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ABSTRACT: 
 
Object detection in a moving video stream is playing a prominent role in every branch of science and research  
[1]. Objection detection or tracking is done by two different methods, namely, spatio-temporal domain and 

compressed domain. This project will deal with both the domains in order to bring out the advantages and 

disadvantages of each and every method in terms of complexity in computations, efficiency etc. Along with that, a 

detailed literature survey will also be done on the same topic.  
Most image and video data are stored or transmitted after compression for efficiency. Processes like pattern 

detection and localization typically include the extra expense of decompressing the data since most image and 

video processing techniques require access to the original pixel values in the spatial domain. This project 

performs a statistical analysis of present object detection schemes in both spatio-temporal and compressed 

domains. The results of multiple object detection in spatio-temporal domain are compared to those of compressed 

domain object detection and various evaluation results are analyzed. The comparisons will be made in the context 

of complexity of algorithm, efficiency and application. 

 

MOTIVATIONS: 

 
Even though there are several research programs and papers that discuss object detection in both spatio-temporal [4  
& 5] and compressed domains [1, 2, 3 & 6], there is not much work presented in evaluating the functionality of 

compressed domain object detection with that of a spatio-temporal detection. This project presents an evaluation of 

compressed domain object detection and spatio temporal object detection. 

 

1. Literature Review 
 
Spatio-temporal databases deal with applications where data types are characterized by both spatial and temporal 
 
semantics. Development and research in this area started decades ago, when management and manipulation of data, 
 
relating to both spatial and temporal changes, was recognized as an indispensable assignment. However, spatio- 
 
temporal data handling was not a straight forward task due to the complexity of the data structures requiring careful 
 
analysis in structuring the dimensions, together with the representation and manipulation of the data involved. 
 
Therefore, the earlier work in this area began from separate research in both temporal and spatial databases. This 
 
effort later became the basis for spatio-temporal database models. Since the integration of spatial and temporal 
 
database models into spatio-temporal database models, a number of new approaches have been proposed. At the 
 
same time, reviews of these works have classified and compared the existing spatio-temporal models. Currently, 



 
domain experts are trying to achieve more effective integration of the spatial and temporal aspects providing 

practical, unified spatio-temporal data modeling, and clarifying the direction for further research and development. 

Standing at this point the contribution and contemporaneously the aim of this paper is to provide a complete 

literature review of existing spatio-temporal database models developed or suggested in recent decades and for the 

first time to critically compare and evaluate them in terms of some universal criteria, in order to identify the trend as 

well as the needs for further research in the area. The large volumes of visual data necessitate the use of compression 

techniques. Hence, the visual data in future multimedia databases is expected to be stored in the compressed form. In 

order to obviate the need to decompress the image data and apply pixel-domain indexing techniques, it is efficient to 

index the image/video in the compressed form. Compressed domain image/video indexing techniques based on 

compression parameters have been reported in the literature. These techniques have a lower cost for computing and 

storing the indices. Compressed domain indexing (CDI) techniques can be broadly classified into two categories: 

transform domain techniques, and spatial domain techniques. The transform domain techniques are generally based 
 
on DFT (discrete Fourier transform), KLT (Karhunen-Loeve transform), DCT, and Sub-bands/Wavelets. Spatial 
 
domain techniques include vector quantization (VQ) and fractals. 
 

 

2. COMPRESSED DOMAIN OBJECT DETECTION: 

 

The compressed domain approach exploits the encoded information like motion vectors, discrete cosine transform 

(DCT) [1] coefficients, and macroblock types which are generated as a compressed bit stream [1, 2, 3 & 6]. 

Compressed domain object detection can greatly reduce the computational complexity and make real-time or fast 

processing possible although the precision is not better than the spatial domain approach. The conventional 

compressed domain object detection algorithms uses motion vectors or DCT coefficients as resources in order to 

perform object detection and tracking [6]. These encoded data are not enough credible or insufficient to detect and 

track moving objects, but recent work uses an extra feature called vector-featured images that record moving regions 

and accumulate unmoving regions in which the moving objects are expected to exist after the current frame [6]. This 

method uses only motion vector estimate without any other information from the encoded bit stream. In the vector 

featured images there are five types of block regions [2]. The basic unit of a region in the vector-featured image is 

the same size as MPEG macroblocks. The five different blocks are reference block Br, current block Bc, background 

block Bb, moving block Bm and unmoving block Bu. The algorithm consists of four different steps, namely: initial 

region extraction, moving region detection, unmoving region creation and updating and modification of vector 

featured regions [2]. The results obtained are comparable to real time spatial object detection algorithm. Figure 1 

shows the initial region extracted from the motion vector values, in fig 2 the label fn-2, fn-1, and fn represent the 

corresponding frame and each block in the frame represents a macro block motion vector value. The initial regions 

are formed by one to one mapping of the previous and the next corresponding frame. 

 

1. INITIAL REGION EXTRACTION: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1: Each block in the figure represents a macro block motion vector value, [2]. 

 

2. CREATING AND UPDATING UNMOVING REGION:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2: Extraction of moving and unmoving regions, [2]. 

 

3. Motion vector calculation: 
 
Using the previous and the future frame as reference, the encoder finds the motion vectors for the forward and 

backward prediction frame. Each video sequence is divided into one or more group of pictures. The encoder outputs 

the motion vectors in the bit stream order. Only the motion vectors that are received in the decoder side are 

processed to find the moving object region.  



Fig 3: MPEG group of pictures – Display order [11]. 

 

Frames do not come into the decoder in the same order as they are displayed. The ouput frames from the encoder 

will be of the form I B B P B B P B B I B B P B B P B B I. Where I is the intra coded frame, P is the predicted 

frame and B is the bi-directionally predicted frame. First, reorder the incoming frames or slice from bit stream order 

to display order. To reorder the frames to the display order the following procedure is followed,  
• If an I or P frame comes in put it in a temporary storage called future. 

 
• I or P is left in the future until another I or P frame comes in, on the arrival of a new I or P frame, already 

present I or P frame is taken out from the temporary storage called future and is put in the display order and 

the newly arrived I or P is put into the temporary storage called future.  
• All B frames are immediately put in the display order.  
• At the end whatever frame is left in the temporary variable called future is put in the display order.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 4: Conversion from bit stream order to display order [6].  

4. Algorithm for storing the motion vectors in respective arrays 
 
For ease of handling, the motion vectors are stored in a two dimensional arrays and the size of the array corresponds 

to the frame size in macro block (in this case 8x8 macro block was chosen). The forward prediction vectors and 

backward prediction vectors are stored in separate arrays. Each prediction vector in turn contains two more arrays to 

store the horizontal and vertical movement of vectors. To find the motion from one frame to another, a record of 

motion vectors of the previous frame has to be kept. Fig 5 shows the explanation of the algorithm in a flow chart. 

The process of inputting the motion vectors into correct arrays and reordering the frames into the display order were 

incorporated in the decoder. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5: Flow chart explaining storage of motion vectors in respective arrays. [6].  
The final output of this algorithm stores the motion vectors of successive frames in an array. For finding the motion 

from frame to frame, the present and previous frame motion vectors are subtracted. If an ‘I’ frame is encountered all 

the values in the array are set to zero. If a B frame is encountered, forward prediction and backward prediction 

vectors are subtracted separately and an average total motion is found in both the horizontal and vertical directions. 

The obtained motion vectors for each frame are written into a separate file each for horizontal and vertical motions.  
5. Moving Region Detection: 

 

A moving object generates non-zero motion vectors that appear continuously over multiple frames. The continuous 

appearances of motion vectors cause previous block and current block motion vectors to overlap, these regions are 

detected as moving regions Bm. When a current frame pointed to is an I-frame, then no motion vectors information 

will be there In the current frame and hence the contents of motion vector information from previous vector-featured 

image is copied to present frame, moving block is not created in these frames. 

 

6. Unmoving region creation and updating: 
 

The difficulty in detecting moving objects by using only motion vector information is that the probability of getting 

false positive (i.e) detecting a background as a moving object is high. To overcome this, methods such as connected 

component analysis and threshold value for motion vectors are implemented. A block which was having a motion 

vector in the previous frame may tend to a zero motion vector in the current frame. These regions are marked as 

unmoving regions as the moving object is expected to exist after current frame. When a moving object stops, zero 

motion vectors are generated, however just before the object stops, moving block regions will be created along the 

movement of the object whose current block has a zero motion vector. These regions whose previous motion vector 

value had a moving block related to the current zero motion vector is marked as unmoving block. The effect of the 

unmoving block is also crucial, there are two criterions that should be considered, one is that the unmoving regions 

should be considered correctly and a object which has moved in position after few frames should also be noted. For 

these issue unmoving block regions are monitored for some k frames, if a zero motion vector persists its brightness 

value is decreased gradually, if not it is marked as a moving block region. 



7. GUI for annotating object locations: 
 

The obtained results of moving object detection from both the methods are compared with the manually annotated 

hand location gives the coordinate location of the centre of the object in every frame. The user selects a video 

filename from the list of filenames present in the drop down box, the second edit box holds the start frame number 

and the third edit box holds the end frame number as entered by the user. On clicking the get frame button, a 

separate window opens which contains the image of the particular frame number that lies between the start and end 

frame. Using a marker tool the user annotates the hand location by which the coordinate locations are obtained. The 

hand locations obtained between the start and the end frame are stored in an array which forms the bench mark for 

evaluating the accuracy of moving object detection. Fig 6 shows the GUI that has been created for manually 

annotating hand locations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: GUI for manually annotating hand locations 

 

3. Spatio-Temporal Object Detection: 

 

Spatio-temporal object detection is an integral part of many computer vision applications. A common approach is to 

perform background subtraction, which identifies moving objects from the portion of a video frame that differs 

significantly from the background. There are four main steps in a background subtraction algorithm [5], they are 

preprocessing, background modeling, foreground detection and data validation as shown in fig 7. Preprocessing step 

consists of a collection of simple image processing tasks that change the raw input video into a format that can be 

processed by subsequent steps. Steps like intensity adjustments, smoothening are handled in preprocessing stage. In 

real-time systems frame size reduction is also done to speed up the process. The block diagram of a background 

detection algorithm in spatial domain is shown in fig 7. Background modeling is at the heart of any background 

subtraction algorithm, background modeling is a process to obtain static image regions from a sequence of video. 

Background modeling is broadly classified into recursive and non-recursive techniques. 



 
 
 
 
 
 
 
 
 
 
 

 
Fig 7: Block diagram of a spatio-temporal object detection [5]. 

 

Non-recursive technique uses a sliding window method and it stores a buffer of the previous L video frames, and 

estimates the background image based on the temporal variation of each pixel within the buffer. Recursive technique 

is a non-adaptive technique and does not use past input frame information. Foreground detection just compares the 

input frame with the background model and uses a threshold value as in binary classification. Data validation is the 

process of improving the candidate foreground mask based on information obtained from outside the background 

model. All the background models have three main limitations, first, they ignore any correlation between 

neighboring pixels; second, the rate of adaption may not match the moving speed of the foreground objects; and 

third, non-stationary pixels from moving leaves or shadow cast are easily mistaken as true foreground objects. These 

limitations of background model are reduced in foreground detection and the possibility of false detection is also 

reduced [5].  
1. Parametric and non-parametric object detection: 

 

Background modeling stage is at the heart of any background subtraction algorithm, having said that the recursive 

technique based background modeling uses a parametric and non-parametric model for object detection. These two 

models can be intuitively understood from their names which mean a parametric model requires some parametric 

estimates in order to perform object detection whereas a non-parametric model can perform object detection without 

requiring any parameters to estimate them. An example of parametric object detection is a simple Gaussian model 

which requires the mean and standard distribution estimate of the object being detected. Consider that a particular 

color object from an image has to be estimated. First the sub window that contains samples of particular color that 

has to be detected. Then find the mean and standard deviation from the sub window pixel data. 

 

Steps to be performed for the parametric model of object detection, 

 

(1) Estimate the mean and standard deviation of a particular color object to be detected from the 

sub window block which contains only particular color pixel values. 

(2) Find, P1(RGB/color), which forms the training set,  
(3) Assume that colors are mutually independent, then, 

P1 (RGB/color)=P1 (R/color)*P1 (G/color)*P1 (B/color) 

(4) Each P1 (R/skin), P1 (G/skin) and P1 (B/skin) are estimated through Gaussian probabilities.  
(5) Gaussian PDF is given as,  
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where, 

F(x)
→

 Functional Gaussian probability estimate of data x. 

x
→

 The sample data whose Gaussian probability has to be found. 

m
→

The mean value of the object to be detected. 

Sigma
→

 Standard deviation. 



 
Maximum likelihood estimate is then applied to the obtained Gaussian probability model to obtain the color object 

region from the video frame [5 & 7]. 

 

A non-parametric model of object detection uses minimum or no parametric estimate to perform object detection. 

An example of non-parametric model is histogram based object detection. For example, to detect green object, the 

each color image pixel is made up of overlapping red, green and blue intensity values, cancel out the green pixel 

intensity with that of the red pixel and also with the blue pixel intensity values, the formulation becomes [7], 
 

F(i,j)=2*Ig(i,j,2)-Ir(i,j,1)-Ib(i,j,3), where 1≤i≤N , 1≤j≤M 

 

• N and M are row and column lengths of the image I(N,M). 

• Ig(i,j,2) is the index of the green pixel intensity and similarly for  
• Ib(I,j,3) is the index of the blue pixel intensity 

• Ir(I,j,1) is the index of the red pixel intensity  
• F(i,j) is the final functional value of the green color density distribution. 

 

After the estimate of background modeling has been performed a correlation filter is used to remove salt pepper 

regions and to obtain smooth surfaced object detection from the entire background image. The steps illustrated 

above detects object in a single frame, In order to perform moving object detection frame differencing has to 

performed and the obtained results has to be multiplied with the single frame object detection. Frame differencing is 

performed as follows, 

 

Let frame(n) be current frame, frame(n-1) be previous frame and frame(n+1) be next frame, then 

 

Frame_diff=Min((frame(n-1)-frame(n)),(frame(n+1)-frame(n))). 

 

4. Experimental results - spatio-temporal moving object detection: 
 

 

The spatio-temporal object detection algorithm along with its performance metrics was implemented in MATLAB. 
 
Two video sequences with different proximity of distance from camera were considered during the testing and 
 
training phase. For each video both single and multiple detection boxes performance was evaluated. The 
 
performance metrics such as localized output box count precision, average detected box area precision, area based 
 
recall for frame, area based precision for frame were evaluated and the tabulations and graphs are plotted. The 
 
training for detecting object in a video was performed by annotating or manually marking hand the locations using a 
 
GUI. The output of the training set contains the spatial co-ordinate locations of the center of detected object. The 
 
testing was performed using the color detection algorithm which also returns the spatial coordinate locations of 
 
detected object in each frame. Let G be the correctly classified object in a single frame found during testing and let  

D be the set of output boxes produced by the algorithm, Ng and Nd be their respective values in each frame. Testing 

was done on two video sequence close_detect and detect. 

1. Localized output box count precision: 
 
This metric count the number of output boxes that significantly covered the correctly classified object obtained from 
 
training. An output box D in each frame significantly covers the ground truth if a minimum proportion of its area 
 
overlaps with detection box G. Ground truth can be defined as the area under the actual moving object in each frame 
 
or can also be defined as a correct classification in each frame. 
Loc_box_count = ∑  (  ) _    (  ) 
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Where,  

Ug
→

 is the union space of total number of pixels in the detection box. 

|D ⋂ | 
→

 is the pixel count of output detection box overlapping with the ground truth. 
 
Overlap min is the minimum proportion of the output box’s area that should be overlapped with the ground truth in 

order to say that output is precise. 
 

2.  Average detected box area precision: 
 
This metric provides the average of detection boxes precision in covering the area that ground truth object covers in 

each frame. 
Precision = ∑            (  )/   

Box precision (D) = |D ⋂    |/|D| 

 

Where,D= output detection boxes in each frame; Ug=Spatial union of ground truth detection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Hand movement detected for frame #100, 5 detection boxes of size 150X150 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Hand movement detected for frame #115, 5 detection boxes of size 150X150 

 

4. Experimental results - moving object detection using motion vectors: 

 

The motion vector values that are obtained were result of an 8x8 macro block encoding, the frame size used in this 

project is 240x320, and hence the motion vector values obtained for each frame were of size 30x40. In order to 

represent the moving object detection using motion vectors, the direction vector plot of each frame is plotted as 

shown in fig 10. The constraints that to be considered in compressed domain object detection using motion vector 

estimate is that, if the test video has moving background objects other than object to be detected then the accuracy of 

detection will be less. 
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Figure 10: Motion vector values from frame #42 of close detect 1. 
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Figure 11: Threshold motion vector values for frame #115 

 

Using connected component analysis and setting up a threshold value, the regions of maximum displacement is 

obtained, in this frame the maximum motion vector after setting the threshold is found to be at array index 

[33,15] which is [264, 120] pixel location in the original spatial frame coordinate location. The threshold value 

must be selected such a way that the important information from the motion vector should not be erased. 

 

5. Discussions: 
 

Having obtained the moving object detection from both the methods, the efficiency of detection of the moving 

objects has to be compared. The results obtained suggest that the accuracy of detection of moving objects is more 

efficient using the spatio-temporal object detection algorithm than using a compressed domain motion vector based 

moving object detection. But it should be noted that as the size of the moving object is larger, the performance of 

compressed domain motion vector based detection was better. The accuracy of detection which specifies the 

percentage of correct detection is tabulated in table 1. The results were obtained by considering the object detection 

from three frames of two different test video sequences. 
 

 

Test video sequence  Accuracy of detection - spatio-  Accuracy of detection – motion 

  temporal object detection  vector based compressed domain 

    object detection 

     
Close detect  94%  79% 

     
Distant detect  91%  68% 

     
 Table 1: Percentage of correct detection   
 

 

Accuracy of detection= correctly classified object/(correct answers), as shown in fig 12. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 12: Accuracy of detection 
 

 

6. Conclusions: 
 
The performance of moving object detection is evaluated using two different techniques. The experimental results 

show that the accuracy of moving object detection in spatio-temporal domain is better than that of the compressed 

domain motion vector based moving object detection. 
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