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Abstract

To gain true understanding of a subject it can help to study its origins and how 
its theory and practice changed over the years – and the mathematical field of 
calculus is no exception. But calculus students who do read accounts of its 
history encounter something strange – the claim that the theory which 
underpinned the subject for long after its creation was wrong and that it was 
corrected several hundred years later, in spite of the fact that the original theory
never produced erroneous results. I argue here that both this characterization 
of the original theory and this interpretation of the paradigm shift to its 
successor are false. Infinitesimals, used properly, were never unrigorous and 
the supposed rigor of limit theory does not imply greater correctness, but rather 
the (usually unnecessary) exposition of hidden deductive steps. Furthermore 
those steps can, if set out, constitute a proof that original infinitesimals work in 
accordance with limit theory – contrary to the common opinion that the two 
approaches represent irreconcilable philosophical positions. This proof, 
demonstrating that we can adopt a unified paradigm for calculus, is to my 
knowledge novel although its logic may have been employed in another 
context. I also claim that non-standard analysis (the most famous previous 
attempt at unification) only partially clarified the situation because the type of 
infinitesimals it uses are critically different from original infinitesimals.

Introduction

The two main concepts which have underpinned calculus since its invention in 
the seventeenth century are infinitesimals and limits. For the following two 
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centuries the former idea was held to be the justifying principle of calculus, for 
the next century the latter idea mostly took that role. The paradigm shift 
between the two methods took place in the late nineteenth and early twentieth 
centuries, and was accompanied by heated debate on the merits of the two 
approaches. They were supposed to have been reconciled in the 1960s with 
the invention of non-standard analysis (NSA), but this is a misrepresentation. 
The infinitesimals employed in NSA are a simplified version of infinitesimals as 
they were used until their near replacement with limits. Original infinitesimals 
always had one crucial property missing from those of NSA, namely they were 
nilpotent i.e. their higher powers were set to zero as they arose in derivations.1 
Since this property is, for our purposes, equivalent to being ‘nilsquare’ we 
mostly use that term here. Unfortunately nilpotency was not adopted as an 
explicit rule from the start even though a contemporary of Leibniz advocated 
this. The rule consequently became informal and often came under suspicion 
for being ‘non-rigorous’, and by implication liable to cause error. 
Mathematicians could however always claim that they were not assuming that 
the so-called law of excluded middle (LEM) applies to the continuum, and that 
nilpotency is a corollary of this. But as the supporters of LEM gained influence 
in the late nineteenth century this position became less tenable; and to their 
mind the limit concept, sold as a complete alternative to infinitesimals, could 
finally make calculus rigorous.

As mentioned above I argue here that this development in the philosophy of 
mathematics was misguided – that nilsquare infinitesimals are only non-
rigorous in the sense that they imply a number of deductive steps. Furthermore,
those steps constitute a proof that the criterion for the existence of a limit is met
in general by expressions employing nilsquare infinitesimals. That is to say, 
limits did not make calculus rigorous per se, rather they made original 
infinitesimals rigorous by exposing the deductive steps which had remained 
hidden. This concealment had not been deliberate – it was simply not assumed 
that LEM applies to the continuum and that consequently sufficiently small 
expressions could be ‘neglected’, an approach today known as smooth 
infinitesimal analysis (SIA). We now prove that original infinitesimals are 
actually compatible with limit theory, before discussing how LEM can be 
qualified to allow this.
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The nilsquare-limit theorem

We begin by deriving the gradient equation. Since 1 = 1 and y = y we have:

y+dy= y+dy

y+dy= y+dx
dy
dx

Note that we do not assume that dy and dx are anything other than variables 
i.e. the gradient equation is simply a property of the plane. If desired we can 
convert it from the Leibniz to the Lagrange notation (with ε instead of dx as the 
increment) thus:

f (x+ε )=f (x)+εf '(x )

In this form the equation is used as a starting point for the derivation of the 
theorems of calculus. However, on its own it is insufficient. Since ε is a finite 
variable the equation will yield the gradients of secants, resulting in finite 
difference calculus. What if we want to do regular calculus? One of our options 
is to ‘take the standard part’ (as in NSA) at the end of derivations by neglecting 
(i.e. setting to zero) the increment ε; remembering that it is not the case that ε is
both equal and unequal to zero, it is simply indefinitely small. A simpler way of 
achieving the same result is to employ the nilsquare rule (as in SIA). For 
example, to derive the power rule from the gradient equation we would do this:

(x+ε )n=xn
+εxn '

xn+nx(n−1)ε=xn+εxn '

xn '=nx(n−1)

The second equation results from applying the binomial theorem and then SIA’s
nilsquare rule i.e. εn>1 → 0. But although the two methodologies differ in their 
main technique they do both have a cancellation by ε to separate f’(x) from ε 
near the end – this normalizes the associated term in SIA and saves it from 
nullification in NSA. But the nilsquare rule is not just a more convenient 
alternative to taking the standard part. It would seem to imply that all higher 
power incremental terms are indefinitely small in comparison with the first 
power term – otherwise how could it be justified in its own right? Let us test this 
conjecture, first we express the two sets of terms as a ratio:
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r=
±bε2

±cε3
±dε 4

±...
±aε

The letters a, b, c and so on here represent terms involving the normally 
variable x; but since our proof works for arbitrary x, we here hold it constant and
vary (i.e. indefinitely minimize) ε. Canceling by ε yields:

r=
±bε±cε2

±dε3
±...

±a

Any reduction in ε will now only affect the numerator, but we cannot assume 
that r will be reduced by a given reduction in ε because it has both positive and 
negative terms – if the magnitude of the negative terms decreases more than 
that of the positive terms the value of r will increase. Does there always exist a 
smaller ε to overcome these increases? Since only the difference between the 
positive and negative sums is relevant to this we can simplify the last equation 
thus:

r=
p−n
a

Where p is the sum of the positive terms and n is the sum of the negative 
terms. This may seem like an unwarranted simplification, but since ε is 
indefinitely small we know the magnitudes of both p and n can be as small as 
we like. (The denominator is made positive for simplicity i.e. multiplying both 
levels of the ratio by minus would simply reverse the numerator terms without 
affecting the logic of the proof.) The effect of this is that the range defined by p 
and n is always decreasing with ε, or algebraically:

p−−n=p+n

Subtracting amounts j and k from p and n respectively (to model unknown 
reductions in the sums of the positive and negative terms) gives us:

( p− j)−−(n−k )=(p+n)−( j+k )

Which shows that the range always decreases with ε. To get (p - n) and 
therefore r below given values simply reduce the range until they are less than 
those values. Since by definition the range must include zero, (p - n) must then 
be less than its given value. Consequently the ratio r can be made indefinitely 
small, which justifies neglecting higher power incremental (i.e. infinitesimal) 
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terms. This process, in which the steady absolute increase or (as in this case) 
decrease of all individual terms overcomes any reversals in the change of their 
sum, can be termed inexorable.

What remains is to show that the above line of reasoning is equivalent to the 
limit criterion. Limits are a part of so-called real analysis, a more modern 
version of which is non-standard analysis. One advantage of NSA is that it 
clearly expresses the derivative as the ‘standard part’ of the gradient equation. 
Thus with dx as the increment of x:

f ' (x)=st (
f (x+dx)−f (x )

dx
)

We use dx, and below dy, instead of the customary Δx and Δy because in this 
case dy/dx does itself refer to the finite version of the derivative. The limit 
criterion now requires that:

a limit exists if for every dx2 in |dy2/dx2−f ’ (x)| a smaller dx1 can be found 

such that |dy1/dx1−f ’( x)|<|dy2/dx2−f ’ (x)|

Note that this shows that both NSA and calculus with original infinitesimals 
(SIA) are compatible with limit theory, because nilpotency is an alternative to 
taking the standard part. But is the nilsquare step itself compatible with limit 
theory? Using our previous notation for the constituent terms the limit criterion 
would now require that:

a limit of zero exists if for every p2 and n2 in |p ₂−n₂
a | smaller p and n can 

be found such that |p ₁−n ₁
a |<|p ₂−n ₂

a |
Which is what we have shown, at least for polynomials or functions that can be 
expressed in polynomial form (note that these are polynomials in terms of both 
the variable and the increment). In other words Σ(bnεn>1)/(b1ε) → 0 where b 
represents terms involving powers of arbitrary x values. This completes the 
proof.

In summary, limit theory can be seen as a justification for neglecting nilpotent 
infinitesimal terms. But this immediately raises a question – how can they be in 
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two different philosophical camps? Maybe the dichotomy of LEM and not-LEM 
is too simplistic, as the use of LEM itself often is. The philosophy of this is 
discussed below, but for now it should be noted that the device of neglecting 
incremental terms has a simple geometrical interpretation. Recall that 
incremental terms are used if we are doing finite difference calculus and allow 
us to determine the properties of secants. For example, the length of a secant 
from a given point on a curve is a function of the increment i.e. the increment 
implies the length of the secant. The basic logical principle of contraposition 
now states that if there is no increment there can also be no secant length. 
What do we call the line defined on a curve by a secant with no length? A 
tangent!

Addendum 1: An example of the reduction of an incremental term only 
producing a better approximation of the tangent after further reductions can be 
found on the graph of y = 24x3 + 8x2 between -⅓ and ⅓. The standard 
derivative of this is 72x2 + 16x while the finite derivative is 72x2 + 16x + 72εx + 
8ε + 24ε2 with ε as the increment. Taken from -⅓ the value of the finite 
derivative is 2⅔ with an increment of ⅔ and 0 with an increment of ⅓. Since the
value of the standard derivative at -⅓ is also 2⅔ we can see that the derivative 
gets worse as the increment decreases from ⅔ to ⅓.

Addendum 2: The question naturally arises that if the sum of higher power 
incremental terms can be made an indefinitely small proportion of the first 
power incremental term (i.e. a product of ε1) can we also make the sum of the 
higher-than-n power incremental terms an indefinitely small proportion of the n-
or-lower power incremental terms? Yes, we can. First we divide both levels of 
the ratio by εn:

±dεⁿ ⁺ ¹±eεⁿ ⁺ ²± ...
±aε ±bε ²± ...±cεⁿ

/
εⁿ
εⁿ

=
±dε ±eε ²± ...

±aε ¹⁻ ⁿ±bε ² ⁻ ⁿ± ...±cεⁿ ⁻ ⁿ

Then note that the numerator can be made indefinitely small by invoking 
inexorable reduction. Also note that the denominator consists of one constant 
and a series of negative power incremental terms. Negative power terms 
increase as their variable decreases, but since they are here part of the 
denominator this inexorably decreases the value of the ratio. Therefore since 
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both levels are changing inexorably with the effect that the ratio is decreasing 
we can say that the numerator is infinitesimal. Note that this idea is the same 
as that found in some older textbooks regarding ‘degrees of smallness’; but 
since a presumably arbitrary increment with its associated terms does remain 
after this operation the technique cannot be considered as important as regular 
calculus.

Calculus as it began

Realizing that much of the controversy over the foundations of calculus was 
caused by a misunderstanding allows us to reevaluate various episodes in the 
history of mathematics – here is a brief attempt to do that. Calculus as we know
it was created in the seventeenth century by Gottfried Leibniz and Isaac 
Newton and was a consequence of various preceding mathematical 
innovations. In particular the invention of Cartesian coordinates (named after 
Rene Descartes) naturally led to a new focus by mathematicians on functions 
and their graphs; and although this can be done geometrically2 calculus makes 
it simpler. Descartes simplified things further by advocating that mathematicians
focus on algebraic not mechanical curves3; and Pierre de Fermat coined the 
word ‘adequality’ for the relationship between infinitesimals and their proximate 
points.

Leibniz’ notation became standard but the logical basis of his method was 
criticized. One of his replies was:

For instead of the infinite or the infinitely small, one takes quantities as large, or as small, as 
necessary in order that the error be smaller than the given error, so that one differs from 
Archimedes' style only in the expressions, which are more direct in our method and conform 
more to the art of invention.4

When Leibniz refers to “Archimedes’ style” he is almost certainly referring to the
Method of Exhaustion (also used by Euclid) not the Method of Mechanical 
Theorems, since the latter had been lost in antiquity and was only rediscovered
in 1906. The former method is considered to be equivalent to limits whereas the
latter is considered to be equivalent to infinitesimals. So Leibniz is saying that 
his method is equivalent to limits but is more convenient,5 which could easily be
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said about infinitesimals. So do the dy and dx in his notation actually represent 
infinitesimals? If so then one of his contemporaries thought they could be 
improved on – Bernard Nieuwentijt suggested that higher power terms of 
infinitesimal increments should be neglected in derivations as they arise. In 
response Leibniz replied:

it is rather strange to posit that a segment dx is different from zero and at the same time that 
the area of a square with side dx is equal to zero.

As John L Bell notes6 Leibniz could be accused of contradiction here since the 
nilsquare property is a consequence of the principle of ‘microlinearity’, which 
Leibniz did accept. (Consider y = x2 around x = 0. If a curve is microlinear there 
must be a small straight segment around zero containing small ‘non-zero 
nilsquare values’.) What we can now say is that he could also be accused of 
contradiction because, as shown above, the nilsquare property is entirely 
compatible with his own conception of limits (his clarification quoted above is 
equivalent to the nineteenth century definition). This must be considered one of 
the great missed opportunities in the history of science. The use of nilsquare 
infinitesimals soon became standard practice but they were considered 
informal, despite the fact that they always yielded correct results. This issue 
came to a head around the year 1900 when a majority of mathematicians 
decided to reject such perceived informalities, and from then on infinitesimals 
were subject to self-imposed prohibition by academia (though they were still 
used in physics). This would have been inconceivable it Leibniz had explicitly 
advocated for their use. But why didn’t he?

Probably for the same reason as other mathematicians – a reticence to accept 
ideas which violate or seem to violate the law of excluded middle.7 Surely 
Nieuwentijt was not saying that the increment’s square is literally zero 
(simplistically x2 = 0 implies that x = 0) so how could it be right to set it to zero? 
As mentioned, the justification most often used for nilpotency in the two 
centuries after Leibniz and Newton was microlinearity.8 The example given of 
the segment on y = x2 around x = 0 implying that dxn>1 → 0 works because 
every higher power of the increment is in effect a product of dx2. But dx is just 
an indefinitely small portion of x, so it is natural to ask whether allowing there to
be indefinitely small segments of a polynomial’s curve allows us to treat those 
segments as linear as a rule. We know that indefinitely small values are 
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nilsquare and therefore nilpotent, and a quick look at the binomial theorem 
shows that adding a nilpotent increment to the variable of a polynomial results 
in a linear equation in terms of the remaining increment, which is what we want 
in a gradient equation. This was the kind of thinking evident in what is 
considered to be the first textbook on differential calculus published by 
Guillaume de L’Hopital in 1696:

For, as curves are nothing but polygons with an infinity of sides, and are only distinguished 
from each other by the difference of the angles that these infinitely small sides form with 
each other; only the Analysis of the infinitely small can determine the position of these sides 
and so obtain the curvature which they form, which is to say the tangents of these curves9

Although now ‘indefinitely’ should be used instead of ‘infinitely’ for the sake of 
convention. One recent commentator summarized the method in the book thus:

The basic differential formulas for algebraic functions – sums, products, quotients, powers, 
and roots – are derived by L'Hopital in the customary manner, infinitesimals of higher order 
being neglected.10

But unfortunately, since neglecting higher order infinitesimals seems to be an 
approximation, after several hundred years of success doubts began to 
reemerge – and the way mathematicians had explained their thought processes
was also criticized. Could it really be true that they had not genuinely known 
what they were doing?

Calculus under scrutiny

The late nineteenth century witnessed a dispute over the foundations of 
mathematics where previously uncontroversial notions, such as the nature of 
the continuum, were challenged; and by the early twentieth century this had 
cast doubt on calculus. As William Osgood said:

Thus mathematicians have necessarily discarded the differentials of Leibniz as the elements 
out of which the calculus can be built up, and some are more than doubtful about the 
advisability of retaining them in any form... We sometimes hear it said that hardly a theorem 
in our textbooks on the calculus is true as stated there.11

He did however go on to defend the careful use of infinitesimals for practical 
purposes. What exactly caused this crisis of confidence? Three possibilities are
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covered here.

A common narrative is that Augustin Cauchy in the first half of the nineteenth 
century found an alternative to the informality of infinitesimals by clarifying the 
limit concept. This claim must however be qualified12 since Cauchy seems to 
have been perfectly comfortable using infinitesimals, saying: 

When the successive numerical values of such a variable decrease indefinitely, in such a 
way as to fall below any given number, this variable becomes what we call infinitesimal, or 
an infinitely small quantity. A variable of this kind has zero as its limit.13

Cauchy goes on to define infinite numbers in a similar way. Today these would 
be referred to as potentially infinitesimal and infinite numbers (and as before 
‘indefinitely’ should be used instead of ‘infinitely’).14 But although Cauchy was 
comfortable with infinitesimals he did make use of expressions such as:

f (x ₁)−f (x ₀)
x ₁−x ₀

15

which can be used to derive standard calculus in an algebraic fashion without 
an incremental or infinitesimal term.16 An obvious drawback of this method is 
that it cannot be used for finite difference calculus, but arguably it is also not as 
intuitive as infinitesimals, and its implicit use of the ratio 0/0 may have hindered 
its widespread adoption. Cauchy’s general approach to calculus was however 
very influential. Otto Stolz had this to say about it in 1881:

Cauchy relied on infinitesimal calculus, abandoning the limits of the method of Lagrange, 
believing that only infinitesimal methods provide the necessary rigor. [The] clarity and 
elegance of its presentation facilitated the widespread and universal adoption of his course. 
Even significant shortcomings [when] found, as time has shown, can be eliminated by the 
adoption of consistent principles based on Cauchy’s arithmetic considerations. A few years 
before Cauchy these same views [were] sometimes substantially more fully developed by 
Bernard Bolzano17

Since 1900 the initial assertion in this account has clearly contradicted the 
‘official’ story of Cauchy’s thought processes and of how he influenced 
subsequent mathematics.

A second possible cause of the crisis was investigations into so-called 
pathological functions. These are functions that could not be analyzed with the 
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usual techniques. Henri Poincare had this to say about them in 1899:

Logic sometimes makes monsters. For half a century we have seen a mass of bizarre 
functions which appear to be forced to resemble as little as possible honest functions which 
serve some purpose… Indeed, from the point of view of logic, these strange functions are 
the most general; on the other hand those which one meets without searching for them, and 
which follow simple laws, appear as a particular case which does not amount to more than a 
small corner… In former times when one invented a new function it was for a practical 
purpose; today one invents them purposely to show up defects in the reasoning of our 
fathers and one will deduce from them only that.18

The most well known of these is the Weierstrass function (named after Karl 
Weierstrass) which is continuous but not differentiable. Infinitesimals, suited as 
they are to polynomials, would have seemed inadequate in this new terrain; so 
limits, being more general, would have gained favor. Consequently Weierstrass’
epsilon-delta limit criterion (which was essentially the same as that of Leibniz) 
became a standard definition. Since this was seen as a continuation of 
Cauchy’s approach there may have been a temptation to ‘backdate’ any new 
ideas. The third possibility is that the crisis was a side-effect of the introduction 
of Georg Cantor’s theory of transfinite numbers. The theory depends on the 
Axiom of Choice, which implies LEM for the continuum, so there may have 
been a temptation to over-apply its attendant restrictions irrespective of whether
or not they were relevant.

Conclusion

Whatever the reason, the use of infinitesimals came to be in effect discontinued
within academic mathematics soon after 1900, and it became obligatory to refer
to limits in proofs. It was assumed that limits are without qualification 
compatible with LEM. But what would that really mean? Is LEM even an 
appropriate condition in calculus? It is worth noting that while some types of 
limit in mathematics consist of terms to be summed in theory simultaneously 
(such as decimal numbers) expressions in calculus consisting of multiple terms 
are evaluated in theory repeatedly – each iteration is an improved version of 
the previous calculation and is independent of it. In other words, calculus is not 
about infinite series (although these are often utilized), it is about indefinite 
processes. But what ‘improved’ means must be clarified. If we are trying to 
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calculate a tangent of a smooth curve as a limiting value then we are not 
guaranteed continual improvement with a decreasing incremental term (i.e. an 
infinitesimal). Instead what we are guaranteed is inexorable improvement. This 
ability to posit, but not specify the value of, an increment with a desired property
(i.e. which yields an error less than any given value) is how both the limits and 
the infinitesimals of calculus work.19 The question then becomes – does LEM 
prohibit us from subsequently neglecting these small inappreciable values as it 
does with those which are finite?

The answer should depend on exactly how the condition is phrased. One 
condition that cannot be violated it that of non-contradiction – a number cannot 
be both equal and unequal to another number. This would imply that the 
answer is No – neglecting infinitesimals is not prohibited because they are 
indistinguishable from their proximate values, equality is not the issue. Some 
mathematicians though have extrapolated from this to assert that even though 
we do not in practice distinguish infinitesimals we could in theory and that 
therefore the answer is Yes – we must prohibit the technique of neglecting 
them. The problem here is the use of the word ‘therefore’. We could just as 
easily say that since infinitesimals are indefinitely small we are allowed to 
neglect them, provided we cancel any remaining infinitesimals. Since the other 
algebraic manipulations are legitimate at any level of precision20 we are 
perfectly entitled to do them before the nilsquare step and thus obtain useful 
theorems – and since the nilsquare step is a choice we do not have to treat 
finite and standard calculus as radically different. As Felix Klein put it:

I should like to remind you, first of all, that the bond which [Brook] Taylor established 
between difference calculus and differential calculus held for a long time. These two 
branches always went hand in hand, still in the analytical developments of [Leonhard] Euler, 
and the formulas of differential calculus appeared as limiting cases of elementary relations 
that occur in the difference calculus.21

This connection is most apparent when physicists model phenomena using 
finite difference calculus – the programs approximate equations with very small 
(but not infinitesimal) incremental terms. Not coincidentally physicists and 
engineers are largely responsible for (unofficially) maintaining some of the 
original techniques of standard calculus throughout the twentieth century, in 
spite of the unwarranted accusation of lack of rigor from academic 
mathematics. These techniques include microadditivity – the introduction of 
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infinitesimal increments to equations describing physical phenomena in order to
study continuous change. Unfortunately though, some of the more fundamental
original techniques (which of course includes basic proofs) were seldom to be 
found in standard textbooks. Instead authors employed a sometimes awkward 
mixture of truncated infinitesimal algebra while also referencing the logic of 
limits.22 This self-imposed censorship was only alleviated when the internet 
allowed alternative viewpoints to be widely expressed. But instead of dwelling 
on what was a pedagogical disaster at least, perhaps we should just correct it. 
Acknowledging that infinitesimals and limits are in essence the same thing 
would be a good way to start.
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restriction.” (Carl F Gauss, 1831, a letter to Schumacher). Quoted in Men of 
Mathematics, Eric T Bell, 1937, P556.

[15] Summary of the Lessons Given at the Royal Polytechnic School on 
Infinitesimal Calculus, Augustin Cauchy, 1823, p36.

[16] Here is an example of this method from an old textbook. First, their 
definition of the derivative of a polynomial:

f ' (x)=
a (x ₁ ⁿ−x ₀ ⁿ)

x ₁−x ₀

Which yields:

f ' (x)=a(x ₁ ⁿ ⁻ ¹+x ₀ x ₁ⁿ ⁻ ²+x ²₀ x ₁ ⁿ ⁻ ³+...+x ₀ ⁿ ⁻ ² x ₁+x ₀ ⁿ ⁻ ¹)

A correct step, but hardly intuitive. Letting x₁ → x₀ we obtain f ' (x)=naxⁿ ⁻ ¹

[17] Otto Stolz – The Importance of B Bolzano in the History of Calculus, 
1881, p255. Quoted by Galina Sinkevich – On the History of Epsilontics,  
https://arxiv.org/abs/1502.06942, 2015, p18.

[18] Quoted in Proofs and Refutations: the Logic of Mathematical 
Discovery, Imre Lakatos, 1976, p25 (2015 edition).

[19] Carnot wrote “We will call every quantity, which is considered as 
continually decreasing (so that it may be made as small as we please, without 
being at the same time obliged to make those quantities vary the ratio of which 
it is our object to determine), an infinitely small quantity… You ask me what 
infinitesimal quantities mean? I declare to you that I never by that expression 
mean metaphysical and abstract existences, as this abridged name seems to 
imply; but real, arbitrary quantities, capable of becoming as small as I wish, 
without being compelled at the same time to make those quantities vary whose 
ratio it was my intention to discover.” (Lazare Carnot, 1832, p14). Quoted in 
The Continuous and the Infinitesimal, John L Bell, 2005, p105.

[20] Note that the indefinite precision of calculus is qualitatively different from 
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practical precision, which can always be given a physical value and is 
determined by necessity or the resolution of a particular device (no physical 
device can attain indefinite precision). Also note that finite difference calculus 
should not be confused with finite element analysis, where the behaviors of 
geometrically simple elements of shapes are modeled not with reference to an 
overarching function but rather based on how each interacts with its neighbors.

[21] Elementary Mathematics from an Advanced Standpoint, Felix Klein, 
1908, p234 (Third Edition 1924). A good example of the close connection 
between finite and regular calculus is the proof of the chain rule – it is the same
in both branches. If f(x) = g(h(x)) then:

                               f (x+Δx)=g[h(x+Δx)]
                                              =g [h(x )+Δxh' (x)]
                                              =g (h( x))+Δxh' ( x)g ' (h(x ))

f (x+Δx)−f (x)
Δx

=h' (x) g ' (h (x))

                                     f ' (x)=h '(x )g '(h(x))

Notice that Δx could simply be replaced with dx in this proof. In the Leibniz 
notation this result would read:

                                           
df
dx

=
dh
dx

⋅
dg (h)

dh

The LHS numerator is not dh as it is sometimes written. The reader may verify 
this notation by taking two arbitrary functions, compounding them and then 
taking the derivative of the result. It should be the same as the derivative 
obtained from applying the chain rule itself – but remember that Δh (or dh) is 
the derivate of h multiplied by Δx (or dx). Also note that even though the proof 
of the chain rule is the same in both branches of calculus the final derivatives it 
produces are different, because they do not use the power rule in the same 
way. For further verification of this or any other theorem of calculus the reader 
can experiment with finite difference examples by graphing functions, 
substituting values for x and Δx and then measuring predicted distances and/or
angles. This is easier with finite differences because distinguishing the 
intersection of a line with a curve can be more exact than drawing a tangent by 
sight. As Leibniz put it – “the whole matter can be always referred back to 
assignable quantities.”
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[22] Here is an example of this from a popular textbook:

General Rule for Differentiation

First Step: In the function replace x by x + Δx, giving a new value of the function, y + Δy.

Second Step: Subtract the given value of the function from the new value in order to find Δy 
(the increment of the function) by Δx (the increment of the independent variable).

Third Step: Divide the remainder Δy (the increment of the function) by Δx (the increment of 
the independent variable).

Fourth Step: Find the limit of this quotient, when Δx (the increment of the independent 
variable) varies and approaches zero. This is the derivative required.

The student should become thoroughly familiar with this rule by applying the process to a 
large number of examples.

Elements of the Differential and Integral Calculus, William A Granville, 1904,
p29 (1911 edition). The fourth step was later emulated by the technique of 
taking the standard part in NSA, while the third step is the inevitable 
cancellation by the increment. Since the only incremental terms remaining by 
step four would be those that were previously a higher power (than the first) the
nilsquare rule allows us to reverse the order of the last two steps, and replaces 
finding the limit with neglecting the higher power infinitesimal terms. Also notice 
that Granville uses Δx and Δy rather than dx and dy, thus making the point that 
the differentials and infinitesimals of calculus are real variables and can be 
treated as such.
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