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Abstract 

A class of non-autonomous and nonlinear singular Liénard equation is developed by nonlocal transformation of 

the linear harmonic oscillator equation. It is shown that it includes some Kamke equations and  a nonlinear 

equation of the general relativity as special cases.  
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1. Introduction 

One of the most interesting topics in mathematics and mathematical physics is the 

generalization of existing theories or model  equations for more adequate and satisfactory 

description of the Nature. For example the newtonian classical mechanics is known to be a 

limiting case of the special relativity in physics. In this way the linear harmonic oscillator, that 

is the prototype of the second order ordinary differential equation, is well known to be for 

instance a particular case of the cubic Duffing equation widely used to model nonlinear 

phenomena. The linear harmonic oscillator may also be considered as a limiting case of other 

ordinary differential equations [1]. As such,  consider the Kamke equation 2.79 [2] 
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which reduces to the equation of the linear oscillator when ,0l  and x is the time. In this 

context it is appropriate to investigate the generalized form of equation (1). Unfortunately the 

nonlinear and generalized Kamke equation 2.79 [2] which can be mapped into the linear 

harmonic oscillator is not clearly documented in the literature. This is a drawback in the 

mathematical theory of differential equations as no one can answer the question: Does equation 

(1) can be generalized to nonlinear differential equation linearizable into the linear harmonic 

oscillator ? The present work assumes the existence of such a nonlinear differential equation. 

The predicted equation is mathematically interesting since its exact and explicit general solution 

may be expressed in terms of the linear harmonic oscillator equation and used to model 

nonlinear phenomena in physics and engineering applications. To demonstrate this prediction 

the general theory is first established (section 2) and secondly illustrative examples are studied 

(section 3).  A conclusion for the work is finally addressed. 

2. General theory 

 This section is devoted to the establishment of the nonlinear and generalized  KamKe equation 

2.79 [2] by nonlocal transformation of the linear harmonic oscillator equation. Let 
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be the equation of the linear harmonic oscillator where 0c  is an arbitrary parameter and 

prime stands for the derivative with respect to argument. Let also [1, 3, 4] 

 dxxgexfy lu )(,)()( )(                                                                                                   (3) 

be a nonlocal transformation of variables  and  y , where  and l  are arbitrary parameters, 

and ,0)(),( xfu and ,0)( xg are arbitrary functions of u  and x respectively. Then the 

following theorem may be proved. 

Theorem 1. Consider equation (2). Then by application of (3), equation (2) may reduce to 
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where .0)(' u    

Proof. Under the application of (3) the first derivative of )(y  may be immediately written as  
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so that one may easily find 
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Introducing (6) into equation (2), and taking into consideration  ,)()( )(uexfy    yields (4). 

Equation (4) is the desired nonlinear and generalized Kamke equation 2.79. To observe that one 

may consider the following theorem. 

Theorem 2. If ,1)(,
2

1
 xf and ),ln()( 2uu  then equation (4) transforms into equation 

(1). 

Proof. If ),(ln)( 2uu  then ,
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For ,
2

1
  the term in parenthesis, ,012   and equation (4) reduces to equation (1). Due 

to the presence of the term ,
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equation (4) is a nonlinear differential equation.  

Now some examples may be considered to illustrate the theory. 

3. Examples 

The objective in this section is to give some well known examples of differential equations to 

illustrate the usefulness of the developed theory. 

3.1 A nonlinear equation of general relativity 

Consider the following theorem 

Theorem 3. Let 0,1,1  cl , and xxg )( . Then equation (7) reduces to 
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Proof. The proof is immediate. It suffices to note that (8) is a special case of (7) when 

0,1,1  cl , and xxg )( . 

Equation (8) is obtained in study of general relativity in [5]. This equation is later investigated 

in [6, 7] by means of the Prelle-Singer method but with no exact and explicit solutions. The 

problem now is to solve equation (8) exactly and explicitly.  For 0c , the solution to (2) take 

the form 

BAy   )(                                                                                                                            (9) 

where  A  and B  are integration constants. By application of the Theorem 3, one may compute 

from (3) the solution 
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Therefore the solution )(xu may take the expression  
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which may be definitively written in the form given in [5] as  
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where
B

B
K 1 , et  

B

A
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2
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3.2 Kamke equation 6.169 

The following theorem can be established. 

Theorem 4.  Let 1,0,1  lc  and xxg )( . Then equation (7) reduces to 
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Proof. One may easily observe that equation (14) is a special case of (7) when 1,0,1  lc

, and xxg )( . Equation (14) is the Kamke equation 6.169. The explicit and exact solution may 

be computed as follows. Using the solution BAy   )( , one may compute, by application 

of (3), the solution )(xu  as  

BAxu  2)(                                                                                                                       (15) 

and  
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such that 
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Making 
2

1

A
C  , and BC 2 , one may arrive at the solution given in [2] 
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Conclusion 

A nonlocal transformation, that is a non-point change of variables has been developed to study 

second order non-autonomous and nonlinear differential equations. In this way, the nonlocal 

transformation of the linear harmonic oscillator equation has generated a nonlinear and 

generalized Kamke equation 2.79. This nonlinear and generalized equation has not been 

mentioned in Kamke book [2]. The generated equation has been used to solve some well known 

interesting nonlinear equations of the literature. In this regard the usefullness of the developed 

theory has been shown. It is finally worth to note that for special choice of functions and 

parameters, the established equation may reduce to the purely mixed or quadratic Liénard type 

nonlinear differential equations which occur often in physics and engineering applications. 
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