing DECAYED into existence, or 

α bringing NOT_DECAYED into existence. Once one of these two processes happens, at 

S 

M 

R 

ATOMS 1 CAT 1 

LIVED 0 DIED 0 

NOT_DECAYED 0 DECAYED 0 

α 

DEAD_CAT 0 LIVE_CAT 0 

β 

γ δ 
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random with equal probability, the other is precluded from happening by the logic of these 

processes. Thus the tomas DECAYED and NOT_DECAYED are mutually exclusive. 

Meanwhile, the cat will live for the whole experiment (γ) only if α happens, but will be 

poisoned and die (δ) only if β happens. Us seeing a live cat when we open the  box 

(LIVE_CAT) depends on γ happening, and seeing a dead cat (DEAD_CAT) depends on δ 

happening. Taken as a whole network, and given the starting state shown in figure 12, we see 

there is one way for the result LIVE_CAT to come to exist, and one way for the result 

DEAD_CAT to come to exist, and these results are mutually exclusive due to the logic of α 

and β. 

Now recall from section 4 that the wavefunction is just an appropriately normalized ways 

vector accounting for the number of ways each result can come into existence. Thus the 

wavefunction in our analysis does contain equal parts of the two possible results, in accord 

with the italicized portion of the Schrödinger quote above. However, in the ontic network 

model, unlike in the OST model, it is not the physical cat that is in a nonsensical 

"superposition" of being alive and dead simultaneously. Rather, we see the wavefunction as 

an accounting for there being two possible mutually exclusive processes that can take place: 

the cat living and the cat, having lived, being poisoned and dying. It is these potential 

processes that are in a "superposition", until one of them happens at random, thereby bringing 

a result (observation) toma into existence and thereby "collapsing the wavefunction". It is not 

that the cat is dead or alive; it is that it can do one of two things: live or die. It is wrong to 

think, as the OST model insists, that the cat exists "out there" even if it is in a closed 

chamber. All we really know about the chamber which we have built for this experiment is 

what processes can happen in it and how they depend on each other. The OST view that there 

"is" a cat in the chamber "out there" is a model in our heads of the world around us; it is not 

the world itself. The real world in itself is the network of processes that can take place in the 

experiment. 

The OST model's insistence on the independent reality and fundamental nature of some 

physical "stuff" somewhere "out there" is what Whitehead, a key process philosopher, 

referred to as the fallacy of misplaced concreteness [18, 19]. It is by committing this fallacy 

that the OST model introduces the "weirdness" into the Schrödinger's cat thought experiment. 

If some physical states of some substance are fundamental, then clearly it makes no sense to 

talk about a cat that is in two states at once. Instead, in the process view, we understand that it 

is the two possible processes which are in a "superposition" until one of them happens. In our 

view, it is the processes that are fundamental and the basic ontological unit. We do not 

arbitrarily introduce the existence of matter, thereby committing the fallacy of misplaced 

concreteness, and then become puzzled when this invented physical matter seems to act 

weirdly and exist in a nonsensical "superposition". As we stated in the introduction of this 

paper, once you describe all the possible processes and their interactions, that suffices as a 

complete description of any system. You do not need to invent some "stuff" existing "out 

there" with its own independent existence. 

Now we will consider quantum entanglement in an EPR-Bohm [20, 21] type of experiment. 

An ontic network model of an EPR-Bohm style experiment is shown in figure 13, with the 

states of the tomas as they are at the start of the experiment. Consider the system toma A 

which exists. From this toma two motion-type processes emerge, μL towards the left, ending 

at toma L, and μR towards the right, ending at toma R. As this ontic network evolves through 

updates, two motions take place, one to L and one to R. 
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Fig. 13: An ontic network model for an EPR-Bohm type of experiment. See text for details. 

Once toma L comes into existence, we perform a measurement with two possible mutually 

exclusive results: L↑ and L↓ (and likewise with L replaced by R). The interconnect is so 

structured that if L↑ exists then R↑ cannot come into existence and vice versa, and if L↓ 

exists then R↓ cannot come into existence and vice versa. In plain words, we know a priori 

that if we obtain a ↑ result at either L or R, we will get a ↓ result at the other end, R or L 

respectively. 

If we try to think about this experiment using the OST model, we imagine that there "really" 

is a "particle" at a location A in spacetime. We then imagine that this particle splits into two 

daughter "particles", which move in opposite directions in the spacetime (we could make 

measurements of these "particles'" locations and velocities by introducing a quantic network 

and interconnect to it from S as in sections 4 and 5). Whitehead called thinking in this way 

the fallacy of simple location [18, 19]: believing that things exist "out there" independently 

and at a simple defined location on some background "stage." 

Now we commit the next fallacy, that of misplaced concreteness. Each daughter particle, one 

travelling to the left, one to the right, has a well-defined state called, say, "spin", which is 

either ↑ or ↓ , and the two daughter particles are each in a different state of spin―one is ↑ and 

the other is ↓. 

So far, whether we use the OST model or the ontic network model, we will make the same 

prediction regarding the results we observe: we shall either observe (L↑ and R↓) or (L↓ and 

R↑) with equal probability. 

But now notice on the left of figure 13 we have an existing system toma ALICE. She can 

make a choice to bring toma B into existence before toma L3 exists, but after L1 exists―that 

S 

M 

R 

μL 

L3 0 L2 0 L1 0 A 1 R1 0 R2 0 R3 0 L 0 R 0 

μR 

ALICE 1 B 0 

R↑ 0 L↑ 0 L↓ 0 R↓ 0 
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is, in the OST view, once the daughter particle has started its motion but has not yet arrived at 

L. If B exists before L3 exists, the probabilities of obtaining the different results now change, 

as there now is an extra way that L↑ can come into existence. We will now observe the result 

(L↑ and R↓) 3/5 of the time, and (L↓ and R↑) 2/5 of the time. That is, R will be ↑ 2/5 of the 

time, not 1/2 of the time as before. ALICE, by making a change of the experiment at L, has 

instantaneously changed the probabilities of the results at R as well as at L. 

This behavior is in accord with the violation of Bell's inequality [22] which violation has 

been experimentally verified [23]. The reason we are puzzled by this violation is because we 

think using the OST model. Having committed both of Whitehead's fallacies, we wonder how 

one daughter particle can "know" what experiment the other daughter particle is going 

through, even if the spacetime interval between them is such that no information can travel 

between them at the speed of light. Thus we imagine there must be some "spooky action-at-a-

distance" entangling these two particles. 

In the ontic network model of reality, in contrast, we know the results we obtain at L and R 

are connected to each other by process dependencies which are separate from those between 

results of measurements of position and velocity of the motion-type processes in S. We do 

not picture particles "inside" a spacetime but we picture the experiment as a network of 

processes which give rise to a quantic network of results of measurements of motion (the 

"spacetime") as well as dependencies among results of different types of measurement (such 

as of "spin"). 

 

Conclusion: 

We began this paper by claiming that the OST model, a way of seeing the world as being 

composed of physical objects with definite properties embedded at defined locations in a 

background spacetime, while widely held, is not up to the challenge of making sense of the 

"weirdness" of quantum mechanics. It also is inadequate as a basis for answering deeper 

metaphysical and philosophical questions about the nature of reality and our place in it. We 

presented an alternative worldview, the ontic network model, which by viewing processes, 

not matter, as fundamental, makes sense of the quantum world. We showed that our model 

leads to equations which match those of the OST-model-based existing formalism of 

quantum mechanics, namely the Heisenberg picture equations of motion. The ontic network 

model should not be thought of as a replacement for quantum mechanics; rather it is a 

replacement for the OST model of reality. Ontic networks of processes, we claim, are the true 

fundamental nature of reality, and we showed how, by starting with this model, we can derive 

the main equations of quantum mechanics. 

The ontic network model is based on a fundamentally different structure (a network) from 

that on which the OST model is based (a continuous manifold). Thus, it brings different 

mathematical tools, such as network analysis and graph theory, to bear on the fundamental 

problems of physics. We hope in this way to provide a new point of view, a new set of ideas, 

to apply to trying to reconcile quantum field theory and general relativity. The first step along 

this path will be to create ontic network based models of these two theories and see if they 

can be made to mesh in a meaningful way. We also imagine the ontic network based model 

will be useful in some higher-level disciplines such as biology and psychology and in trying 

to unify them with physics; after all, these disciplines are at their core studies of processes 

(life, evolution, cognition) not of concrete inanimate matter. 
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