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Abstract

Dirac tied his relativistic quantum free-particle Hamiltonian to requiring space-time symmetry of the
Schrödinger equation in configuration representation; he ignored Lorentz covariance of the particle’s
energy-momentum. Consequently, a Dirac free particle’s velocity is independent of its momentum, breach-
ing dynamical fundamentals. Dirac also made solutions of his equation satisfy the Klein-Gordon equation
by imposing ten requirements on its operators; three of those fix the speed of Dirac particles to the
unphysical value of c times the square root of three. Moreover, Dirac’s six anticommutation operator
requirements prevent such observables as velocity components from commuting when Planck’s constant
goes to zero, a correspondence-principle breach which is responsible for Dirac zitterbewegung sponta-
neous free-particle acceleration that becomes infinite when Planck’s constant vanishes. Nonrelativistic
Pauli theory is contrariwise physically sensible, and its particle rest-frame action can be extended to
become Lorentz invariant. The consequent Lagrangian yields the corresponding closed-form relativistic
Hamiltonian when magnetic field is absent, otherwise a successive-approximation regime applies.

Introduction

The central idea which guided Dirac’s 1928 development of his ostensibly relativistic free-particle Hamiltonian
operator HD(p) was his intuitive impression that the special-relativistic free-particle Schrödinger equation,

ih̄∂ψ/∂t = HD(p)ψ, (1a)

(in which HD(p) is independent of r so that ṗ = 0 to accord with the particle’s being free), must be
space-time symmetric in configuration representation [1]. Since in that representation pψ is given by ,

pψ = −ih̄∇rψ, (1b)

Dirac implemented his intuitive impression by making HD(p) inhomogeneously linear in p, i.e.,

HD(p) = c~α · p + βmc2, (1c)

where ~α and β are Hermitian, dimensionless and independent of r and p [1, 2, 3, 4].
Dirac’s free-particle HD(p) and the Heisenberg equation of motion yield the free-particle velocity [5, 6],

ṙ = (−i/h̄)[r, HD(p)] = (−i/h̄)
[
r, c~α · p + βmc2

]
= c~α, (1d)

which, since ~α is independent of p, flatly contradicts the fundamental requirement of free-particle special
relativity that the |p| → 0 asymptotic form of ṙ must be its nonrelativistic free-particle result (p/m), i.e.,

ṙ ∼ (p/m) as |p| → 0. (1e)

The incompatibility of ṙ = c~α with Eq. (1e) shows that Dirac’s free-particle HD(p) violates special relativity .
That violation is confirmed by inspection of the formal action SD which corresponds to Dirac’s HD(p),

SD =
∫
LD(ṙ) dt =

∫
[ṙ · p−HD(p)]ṙ=c~α dt =

(
−mc2

)∫
β dt. (1f)

Since β is independent of r, p and ṙ = c~α, the Eq. (1f) action SD fails to be Lorentz-invariant because

differential observed time dt isn’t Lorentz-invariant—only differential proper time dτ =
[(

1− |ṙ/c|2
) 1

2 dt
]

is

Lorentz-invariant . Thus it is indeed confirmed that Dirac’s HD(p) violates special relativity .
In light of the violation of special relativity by Dirac’s free-particle HD(p), it is of interest to pinpoint the

flaw in Dirac’s 1928 intuitive impression that the special-relativistic free-particle Schrödinger equation must
be space-time symmetric in configuration representation. To be sure, the Lorentz transformation manifests
space-time symmetry which is absent from the Galilean transformation. But the space-time symmetry of
the Lorentz transformation has no logical implication for the presence or absence of space-time symmetry
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in the entities which it transforms. For example, one entity which the Lorentz transformation transforms
is the space-time four-vector xµ = (ct, r), which, taken as a whole, is space-time symmetric by inspection.
However, the components ct and r of xµ clearly aren’t space-time symmetric.

Mindful of this logical guidance, we now consider the special-relativistic free-particle Schrödinger equation,

ih̄∂ψ/∂t = H(p)ψ. (2a)

The essential dynamical operator ingredient of the right side of Eq. (2a) is the free-particle Hamiltonian
H(p), which special relativity requires to be the time component of the following Lorentz-covariant free-
particle energy-momentum four-vector dynamical operator ,

Hµ(p) = (H(p), cp). (2b)

Somewhat similarly, the essential operator ingredient of the left side of Eq. (2a) is the time partial deriva-
tive ∂/∂t, which in configuration representation is c times the time component of the intrinsically Lorentz-
covariant space-time gradient four-vector operator ∂/∂xµ, i.e.,

c ∂/∂xµ = (∂/∂t,−c∇r). (2c)

Since in special relativity and configuration representation, both the left-side and the right-side essential
operator ingredients of Eq. (2a) are the time components of Lorentz-covariant four-vector operators, it isn’t
inconceivable that in special relativity and configuration representation the Eq. (2a) Schrödinger equation
is the time component of the Lorentz-covariant four-vector equation system which is given by ,

ih̄c ∂ψ/∂xµ = Hµ(p)ψ, (2d)

and that all four equation components of Eq. (2d) are demonstrably correct . Indeed, in special relativity the
time component of Eq. (2d) manifestly is Eq. (2a); also its three-vector space component manifestly is,

−ih̄c∇rψ = cpψ. (2e)

Eq. (2e) is precisely Eq. (1b) times c, and Eq. (1b) merely states what pψ is in configuration representation.
So in special relativity and configuration representation, the Eq. (2d) Lorentz-covariant four-vector equation
system is indeed demonstrably correct, and its time component is the Eq. (2a) Schrödinger equation.

The configuration-representation Lorentz-covariant Eq. (2d) is space-time symmetric by inspection, but
by virtue of being its time component , the Eq. (2a) Schrödinger equation is completely skewed toward time in
configuration representation, so Eq. (2a) clearly cannot be space-time symmetric in configuration representa-
tion. That is the glaring flaw in Dirac’s intuitive impression that the Eq. (2a) special-relativistic free-particle
Schrödinger equation must be space-time symmetric in configuration representation.

We next use the Lorentz-covariance of the Eq. (2b) free-particle energy-momentum four-vector Hµ(p) =
(H(p), cp), together with the Eq. (1e) free-particle |p| → 0 asymptotic behavior of ṙ, to fully work out the
correct relativistic free-particle Hamiltonian H(p). The Lorentz transformation (Hµ(p′))′ of Hµ(p) to an

inertial frame traveling at any relativistically permitted constant velocity v = c~β, where |~β| < 1, is given by,

(H(p′))′ =
(
H(p)−

(
~β · (cp)

))(
1− |~β|2

)− 1
2 ,

cp′ = cp + ~β
(
~β · (cp)

)
|~β|−2

((
1− |~β|2

)− 1
2 − 1

)
− ~βH(p)

(
1− |~β|2

)− 1
2 ,

(3a)

which, in the special case that p = 0, reduces to,

(H((p = 0)′))′ = H(p = 0)
(
1− |~β|2

)− 1
2 , c(p = 0)′ = −~βH(p = 0)

(
1− |~β|2

)− 1
2 . (3b)

The second equality of Eq. (3b), in conjunction with the fact that ~β satisfies |~β| < 1, but is otherwise arbitrary ,
makes it apparent that the entity (p = 0)′ can assume any three-vector value whatsoever . Therefore we are
free to reexpress the entity (p = 0)′ as simply p, provided we simultaneously reexpress (H((p = 0)′))′ as
simply H(p). With that reexpression, Eq. (3b) becomes,

H(p) = H(p = 0)
(
1− |~β|2

)− 1
2 , cp = −~βH(p = 0)

(
1− |~β|2

)− 1
2 , (3c)
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which implies that,

~β
(
1− |~β|2

)− 1
2 = −(cp/H(p = 0)), so

(
1− |~β|2

)−1
= 1 + |cp/H(p = 0)|2, and therefore,

H(p) = H(p = 0)
(
1− |~β|2

)− 1
2 = H(p = 0)

(
1 + |cp/H(p = 0)|2

) 1
2 .

(3d)

The relativistically correct free-particle result H(p) = H(p = 0)
(
1 + |cp/H(p = 0)|2

) 1
2 of Eq. (3d) disagrees

with Dirac’s free-particle Hamiltonian HD(p) = c~α·p+βmc2 of Eq. (1c) because the latter is inhomogeneously
linear in p, again confirming that Dirac’s HD(p) violates special relativity . The value of the constant
H(p = 0) within the Eq. (3d) result for H(p) is obtained from the Heisenberg equation of motion imposed
on ṙ by H(p), together with the Eq. (1e) |p| → 0 asymptotic behavior of ṙ. That ṙ equation of motion is,

ṙ = (−i/h̄)[r, H(p)] = ∇pH(p) = H(p = 0)∇p

(
1 + |cp/H(p = 0)|2

) 1
2 =(

c2p/H(p = 0)
)(

1 + |cp/H(p = 0)|2
)− 1

2 ∼
(
c2p/H(p = 0)

)
as |p| → 0.

(3e)

From Eq. (3e) plus the Eq. (1e) requirement that ṙ ∼ (p/m) as |p| → 0, and also from Eq. (3d), we obtain,

H(p = 0) = mc2, H(p) =
(
m2c4 + |cp|2

) 1
2 and ṙ = (p/m)

(
1 + |p/(mc)|2

)− 1
2 . (3f)

We next wish to obtain the free-particle Lagrangian L(ṙ) and consequent action Sfree =
∫
L(ṙ)dt which

correspond to the relativistically correct Eq. (3f) free-particle Hamiltonian H(p). To obtain L(ṙ) from H(p),

we need the inverse of the Eq. (3f) result that ṙ = (p/m)
(
1 + |p/(mc)|2

)− 1
2 , which works out to be,

p = mṙ
(
1− |ṙ/c|2

)− 1
2 . (3g)

Using Eq. (3g) and the relativistically correct free-particle Hamiltonian H(p) of Eq. (3f), we obtain the
relativistically correct free-particle Lagrangian L(ṙ) in the following standard way,

L(ṙ) =
[
ṙ · p−H(p)

]
p=mṙ(1−|ṙ/c|2)−

1
2

=[
m|ṙ|2

(
1− |ṙ/c|2

)− 1
2 −

(
m2c4 +m2c2|ṙ|2

(
1− |ṙ/c|2

)−1) 1
2

]
=
(
−mc2

)(
1− |ṙ/c|2

) 1
2 ,

(3h)

which in turn immediately yields the relativistically correct free-particle action Sfree =
∫
L(ṙ)dt,

Sfree =
(
−mc2

)∫ (
1− |ṙ/c|2

) 1
2 dt =

(
−mc2

)∫
dτ, (3i)

where dτ =
[(

1 − |ṙ/c|2
) 1

2 dt
]

is Lorentz-invariant differential proper time. Thus the Eq. (3i) free-particle

action Sfree, which is based on the relativistically correct free-particle Hamiltonian H(p) of Eq. (3f), is indeed
Lorentz-invariant , as a relativistically correct action must be; the Eq. (1f) Dirac action SD =

(
−mc2

)∫
β dt

failed this Lorentz-invariance test, violating special relativity .
The only properties we have so far specified for ~α and β in Dirac’s Eq. (1c) Hamiltonian HD(p) are that ~α

and β are Hermitian, dimensionless and independent of r and p. With those minimally specified properties of
~α and β, HD(p) egregiously violates relativistic free-particle dynamics simply because it is inhomogeneously
linear in p. Dirac of course never became aware of that unfortunate fact , so he strove to maximally incorporate

properties of the Eq. (3f) Hamiltonian H(p) =
(
m2c4 + |cp|2

) 1
2 into his HD(p) = c~α ·p +βmc2 by imposing

additional algebraic requirements on ~α and β which guarantee that [1, 7, 8],

(HD(p))2 = (H(p))2. (4a)

If Eq. (4a) holds, any Dirac HD(p) equation solution satisfies the Klein-Gordon equation—but Eq. (4a) also
injects Klein-Gordon-style negative-energy solutions into the Dirac equation. Dirac’s “famous” ten algebraic
requirements for ~α and β which guarantee that Eq. (4a) holds are [1, 7, 8],

(αx)2 = (αy)2 = (αz)
2 = (β)2 = 1, and αx, αy, αz and β all mutually anticommute. (4b)
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Dirac’s Eq. (4b) requirement that (αx)2 = (αy)2 = (αz)
2 = 1 however produces an astoundingly unphysical

result for the HD(p) free-particle speed |ṙ|. We have seen from Eq. (1d) that HD(p) yields that ṙ = c~α, so,

|ṙ| = c|~α| = c
(
(αx)2 + (αy)2 + (αz)

2
) 1

2 = c(1 + 1 + 1)
1
2 = c

√
3, (4c)

a fixed c-number speed value |ṙ| = c
√

3, which not only violates the asymptotic free-particle requirement
|ṙ| ∼ (|p|/m) as |p| → 0, but as well grossly violates the special-relativistic free-particle speed limit |ṙ| < c.

Since the Eq. (4c) result |ṙ| = c
√

3 destroys the physical legitimacy of Dirac theory at a single glance, it
isn’t written down in any textbook, but the fact that the eigenvalues of the three components of ṙ = c~α are
±c is indeed pointed out in some textbooks [5], and |ṙ| = c

√
3 is of course an immediate consequence of that.

Dirac’s Eq. (4b) also implies that the three observable components of the Dirac free-particle velocity ṙ = c~α
and the observable term βmc2 of the Dirac free-particle Hamiltonian HD(p) all mutually anticommute, so
the commutator of any of the six pairs of those four observables equals twice the pair’s product, which doesn’t
vanish in the limit h̄→ 0, in gross violation of the correspondence-principle requirement that all commutators
of observables must vanish when h̄→ 0. This disastrous violation of the correspondence principle is the root
cause of the free-particle Dirac theory’s extremely unphysical zitterbewegung spontaneous acceleration, which
tends toward infinity as h̄→ 0.

We noted in Eq. (3f) that the correct relativistic free-particle Hamiltonian H(p) =
(
m2c4 + |cp|2

) 1
2

implies that ṙ = (p/m)
(
1 + |p/(mc)|2

)− 1
2 , so,

r̈ = (−i/h̄)[ṙ, H(p)] = (−i/h̄)
[
(p/m)

(
1 + |p/(mc)|2

)− 1
2 ,
(
m2c4 + |cp|2

) 1
2

]
= 0,

in accord with the Newton’s First Law principle that free particles don’t undergo spontaneous acceleration.
However, Dirac’s “famous” six unphysical anticommutation relations of Eq. (4b), which grossly violate

the correspondence principle, produce the following nonzero zitterbewegung spontaneous free-particle accel-
eration, which tends toward infinity as h̄→ 0,

r̈ = (−i/h̄)[ṙ, HD(p)] = (−i/h̄)
[
c~α, c~α · p + βmc2

]
=
(
−ic2/h̄

)
((p× (~α× ~α)) + (2~αβmc)). (4d)

In the special case of a Dirac free particle of zero momentum, (i.e., for p = 0), Eq. (4d) reduces to.

r̈ = −2i~αβ
(
mc3/h̄

)
, (4e)

and therefore,
|r̈| = 2

√
3
(
mc3/h̄

)
. (4f)

Eq. (4f) tells us that due to spontaneously varying direction of travel , a p = 0 Dirac “free particle”, which of
course has the unphysical special-relativity-violating fixed speed c

√
3 (see Eq. (4c)), undergoes spontaneous

acceleration whose magnitude has no upper bound in the classical limit h̄→ 0. Already for a p = 0 electron,
Eq. (4f) implies a zitterbewegung spontaneous-acceleration magnitude |r̈| of the mind-boggling order of 1028

times g, where g = 9.8m/s2, the acceleration of gravity at the Earth’s surface. However, if the observables
ṙ = c~α and βmc2 sensibly commuted instead of grossly violating the correspondence principle because of
the unphysical anticommutation that is imposed on them by Dirac’s badly misguided Eq. (4b) algebraic
requirements for ~α and β, we see from Eq. (4d) that the Eq. (4e) p = 0 particle zitterbewegung spontaneous
acceleration r̈ would vanish altogether .

Likewise, if the observable components of the Dirac “free particle” velocity operator ṙ = c~α sensibly
commuted with each other , as indeed do the observable components of the correct relativistic free-particle

velocity operator ṙ = (p/m)
(
1 + |p/(mc)|2

)− 1
2 of Eq. (3f), instead of grossly violating the correspondence

principle because of the unphysical anticommutation that is imposed on them by Dirac’s badly misguided
Eq. (4b) algebraic requirements for the components of ~α, the “famous” Dirac spin- 1

2 operator S, which is,

S = −i(h̄/4)(~α× ~α) = −i
(
h̄/
(
4c2
))

(ṙ× ṙ),

would simply vanish altogether . Thus the very existence of the “famous” Dirac spin- 1
2 operator S is the

direct consequence of Dirac’s completely unphysical Eq. (4b) anticommutation algebraic requirements for the
components of ~α, which grossly violate the correspondence principle.

Moreover, scrutiny of Eq. (4d) above, reveals that the Dirac spin- 1
2 operator-related entity p× (ṙ× ṙ) =

c2p × (~α × ~α) contributes to the unphysical spontaneous acceleration r̈ of a Dirac “free particle”, which of
course violates the Newton’s First Law principle of correct free-particle special relativity .
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The “automatic emergence” of the spin- 1
2 operator S = −i(h̄/4)(~α× ~α) = −i

(
h̄/
(
4c2
))

(ṙ× ṙ) in Dirac
theory is traditionally touted as “a great achievement” of that theory, but (1) its very existence arises from
Dirac’s completely unphysical Eq. (4b) anticommutation algebraic requirements for the components of ~α,
which grossly violate the correspondence principle, and (2) the spin- 1

2 operator-related entity c2p× (~α× ~α)
is a contributor to the unphysical special-relativity violating spontaneous acceleration r̈ of a Dirac “free
particle”, as is seen from Eq. (4d).

Turning now to the electromagnetically minimally coupled Dirac Hamiltonian [9, 10],

HD(r,P) = c~α · (P− (e/c)A) + eφ+ βmc2, (5a)

we immediately see that it has exactly the same velocity operator ṙ = c~α [6],

ṙ = (−i/h̄)[r, HD(r,P)] = (−i/h̄)[r, c~α ·P] = c~α, (5b)

as the “free-particle” Dirac Hamiltonian (see Eq. (1d)), so any electromagnetically coupled Dirac particle
always has the speed |ṙ| = c

√
3 that violates the special-relativistic particle speed limit |ṙ| < c.

The speed result , |ṙ| = c
√

3, for the electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a)
immediately contradicts the well-known textbook “theorem” that that Hamiltonian effectively reduces to the
electromagnetically coupled nonrelativistic Pauli Hamiltonian [11, 12],

H =
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B), (6a)

in the latter’s region of special-relativistic validity , which is, of course, when,

|ṙ| = (|P− (e/c)A|/m)� c, (6b)

because,
ṙ = (−i/h̄)[r, H] = (−i/h̄)

[
r,
(
|P− (e/c)A|2/(2m)

)]
= ((P− (e/c)A)/m). (6c)

However, since there is no overlap whatsoever between |ṙ| = c
√

3 and |ṙ| � c, this well-known textbook
“theorem” comically falls flat on its face.

The purported “proof” which textbooks proffer for this well-known “theorem” relies on the ostensibly
“plausible” supposition for the Dirac Hamiltonian that if [13, 14],

|P− (e/c)A| � mc, (7a)

then,
|E −mc2| � mc2. (7b)

The difficulty with this “plausible” supposition becomes apparent when the Dirac equation’s unavoidable
negative-energy solutions are taken into consideration. For example, it is entirely feasible to have the condi-
tion given by Eq. (7a) in coexistence with,

E ≈ −mc2, (7c)

which, of course, drastically violates the ostensibly “plausible” supposition of Eq. (7b).
The electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a), namely,

HD(r,P) = c~α · (P− (e/c)A) + eφ+ βmc2, (8a)

since it violates special relativity because its particle speed |ṙ| = c
√

3 always grossly exceeds c, clearly cannot
correctly describe single-particle relativistic quantum mechanics.

However, the electromagnetically coupled nonrelativistic Pauli Hamiltonian of Eq. (6a), namely,

H =
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B), (8b)

is physically unobjectionable in the nonrelativistic regime, namely when,

|ṙ| = (|P− (e/c)A|/m)� c.

Since Lorentz-invariant actions produce Lorentz-covariant dynamical theories and, furthermore, the rela-
tivistic physics of a single particle is identical to its nonrelativistic physics when the particle is at rest , one
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can render a nonrelativistic single-particle theory relativistic by specializing the nonrelativistic action to zero
particle velocity , and then upgrading that to become Lorentz invariant .

Given a nonrelativistic single-particle Hamiltonian which is to be upgraded to its relativistic counterpart ,
a great many steps are necessary. One must pass from the nonrelativistic Hamiltonian to the corresponding
nonrelativistic Lagrangian, thence to the nonrelativistic action, which is specialized to zero particle velocity .
This is the base to be upgraded to the Lorentz-invariant action, whose integrand then yields the relativistic
Lagrangian, from which one passes to the relativistic Hamiltonian. A caveat here is that passages between
Lagrangians and Hamiltonians entail solving algebraic equations, which isn’t always feasible in closed analytic
form.

Action-based unique relativistic extension of the Pauli Hamiltonian

In preparation for the relativistic extension of the nonrelativistic Pauli Hamiltonian of Eq. (6a), we add to
it the particle’s rest-mass energy mc2,

H = mc2 +
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B). (9a)

Note that the addition of such a constant term to a Hamiltonian in no way changes the quantum Heisenberg
or classical Hamiltonian equations of motion.

To obtain the nonrelativistic action Snr which corresponds to the Hamiltonian H of Eq. (9a), we first
work out the Lagrangian L which corresponds to that Hamiltonian H. The conversion of such a particle
Hamiltonian to a particle Lagrangian requires swapping the Hamiltonian’s dependence on the canonical
three-momentum P for the Lagrangian’s dependence on the particle’s three-velocity ṙ. We obtain that
particle three-velocity ṙ from the Heisenberg equation of motion (or alternatively, in this case, from the
equivalent classical Hamiltonian equation of motion),

ṙ = (−i/h̄)[r, H] = ∇PH = (P− (e/c)A)/m. (9b)

We now invert the relation of Eq. (9b) between particle velocity ṙ and canonical momentum P to read,

P = mṙ + (e/c)A, (9c)

and insert it into the well-known relationship of the Lagrangian to the Hamiltonian, namely,

L = ṙ ·P−H
∣∣∣
P=mṙ+(e/c)A

= −mc2 + 1
2m|ṙ|2 − e(φ− (ṙ/c) ·A) + (eh̄/(2mc))(~σ ·B), (9d)

from which we immediately obtain the nonrelativistic action,

Snr =

∫
Ldt =

∫ [
−mc2 + 1

2m|ṙ|2 − e(φ− (ṙ/c) ·A) + (eh̄/(2mc))(~σ ·B)
]
dt.

Of course we don’t want the nonrelativistic action Snr itself, but its specialization S to the case of zero
particle velocity , namely ṙ = 0,

S =

∫ [
−mc2 − eφ+ (eh̄/(2mc))(~σ ·B)

]
dt. (9e)

We shall undertake the Lorentz-invariant upgrade of the three terms of this action S individually. The first
term of S which we tackle is that of the free particle,

S0 =

∫
(−mc2)dt. (10a)

To make S0 Lorentz-invariant, we only need to replace the time differential dt by the Lorentz-invariant
proper time differential dτ ,

dτ =
(
(dt)2 − |dr/c|2

) 1
2 =

(
1− |ṙ/c|2

) 1
2 dt. (10b)

Therefore,

dτ/dt =
(
1− |ṙ/c|2

) 1
2 , (10c)
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and from this it of course follows that,

dt/dτ =
(
1− |ṙ/c|2

)− 1
2 . (10d)

The Lorentz-invariant upgraded S0 therefore is,

S0
rel =

∫
(−mc2)dτ. (10f)

Eq. (10f), by use of Eq. (10c) can of course also be expressed as,

S0
rel =

∫
(−mc2)

(
1− |ṙ/c|2

) 1
2 dt. (10g)

We next tackle the part of the action S which encompasses the interaction of the particle’s charge e with
the electromagnetic potential φ,

Se =

∫
(−eφ)dt. (11a)

We carry out the Lorentz-invariant upgrade of Se by replacing the time differential dt in Eq. (11a) by the
Lorentz-invariant time differential dτ , and upgrading the ṙ = 0 static-limit potential energy eφ to a dynamic
Lorentz-invariant function of ṙ. To do so we first rewrite the static potential energy eφ as the faux Lorentz
invariant,

eφ = eUµ(ṙ = 0)Aµ, (11b)

that has the faux Lorentz-covariant constituent,

Uµ(ṙ = 0) = δ0µ. (11c)

which is valid only in the particle’s rest frame where the particle’s velocity ṙ = 0. To upgrade the static faux
Lorentz-covariant Uµ(ṙ = 0) to a dynamic true Lorentz-covariant entity Uµ(ṙ), we Lorentz-boost it from the
particle’s rest frame to the inertial frame where the particle has velocity ṙ,

Uµ(ṙ) = Uα(ṙ = 0)Λαµ(ṙ) = δ0αΛαµ(ṙ) = Λ0
µ(ṙ). (11d)

Therefore the dynamic Lorentz-invariant upgrade of the static potential energy eφ is,

eUµ(ṙ)Aµ = eΛ0
µ(ṙ)Aµ = eγ(ṙ) (φ− (ṙ/c) ·A), (11e)

where,
γ(ṙ) = (1− (|ṙ|2/c2))−

1
2 = dt/dτ. (11f)

Thus the Lorentz-invariant upgrade of,

Se =

∫
(−eφ)dt,

is,

Serel =

∫
(−eUµ(ṙ)Aµ)dτ =

∫
(−e(φ− (ṙ/c) ·A))dt. (11g)

Finally we tackle the part of the action S that encompasses the interaction of the particle’s spin with the
magnetic field,

S~σ =

∫
(eh̄/(2mc))(~σ ·B)dt. (12a)

Again we replace the differential dt by the Lorentz-invariant differential dτ and upgrade the static potential
energy −(eh̄/(2mc))(~σ ·B), which is valid in the ṙ = 0 particle rest frame, to a dynamic Lorentz-invariant
function of ṙ. Preliminary to the upgrading of the static potential energy −(eh̄/(2mc))(~σ ·B), we write it
as,

−(eh̄/(2mc))(~σ ·B) = −(eh̄/(2mc)) [~σ · (∇×A)] = (eh̄/(2mc))
[
εijkσ

i
(
∂jAk

)]
. (12b)

This representation of the static potential energy can be rewritten as the faux Lorentz invariant,

(eh̄/(2mc))
[
εijkσ

i
(
∂jAk

)]
= (eh̄/(2mc)) [σµν(ṙ = 0) (∂µAν)] , (12c)
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that has the faux Lorentz-covariant constituent,

σµν(ṙ = 0) =

{
0 if µ = 0 or ν = 0,
εijkσ

i if µ = j and ν = k, j, k = 1, 2, 3,
(12d)

which is valid only in the particle’s rest frame where the particle’s velocity ṙ = 0. Note that σµν(ṙ = 0) is
antisymmetric under the interchange of its two indices µ and ν. To upgrade the static faux Lorentz-covariant
σµν(ṙ = 0) to a dynamic true Lorentz-covariant entity σµν(ṙ), we Lorentz-boost it from the particle’s rest
frame to the inertial frame where the particle has velocity ṙ,

σµν(ṙ) = σαβ(ṙ = 0)Λαµ(ṙ)Λβν (ṙ) = εijkσ
iΛjµ(ṙ)Λkν(ṙ). (12e)

It is apparent from Eq. (12e) that the Lorentz-covariant second-rank tensor σµν(ṙ) is also antisymmetric
under the interchange of its two indices µ and ν. From Eqs. (12b) through (12e) it is clear that the dynamic
Lorentz-invariant upgrade of the static potential energy −(eh̄/(2mc))(~σ ·B) is,

(eh̄/(2mc)) [σµν(ṙ) (∂µAν)] = (eh̄/(2mc))
[
εijkσ

iΛjµ(ṙ)Λkν(ṙ) (∂µAν)
]

=

(eh̄/(2mc)) [~σ · [(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)]] ,
(12f)

where,

(Λµ(ṙ)∂µ)
j def

= Λjµ(ṙ)∂µ and (Λν(ṙ)Aν)
k def

= Λkν(ṙ)Aν . (12g)

The space components of the Lorentz boost of the four-vector partial-derivative operator,

∂µ = ((1/c)(∂/∂t),−∇),

from the rest frame of the particle to the inertial frame in which the particle has velocity ṙ are given by,

(Λµ(ṙ)∂µ) = −∇− (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ · ∇)− γ(ṙ)(ṙ/c)(1/c)(∂/∂t), (12h)

and the space components of the same Lorentz boost of the electromagnetic four-vector potential,

Aµ = (φ,A),

are given by,
(Λν(ṙ)Aν) = A + (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ ·A)− γ(ṙ)(ṙ/c)φ. (12i)

Using Eqs. (12h) and (12i) one can, with tedious effort, verify that,

[(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)] = −(∇×A)−

(γ(ṙ)− 1)|ṙ|−2 [∇× (ṙ(ṙ ·A)) + (ṙ · ∇)(ṙ×A)]− γ(ṙ)
[
(ṙ/c)× (Ȧ/c)−∇× ((ṙ/c)φ)

]
=

−(∇×A)− (γ(ṙ)− 1)|ṙ|−2 [ṙ× [−∇(ṙ ·A) + (ṙ · ∇)A]] + γ(ṙ)
[
(ṙ/c)×

[
−∇φ− (Ȧ/c)

]]
=

−(∇×A)− (γ(ṙ)− 1)|ṙ|−2 [ṙ× [−ṙ× (∇×A)]] + γ(ṙ)
[
(ṙ/c)×

[
−∇φ− (Ȧ/c)

]]
=

−B− (γ(ṙ)− 1)|ṙ|−2
[
|ṙ|2B− ṙ(B · ṙ)

]
+ γ(ṙ)((ṙ/c)×E) =

−γ(ṙ)B + (γ(ṙ)− 1)|ṙ|−2ṙ(B · ṙ)− γ(ṙ)(E× (ṙ/c)).

(12j)

From Eqs. (12f) and (12j) one sees that the dynamic Lorentz-invariant upgrade of the static potential energy
−(eh̄/(2mc))(~σ ·B) is,

(eh̄/(2mc)) [σµν(ṙ) (∂µAν)] = (eh̄/(2mc)) [~σ · [(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)]] =

−(eh̄/(2mc))
[
γ(ṙ)(~σ ·B)− (γ(ṙ)− 1)|ṙ|−2(~σ · ṙ)(B · ṙ) + γ(ṙ)(~σ · (E× (ṙ/c)))

]
,

(12k)

and thus the Lorentz-invariant upgrade of the Eq. (12a) spin contribution to the action, namely,

S~σ =

∫
(eh̄/(2mc))(~σ ·B)dt.
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comes out to be,

S~σrel = −
∫

(eh̄/(2mc)) [σµν(ṙ) (∂µAν)] dτ =∫
(eh̄/(2mc))

[
(~σ ·B)−

(
1− (γ(ṙ))−1

)
|ṙ|−2(~σ · ṙ)(B · ṙ) + (~σ · (E× (ṙ/c)))

]
dt =∫

(eh̄/(2mc))
[
(~σ ·B)−

(
1 + (γ(ṙ))−1

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (~σ ×E) · (ṙ/c)

]
dt,

(12l)

as we see by using Eq. (12k) and the fact that,

γ(ṙ) =
(
1− |ṙ/c|2

)− 1
2 = dt/dτ.

In the last step of Eq. (12l), we have furthermore interchanged the “dot” · with the “cross” × in the triple
scalar product,

(~σ · (E× (ṙ/c))),

and have as well applied the identity,(
1− (γ(ṙ))−1

)
|ṙ|−2 =

(
1 + (γ(ṙ))−1

)−1
c−2.

We are now in a position to write down the Lorentz-invariant upgrade Srel of the ṙ = 0 Pauli action S of
Eq. (9e),

Srel = S0
rel + Serel + S~σrel =

∫ {
−mc2 − eUµ(ṙ)Aµ − (eh̄/(2mc)) [σµν(ṙ) (∂µAν)]

}
dτ =∫ {

−mc2
(
1− |ṙ/c|2

) 1
2 − e(φ− (ṙ/c) ·A)+

(eh̄/(2mc))
[
(~σ ·B)−

(
1 +

(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (ṙ/c) · (~σ ×E)

]}
dt

(13a)

The integrand of this Lorentz-invariant upgrade Srel of the ṙ = 0 Pauli action S is of course the relativistic
Pauli Lagrangian Lrel,

Lrel = −mc2
(
1− |ṙ/c|2

) 1
2 − e(φ− (ṙ/c) ·A)+

(eh̄/(2mc))
[
(~σ ·B)−

(
1 +

(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (ṙ/c) · (~σ ×E)

]
,

(13b)

where,
B = ∇×A and E = −∇φ− (Ȧ/c). (13c)

From Eq. (13b) we calculate the relativistic Pauli Lagrangian’s corresponding canonical momentum,

P = ∇ṙLrel = mṙ
(
1− |ṙ/c|2

)− 1
2 + (e/c)A + (eh̄/(2mc2))(~σ ×E)−

(eh̄/(2mc2))
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1[
~σ(B · (ṙ/c)) + (~σ · (ṙ/c))B +(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
(ṙ/c)

(
1− |ṙ/c|2

)− 1
2 (~σ · (ṙ/c))(B · (ṙ/c))

]
.

(13d)

The last three terms of Eq. (13d), which all arise from the relativistic distortion of the magnetic field B,
unfortunately preclude solving analytically for the particle’s velocity ṙ in terms of the system’s canonical
momentum P. For that reason we cannot in general analytically parlay the relativistic Pauli system’s energy
Erel, namely,

Erel = ṙ ·P− Lrel, (13e)

into its relativistic Pauli Hamiltonian Hrel(r, ~σ,P, t). However we see from Eq. (13d) that the three offending
terms which arise from the relativistic distortion of the magnetic field B are all higher-order corrections in
powers of |ṙ/c|, so we can easily rewrite Eq. (13d) as a successive-approximation scheme for the desired
inversion of the canonical momentum P that is consonant with the systematic carrying out of relativistic
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corrections. The scheme is considerably more transparent , however, after all occurrences of the particle
velocity ṙ on the right-hand side of Eq. (13d) (and as well on the right-hand side of Eq. (13e)) are replaced
by occurrences of the free-particle momentum p, which is,

p
def
= mṙ

(
1− |ṙ/c|2

)− 1
2 , so (ṙ/c)

(
1− |ṙ/c|2

)− 1
2 = (p/(mc)),

(ṙ/c) =
(
1 + |p/(mc)|2

)− 1
2 (p/(mc)) and

(
1− |ṙ/c|2

) 1
2 =

(
1 + |p/(mc)|2

)− 1
2 .

(13f)

Using Eq. (13f) to eliminate all occurrences of the particle velocity ṙ on the right-hand side of Eq. (13d) in
favor of the free-particle momentum p yields,

P = p + (e/c)A + (eh̄/(2mc2))(~σ ×E)−
{

(eh̄/(2mc2))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1 [
~σ(B · (p/

(mc))) + (~σ · (p/(mc)))B +
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(p/(mc))(~σ · (p/(mc)))(B · (p/(mc)))

]}
.

(13g)

Eq. (13g) can now be readily recast as a basis for successive approximations to the free-particle momentum
p in terms of the canonical momentum P,

p = P− (e/c)A− (eh̄/(2mc2))(~σ ×E) +
{

(eh̄/(2mc2))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1 [
~σ(B · (p/

(mc))) + (~σ · (p/(mc)))B +
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(p/(mc))(~σ · (p/(mc)))(B · (p/(mc)))

]}
.

(13h)

In order for successive approximations to p in terms of P to be able to produce successive approximations
to the relativistic Pauli Hamiltonian Hrel, we must also banish all occurrences of the particle velocity ṙ in
the system’s energy Erel, which is given by Eq. (13e), in favor of the free-particle momentum p.

We shall, however, first calculate that relativistic Pauli energy Erel = ṙ ·P−Lrel of Eq. (13e) entirely in
terms of ṙ by using the Lrel which is given by Eq. (13b) and the P which is given by Eq. (13d), and then
use the relations given in Eq. (13f) to eliminate ṙ from Erel in favor of p.

From Eq. (13b) we obtain that,

−Lrel = mc2
(
1− |ṙ/c|2

) 1
2 + e(φ− (ṙ/c) ·A)−

(eh̄/(2mc))
(

(~σ ·B)−
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c)) + (ṙ/c) · (~σ ×E)

)
,

(13i)

and from Eq. (13d) we obtain that,

ṙ ·P = m|ṙ|2
(
1− |ṙ/c|2

)− 1
2 + e(ṙ/c) ·A) + (eh̄/(2mc))(ṙ/c) · (~σ ×E)−

(eh̄/(2mc))
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c))×[

2 +
(

1 +
(
1− |ṙ/c|2

) 1
2

)−1
|ṙ/c|2

(
1− |ṙ/c|2

)− 1
2

] (13j)

The complicated structure of the last term of Eq. (13j) simplifies markedly, so Eq. (13j) becomes,

ṙ ·P = m|ṙ|2
(
1− |ṙ/c|2

)− 1
2 + e(ṙ/c) ·A) + (eh̄/(2mc))(ṙ/c) · (~σ ×E)−

(eh̄/(2mc))(~σ · (ṙ/c))(B · (ṙ/c))
(
1− |ṙ/c|2

)− 1
2

(13k)

Putting Eqs. (13i) and (13k) together produces,

Erel = ṙ ·P− Lrel = mc2
(
1− |ṙ/c|2

)− 1
2 + eφ−

(eh̄/(2mc))
[
(~σ ·B) +

(
1 +

(
1− |ṙ/c|2

)− 1
2

)−1
(~σ · (ṙ/c))(B · (ṙ/c))

(
1− |ṙ/c|2

)−1]
.

(13l)

10



We now use the Eq. (13f) relations to reexpress Eq. (13l) in terms of p instead of in terms of ṙ,

Erel =
(
m2c4 + |cp|2

) 1
2 + eφ −

(eh̄/(2mc))
[
(~σ ·B) +

(
1 +

(
1 + |p/(mc)|2

) 1
2

)−1
(~σ · (p/(mc)))(B · (p/(mc)))

]
.

(13m)

Eq. (13m) is to be used with the successive approximations to p(P) which Eq. (13h) produces to obtain the
corresponding successive approximations to the relativistic Pauli Hamiltonian Hrel.

In those cases where B = 0, Eq. (13h) immediately yields the exact result for p(P), namely,

p = P− (e/c)A− (eh̄/(2mc2))(~σ ×E), (14a)

and in those B = 0 cases, Eq. (13m) yields the exact relativistic Pauli Hamiltonian, i.e.,

Hrel =
(
m2c4 + |c(P− (e/c)A− (eh̄/(2mc2))(~σ ×E))|2

) 1
2 + eφ. (14b)

When B 6= 0, one possible way to proceed is to start from,

p0 def
= (P− (e/c)A− (eh̄/(2mc2))(~σ ×E)), (15a)

and,

H0
rel

def
=
(
m2c4 + |cp0|2

) 1
2 + eφ− (eh̄/(2mc))(~σ ·B), (15b)

and then to use Eq. (13h) to develop the expansion of (p − p0) in orders of |p0/(mc)|; the expansion for
(Hrel −H0

rel) requires using Eq. (13m) as well. For expansion purposes, it is useful to rewrite Eq. (13h) as,

p = p0 + (eh̄/(2mc2))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1 [
~σ(B · (p/(mc))) + (~σ · (p/(mc)))B +(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(p/(mc))(~σ · (p/(mc)))(B · (p/(mc)))

]
,

(15c)

and to analogously rewrite Eq. (13m) as,

Erel = H0
rel +

(
m2c4 + |cp|2

) 1
2 −

(
m2c4 + |cp0|2

) 1
2 −

(eh̄/(2mc))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(~σ · (p/(mc)))(B · (p/(mc))) =

H0
rel +

((
1 + |p/(mc)|2

) 1
2 +

(
1 + |p0/(mc)|2

) 1
2

)−1 [(
c
(
p− p0

))
·
((

p + p0
)
/(mc)

)]
−

(eh̄/(2mc))
(

1 +
(
1 + |p/(mc)|2

) 1
2

)−1
(~σ · (p/(mc)))(B · (p/(mc))).

(15d)

To its leading order in |p0/(mc)|, Eq. (15c) simplifies to just,

c
(
p− p0

)
≈ 1

2 (eh̄/(2mc))
[
~σ(B · (p0/(mc))) + (~σ · (p0/(mc)))B

]
, (15e)

while Eq. (15d) correspondingly simplifies to,(
Erel −H0

rel

)
≈
[(
c
(
p− p0

))
·
(
p0/(mc)

)]
− 1

2 (eh̄/(2mc))(~σ · (p0/(mc)))(B · (p0/(mc))). (15f)

Insertion of Eq. (15e) into Eq. (15f) then gives the leading order correction to H0
rel for the Hamiltonian Hrel,

Hrel ≈ H0
rel + 1

2 (eh̄/(2mc))(~σ · (p0/(mc)))(B · (p0/(mc))), (15g)

where of course p0 is given by Eq. (15a) and H0
rel is given by Eq. (15b).
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