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Abstract

The topological Skyrme has been actively studied in recent times (e.g. see Man-
ton and Sutcliffe, Topological Solitons, Cam U Press, 2004) to understand the
structure of the nucleons and the nucleus. Here through a consistent study
of the electric charge, it is shown that just the Skyrme lagrangian by itself,
gives charges as, Qp = 1

2 and Qn = − 1
2 ; shockingly missing their empirical val-

ues. This devastating problem is rectified, only by includig an extra term (not
available at Skyrme’s time), arising from the Wess-Zumino anomaly. One then
obtains Qu = 2

3 and Qd = − 1
3 , and thus giving the correct charges of the nu-

cleon. It is also shown here (for the first time), that the combined Skyrme-Wess-
Zumino lagrangian predicts, colour-number dependence of the electric charges
as: Q(u) = 1

2 (1 + 1
Nc

); Q(d) = 1
2 (−1 + 1

Nc
) for arbitrary colour-number of the

QCD group SU(Nc). This gives 2/3 and -1/3 charges for Nc = 3. Thus it is not
good enough to just have the value of charges as 2/3 and -1/3. We show that
it is important to have a proper colour dependence existing within the guts of
the quark charges. Though the quarks have colour built into its guts, composite
protons and neutrons built up of odd-number-of-colours of quarks, turn out to
be colour-free with fixed values of 1 and 0 charges, respectively (and which is
good for self-consistency of QCD+QED); while the proton and neutron built
up of static (colour-independent) charges 2/3 and -1/3, develop explicit colour
dependence (and which is disatrous for these models).

Keywords: Topological Skyrme model, Wess-Zumino anomaly, QCD. chiral
symmetry, electric charge, quark model
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The topological Skyrme model of the 1960’s [1] has been focus of much
activity in recent years [2-12]. The original Skyrme lagrangian needs to be
supplemented with a Wess-Zumino anomaly term to ensure proper quantzation
[2-6,11,12]. Our model here shall be the original Skyrme lagrangian plus the
Wess-Zumino anomaly term and which we call the Skyrme-Wess-Zumino model.
As well known, Wess-Zumino anomaly term is non-vanishing for three flavours
and vanishes for two flavours. However, even though the Wess-Zumino anomaly
term vanishes for two flavours, this two flavour reduction of the three flavour
model contribution to the electric current has an interaction with electromag-
netism, which was not present in the original Skyrme model. Thus one finds that
just the Skyrme lagragian, by itself, fails to reproduce correct electric charge of
the nucleons. We discuss how the complete Skyrme-Wess-Zumino model comes
to rescue in providing the correct electric charge of three quarks [11]. As an ex-
tra benefit, we find (for the first time) that these charges in addition have colour
number dependence, which had not been discovered as of now. It is well known
that a certain right hypercherage quantum number YR = 1

3NcB does have a
colour number dependence [2-6, 11-12], in the Skyrme-Wess-Zumino model, but
the colour dependence of the electric charge in the same model, has been missed
out as of now. This colour dependence matches the colour dependence of elec-
tric charge in a natural extension of the structure of the Standard model. Its
significance is discussed in some detail here.

Given an element U of SU(2),

Lµ = U†∂µU (1)

the Skyrme Lagrangian is given as [2-6],

LS =
fπ

2

4
Tr(LµL

µ) +
1

32e2
Tr[Lµ, Lν ]

2
(2)

Here the Skyrme topological current is,

Wµ =
1

24π2
εµναβTr[LνLαLβ ] (3)

On most general grounds this topological current is conserved, i.e. ∂µWµ =
0 and giving a conserved topological charge q =

∫
W0d

3x. This current is
independent of any WZ term that shall be added below.

Here U(x) is an element of the group SU(2)F ,

U(x)SU(2) = exp((iτaφa/fπ), (a = 1, 2, 3) (4)

The solitonic structure present in the Lagrangian is obtained on making
Skyrme ansatz as follows [2-6].

Uc(x)SU(2) = exp((i/fπθ(r)r̂
aτa), (a = 1, 2, 3) (5)

This Uc(x) is called the Skyrmion. But on quantization, the two flavour
model Skyrmion has a well known boson-fermion ambiguity [2-6]. This is recti-
fied by going to three flavours. In that case we take,
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U(x)SU(3) = exp[
iλaφa(x)

fπ
] (a = 1, 2..., 8) (6)

with φa the pseudoscalar octet of π, K and η mesons. In the full topological
Skyrme model we add a Wess-Zumino (WZ) effective action [2-6]

ΓWZ =
−i

240π2

∫
Σ

d5xεµναβγTr[LµLνLαLβLγ ] (7)

on surface Σ. Thus with this anomaly term, the effective action is.

Seff =
f2
π

4

∫
d4x Tr [LµL

µ] + n ΓWZ (8)

where the winding number n is an integer n ∈ Z, the homotopy group of map-
ping being Π5(SU(3)) = Z.

Write effective action as,

Seff =
f2
π

4

∫
d4x Tr [∂µU∂

µU†] + n ΓWZ (9)

Taking Q as charge operator as,

Q = T3 +
Y

2
; Y = B + S (10)

which under a local electro-magnetic gauge transformation h(x) = exp(iθ(x)Q)
with small θ, one finds

ΓWZ → ΓWZ −
∫
d4x∂µxJ

µ(x) (11)

where Jµ is the Noether current arising from the WZ term. This coupling to
the photon field is like,

Jµ =
1

48π2
εµναβTr[Q(LνLαLβ −RνRαRβ)] (12)

where Lµ = U†∂µU , Rµ = U∂µU
†. With the electromagnetic field Aµ present,

the gauge invariant form of eqn. (8) is,

ˆSeff =
f2
π

4

∫
d4x Tr [LµL

µ] + n ˆΓWZ (13)

This means that when replacing the LHS in eqn. (10) by ˆΓWZ , then the
RHS has two new terms involving FµνF

µν . This allows us to interpret Jµ with
the current carried by quarks [2-6].

With the charge operator Q (eqn. 10), T3 does not contribute to Jµ in eqn.
(12). For two flavours Y=B, and thus charge being purely isoscalar, depends
upon the baryon number. To obtain the baryon current from eqn. (12), one
replaces Q by 1

Nc
( where Nc is the number of colours in SU(Nc) - QCD for
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arbitrary number of colours), which is the baryon charge carried by each quark
making up the baryon. For total antisymmetry, Nc number of quarks are needed
to make up a baryon. Then nJµ → nJBµ gives,

nJBµ (x) =
1

48π2

(
n

Nc

)
εµναβTr[(LνLαLβ −RνRαRβ)]

=
1

24π2
εµναβTr[LνLαLβ ] (14)

This is the same as the topological current of Skyrme as given by eqn. (3).
Thus the gauged WZ term gives rise to Jµ(x) which in turn gives the baryon
charge. Thus though the WZ term ΓWZ is zero for two-flavour case, but Jµ(x)
still contibutes to the two-flavour case.

What is the significance of the above fact, that the Wess-Zumino term pro-
vides only isoscalar electric charge? Due to the fact that this isoscalar charge is
proportional to baryon number; this brings in colour dependence.

Let us next look at the structure of the electric charge in the SU(2)F SWZ
model (we shall study the three flavour case with all its subtleties, in a future
paper). It has been pointed out by Balachandran et. al. [11, p. 176] that this
has not been paid the attention it deserves. This because as we show below, it
presents a serious challenge to the Skyrme lagrangian for two flavours. Following
Balachandran et. al. [11], we define the electric charge operator in SU(2) as,

Q =

(
q1 0
0 q2

)
(15)

It induces the following transformation,

U(x)→ eiε0ΛQU(x)e−iε0ΛQ = e
iε0Λτ3(q1−q2)

2 U(x)e
−iε0Λτ3(q1−q2)

2 (16)

where ε0 is the electromagnetic coupling constant. The Noether current associ-
ated with the above symmetry is,

Jemµ
ε0

=
iF 2
π

8
Tr Lµ(Q− U†QU)− i

8ε20
Tr [Lν , Q− U†QU ][Lµ, Lν ] (17)

We obtain the gauge theory by replacing

∂µU → DµU = ∂µU − iε0Λµ[Q,U ] (18)

To obtain constraints on charges in eqn. (15), first expand on pion fields as,

Jemµ = −iε0(q1 − q2)(π−∂µπ+ − π+∂µπ−) + ... (19)

From pion charges one gets

(q1 − q2) = 1 (20)
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Next the charges of baryons N and ∆ with B=1 charge on using semi-
classical approximation,

Q =

∫
d4x Jem0 (~x, t) = ε0Lα TrταQ (21)

From eqn. (15) we get,

Q = ε0(q1 − q2)L3 (22)

On using eqn. (20),

Q = ε0L3 (23)

L3 is the third component of the isospiun operator, we get (in units of ε0),

Q(proton) = +
1

2
and Q(neutron) = −1

2
(24)

This is in disagreement with experiment. Thus the Skyrme Lagrangian eqn.
(2), fails to provide correct electric charges to proton and neutron. This is a
major conundrum as far as this model is concerned. Thus studies with only the
Skyrme Lagrangian ( e.g. see ref. [8,9,10] for discussion ) are incomplete. Thus
we should take the large number of pure Skyrme model results obtained for the
nucleon and for the nuclei with a pinch of salt. Thus it appears that one has to
go beyond the confines of the Skyrme lagrangian.

Thus as electric charge of proton and neutron are more than what is provided
above, it needs another term. And indeed we have the additional WZ term to
do the job. Again let the field U be transformed by an electric charge operator
Q as, U(x)→ eiΛε0QU(x)e−iΛε0Q,

Making Λ = Λ(x) a local transformation the Noether current is [11]

Jµ
em(x) = jµ

em(x) + jµ
WZ(x) (25)

where the first one is the standard Skyrme term and the second is the Wess-
Zumino term

jµ
WZ(x) =

ε0Nc
48π2

εµνλσTrV
νV λV σ(Q+ U†QU) (26)

Remember that even though the WZ term vanishes for two flavours, its
resulting contribution to electric charge does not. This term was, of course
missing in the original version of the Skyrme Lagrangian (eqn. (2)). This was
the reason that Skyrme model does not give the electric charge of nucleons
correctly. Also any calculation based only on just the Skyrme Lagrangian,
is missing this part of the full electromagnetic effect, and thus is necessarily
incomplete.

One finally obtains [11, p. 208],

jµ
WZ(x) =

ε0
2

(q1 + q2)NcJµ(x) (27)
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The WZ term correction to the electric charge is therefore,

ε0
2

(q1 + q2)Nc

∫
J0(x)d3x (28)

Thus one gets,

ε0
2

(q1 + q2)NcB(Uc) (29)

With Nc = 3 Balachandran et. al. [11, p. 208] obtain the charges of
N and ∆ by putting,

q1 + q2 =
1

3
(30)

Along with eqn. (20), they obtained [11] the charges as,

q1 =
2

3
, q2 = −1

3
(31)

This was taken to be a success of the model [11], as it looked like the SU(3)F
quark model result of Gell-Mann, wherein quark charges are given as Q =

T3 + (Y=B+S)
2 (eqn. (10)), given in terms of the two diagonal generators of the

group SU(3). This was considered good as it was seen to justify the occurence
of the 56 = (8,2) + (10,4) as the lowest domensional representations [2-6, 11,12],
of the group SU(6)FS ⊃ SU(3)F ⊗ SU(2)S .

However as much as what eqn. (29) is actually trying to tell us, was unfor-
tunately missed by them. Note, in eqn. (29), NcB(Uc) = 1 for any colour. Due
to the discussion relating to eqn. (14). and the isoscalar charge and baryon
number connection, instead of a special case (eqn, 30), one obtains a general
result,

q1 + q2 =
1

Nc
(32)

This along with the isovector charge from the Skyrme term, eqn. 20, gives

Q(u) =
1

2
(1 +

1

Nc
); Q(d) =

1

2
(−1 +

1

Nc
) (33)

This is a new result arising from the topological Skyrme-Wess-Zumino model.
It is important to note that here the electric charges of quarks intrinsically
depend upon colour Nc; and 2/3 and -1/3 charges are obtained only for three
colours. For composite baryons to be fermions, we have to ensure that Nc is
an odd number; thus Nc = 2k + 1; k = 0, 1, 2, ... Now assume that the proton
is built up of (k + 1) number of u-quarks and k number of d-quarks, and vice-
versa for neutron [7,13]. Thus when quark charges are colour independent, the
composite baryons become colour dependent (see Appendix C). However, with
the colour dependent charges of quarks, one finds that composite proton has
always a charge of 1 and neutron of 0 for any colour, i.e. these are actually
colour independent.
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Until now every one has been using colour independent charges 2/3 and -1/3
in any study of these topological models [11, 12]. But this is wrong. We have
now shown that the Skyrme-Wess-Zumino model demands colour dependent
charges. In other words, what we are saying is that it is wrong to use static
charges of 2/3 and -1/3 value for quarks.

Perhaps more important is the fact that these colour-dependent charges are
also telling us that in the topologcal Skyrme-Wess-Zumino model, the charges
are unlike the Gell-Mann SU(3)F quark model charges. Though Nc = 3 does
give the same fractional charges as SU(3)F quark model, but they arise from
different origins. How can one understand this new structure of electric charges
in the topological Skyrme-Wess-Zumino model?

The Standard model of particle physics, in spite of being the most successful
model in High Energy Physics, has a basic weakness, that the electric charge
is arbitrary and not quantized. These are put in by hand with static values:
Qu = 2

3 and Qd = − 1
3 (see Appendix A).

However within a reaesonable extension of this model, the so called Quan-
tized Charge Standard Model (QCSM), one obtains the same quantized and
colour dependent charge of quarks as given by the Skyrme-Wess-Zumino model
(see Appendix B). In Appendix C, we show how the colour dependent charges
(eqn. 33) are the correct charges for consistency of QCD with QED. Hence
it is not enough to have charges 2/3 and -1/3, but these should arise for
Nc = 3 from the colour dependent charges as in eqn. (33).This is because
M(proton) ∼ Nc, Nc = 3 provides consistent understanding of the relationship
between the constituent quarks and the current quarks. (see Appendix C).

Thus the colour dependenent charges as predicted by the SWZ model get
unequivocal support from the Quantized Charge Standard Model [7,13].

Note that a proper incorporation of electric charge for two flavours, has
major implications on the overall understanding of the structure of these models;
first without the Wess-Zumino anomaly term, and the next one on incorporating
it; we have arrived at two significant conclusions. Firstly, that the pure Skyrme
lagrangian, as we understand it at present, is an incomplete model for providing
a description of the nucleon and the nucleus. Next, the electric charge of quarks
in the full Skyrme-Wess-Zumino model, has colour number dependence built into
it. This shows that the structure of this model is unlike what has been popularly
understood as being similar to the Gell-Mann SU(3)F quark model. Note that
the quark charges in SWZ model, are supported by similar charges obtained in
the Quantized Charge Stanadard Model, which is an apporpriate exension of
the conventional Standard Model. What this implies for three flavours, shall be
the focus of another paper in future.

Appendices:

(A). Electric Charge in the Standard Model (SM):
Glashow in studying the weak interaction in 1961, defined the electric charge

in his newly proposed electro-weak (EW) group SU(2)W⊗U(1)W . Glashow just
copied the Gell-Mann-Nishijima relation of 1953 for the corresponding ”strong”
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group SU(2)⊗U(1). Here YW , the weak-hypercharge, is put in by hand. Hence
the electro-weak model electric charge is not quantized [7].

Glashow in 1961, was not aware of Spontaneous Symmetry Breaking (SSB)
by the Englert-Brout-Higgs (EBH) mechanism, which came later in 1964, and
thereafter utilized in the EW group in 1969 (Salam and Weinberg). Now the
Standard Model (SM), including the strong interaction, extends the EW group
structure to SU(3)c ⊗ SU(2)L ⊗ U(1)YW . SM is the most successful model of
particle physics at present. However the above definition of the electric charge
is carried over in toto to the SM. Thus electric charge is not quantized and is
arbitrary in the SM. This is a major weakness of the Standard Model [7].

Note that this unquantized charge in the Standard Model [7]: (1). Exists
prior to any SSB through the EBH field; it already exists in the early universe
through some unknown mechanism; (2). It is immune or independent of the
strong-colour group SU(3)c; (3). It is fixed with rigid values 2/3 and -1/3, i.e.
no colour dependence; (4). Anomalies play no role other than being trivially
satisfied by the above pre-fixed values of the hypercharge in the SM.

(B). Quantized Charge Standard Model (QCSM):
Hence we have to go beyond the above SM to get quantized charges [7]. We

take the same generation structure as that in the SM and the same EBH field

as an SU(2)L group doublet,
(
φ+

φ0

)
.

However, major differences with respect to the above SM are [13]: (1). We
start with the complete group structure SU(Nc)⊗SU(2)L⊗U(1)YW where Nc =
3; (2). We do not have any arbitrarily pre-defined electric charge; (3). We take
the most general definition of the electric charge in terms of generators of the
above group structure as Q = T3 + b Y where both b and Y are unknown [13].

The first generation fermions are assigned to the following representations

[13] for SU(Nc)⊗ SU(2)L ⊗ U(1)YW ; qL =

(
u
d

)
L

, (Nc, 2, Yq);uR, (Nc, 1, Yu);

dR, (Nc, 1, Yd); lR =

(
νe
e

)
L

, (1, 2, Yl); eR, (1, 1, Ye). Five unknown hypercharges

above plus the unknown Yφ for EBH field (six unknown to start with).
Let the T3 = − 1

2 of the EBH field develop a nonzero vacuum expectation
value < φ >0. To ensure that one of the four generators (W1W2W3, X) is
thereby left unbroken (meaning that we ensure a massless photon as a generator
of the U(1)em group), we demand: Q < φ >0= 0. This fixes the unknown b
and the electric charge now is: Q = T3 + ( 1

2Yφ
)Y

For theory to be renormalisable, one ensures that all the anomalies neutralise
each other for all the particles known. For each generation, cancellation of
anomalies brings in the requirement of three constraints between hypercharges.
Before SSB the matter particles are massless. These become massive through
this process of SBB by Yukawa couplings, which due to gauge invariance yields
three more relations between these unknown hypercharges. These ultimately
give relations like Yu = Yφ( 1

Nc
+ 1) (please see ref. [7,13] for details) and one

obtains properly quantized electric charges in this Quantized Charge Standard
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Model (which actually thus is a unified model) as [7,13],

Q(u) =
1

2
(1 +

1

Nc
); Q(d) =

1

2
(−1 +

1

Nc
); Q(νe) = 0; Q(e) = −1

Note that though U(1)em does not know of colour, the electric charges are
actually dependent upon colour itself. Thus quark charge having colour de-
pendence built into itself, is a significant new result of the Quantized Charge
Standard Model. However this is in direct conflict with the Standard Model
charges Q(u) = 2

3 and Q(d) = − 1
3 (i.e. indepndent of colour). Which is correct?

(C). QCD in Large Colour Limit:
The number of quarks and gluons in SU(Nc) scale as ∼ N c, ∼ (N2

c − 1)
respectively. So for large Nc, gluons dominate over quarks. The field theory of
SU(Nc) for large Nc reduces to a theory of weekly interacting mesons, similar to
the Skyrme model where baryons arise as topological structures in a Lagrangian
composed of scalar mesons only [7].

In this QCD, baryon has a finite size and has a mass going as: M(baryon) ∼
Nc. Baryons are composed of Nc number of quarks. Composite baryons to be
fermions, Nc is an odd number; thus Nc = 2k + 1; k = 0, 1, 2, .. respectively.
Now assume that the proton is built up of (k + 1) number of u-quarks and k
number of d-quarks, and vice-versa for neutron [13].

Now Witten et.al. took [12] SM quark charges to be independent of colour,
Qu = 2/3 and Qd = −1/3. Thus in their model the proton and neutron charges
are, Qp = (k + 1) 2

3 + k
(
− 1

3

)
=
(
k+2

3

)
= Nc+3

6 ; Qn = k 2
3 + (k + 1) (− 1

3 ) =(
k−1

3

)
= Nc−3

6 . For arbitrary Nc, these are not even integral and actually blow
up as Nc →∞. The colour dependence of proton charge is catastrophic.

Now Witten et. al [12] had unfortunately neglected the fundamental Coulomb
self-energy contribution to the baryon masses. And thus the QCD plus QED

contributions to baryon mass are, M(proton) ∼ Nc + C
(Nc+3

6 )
2

R , where C is a
constant and R is the finite size of proton. Thus the baryon mass is blowing
as Nc

2, due to the QED part. This is messing up the whole analysis based
on self-consistent QCD only - true for three-colours as well. This is because
M(proton) ∼ Nc provides consistent understanding of the relationship between
the constituent quarks and the current quarks in QCD for NC = 3. This Nc

2

dependence is disastrous for the model of Witten et.al.[12]. Thus the definition
of electric charge in the Standrd Model is inconsistent with the structure of
QCD.

Next with our result of colour-dependent electric charges in the Quantized

Charge Standard Model, Qp = (k + 1) 1
2

(
1 + 1

Nc

)
+k 1

2

(
−1 + 1

Nc

)
= 1; Qn =

k 1
2

(
1 + 1

Nc

)
+ (k + 1) 1

2

(
−1 + 1

Nc

)
= 0. Thus Qp = 1 , Qn = 0 for arbitrary

Nc - it is independent of Nc. Hence the Coulomb self-energy term of the proton
remains finite. Thus the colour-dependent electric charge of the QCSM are the
proper charges for quarks and proton. Hence electric charges in the QCSM are
consistent with QCD while those in the SM are not [12]. For other empirical
arguments supporting Nc dependence of electric charge, please see [7,13].
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