
Algorithm for exact evaluation of bivariate

two-sample Kolmogorov-Smirnov statistics in

O(nlogn) time.

Krystian Zawistowski

January 3, 2019

Abstract

We propose an O(nlogn) algorithm for evaluation of bivariate Kolmogorov-
Smirnov statistics for n samples which. It offers few orders of magnitude
of speedup over existing implementations for n > 105 samples of input.
Algorithm is based on static Binary Search Trees and sweep algorithm.
We share tested C++ implementation with Python bindings.

1 Introduction

1.1 Background

Kolmogorov test introduced by [1] is notable statistical procedure used for test-
ing for difference between univariate probability distributions.

A generalization of Kolmogorov statistics to bivariate distributions was pro-
posed by [2] with O(n2) algorithm for evaluating it for empirical distributions
with N samples. Procedure found numerous application in empirical research
as many references to [2] indicate. C implementation of algorithm itself can be
found in popular computing textbook [3]. Square time complexity however lim-
its application of the procedure to small numbers of samples, around 104 for a
immediate feedback loop on a typical PC. We present O(nlogn) algorithm able
to process immediately millions of samples. We hope that presented methodol-
ogy allow to better leverage the procedure for research work as well as modern
big data applications.

1.2 Bivariate Kolmogorov statistics

Consider random variables X1, Y1, X2 and Y2. In accordance to [2] two-
dimmensional two-sample Kolmogorov-Smirnov test statistics is defined as fol-
lows:

D = sup
x,y
‖Pr(X1 < x, Y1 < y)− Pr(X2 < x, Y2 < y)‖ (1)

One can evaluate D for empirical distribution function of bivariate data samples
A1 = {(x1, y1)....(xn, yn)}, A2 = {(x′1, y′1)....(x′n′ , y′n′)}:

Fi(u, v) =
1

‖Ai‖
‖{(x, y) ∈ Ai : x < u, y < v}‖ (2)

1

D12 = sup
x,y
‖F1(x, y)− F2(x, y)‖ (3)

F1(c, y) for any c is constant everywhere except at y ∈ {y1...yn}, similiar
argument holds for F1(x, c). Based on this key observation [] shows an O((n +
n′)2) algorithm for finding exact global maximum of (3). We reproduce it here
as it is important to our idea:

Lemma 1.1. To find D12for two bivariate real samples A1 = {(x1, y1)....(xn, yn)}, A2 =
{(x′1, y′1)....(x′n′ , y′n′)} it is sufficient to evaluate ‖F1(x, y) − F2(x, y)‖ for all
c ∈ C, C = C1 × C2, C1 = {x1...xn, x

′
1...x

′
n′}, C2 = {y1...yn, y′1...y′n′}.

Proof. Let D(x, y) = ‖F1(x, y)− F2(x, y)‖ Let (u, v) = arg maxx,y D(x, y), case
of (u, v) ∈ C is trivial, so we assume otherwise. let xup = arg maxx{x ∈ C1 :
x < u} and yup = argmaxy{y ∈ C2 : y < v}. By the definition (xup, yup) ∈ C
and by the fact that C is a product set we have:

@(x,y)∈C(xup < x < u) ∨ (yup < y < u).

Since A1 ⊂ C and A2 ⊂ C (2) implies that D(u, v) = D(xup, yup). Thus
sup(x,y)∈C D(x, y) = D12

2 Evaluating extrema of expanding sum with
BST.

2.1 Binary search trees.

A binary search tree (BST) [4] is a data structure comprised of nodes satisfying
following:

• Each node contains a single key and references to up to two other nodes.
We call them parent node and child nodes respectively.

• A left (right) child is a child node with key smaller (greater) than parent’s
key. Each node can have at most one left child and at most one right
child.

• For non empty BST there is exactly one node with no parent, we call it
root.

A path is a series of nodes n1...nk s. t. for any i ni is a parent of ni+1 and
nk is a leaf i.e. a node without children. A height of a tree h is the length
of longest path in a tree. If for nodes ni, nj exist a path that contains both of
them, and ni precedes nj , we call ni ancestor to nj and nj a descendat to ni.
Each ancestor with all it’s descendants forms another BST we call subtree.

Lookup, insertion and deletion in BST can be done in O(h) operations by
straightforward top-down transversal. One can put any N elements in a tree
with h ≤ 1 + logN , and algorithms exists to perform insertion or deletion in
O(h) time while making sure that we keep h ≤ 2logN . Those are of particular
interest in practical application.

2

2.2 Keeping track of expanding sum extrema

Consider keys ki ∈ K ⊂ R, and values vi, i ∈ {1, 2...n} associated with keys.
For a finite ordered set A with m = inf A are interested in following quantities:

UA = sup
i∈A

i∑
j=m

vj , DA = inf
i∈A

i∑
j=m

vj (4)

Our goal here to be able to change values vi while keeping track of U,D.
Consider balanced BST s.t. node ni has key ki and keeps value vi. Let Si

be set of indices of descendants of node ni and S′i = Si ∪{ni}. Let r(i) be right
child index (if exists) and l(i) left child i (if exists). Additionally each node
keeps track of si = vi +

∑
j∈Si

vj - sum of values in a node and its descendats.
Additionally we define ui, di as follows:

• if ni is a leaf:
ui = di = vi (5)

• otherwise if l(i) and r(i) exist:

ui = max{sl(i) + vi, ul(i), sl(i) + vi + ur(i)},
di = min{sl(i) + vi, dl(i), sl(i) + vi + d(i)};

(6)

• otherwise if only l(i) exists:

ui = max{sl(i) + vi, ul(i)}, di = min{sl(i) + vi, dl(i)}; (7)

• otherwise if only r(i) exists:

ui = max{vi, vi + ur(i)}, di = min{vi, vi + d(i)}. (8)

Lemma 2.1. For each i US′(i) = ui and DS′(i) = di, i.e. ui is maximum and
di is minimum of expanding sum of values in a subtree S′i

Proof. For ni being single leaf this follows straight from the definition (5). Now
consider a node ni s.t. it has left and right child and we know: maxima and
minima of expanding sum, and total sum of values in left and right child. To
find US′(i) we consider three cases:

• Maximum occurs at j > i, i.e. in right subtree. All values of ni expanding
sum in the right subtree are sum of sl(i), vi and respective values of nr(i)

expanding sum.

• Maximum occurs at j = i. Expanding sum value at j is sl(i) + vi.

• Maximum occurs at j < i, then U(S
′(i)) = U(S

′(l(i)), and we assume to
know r.h.s.

By evaluating these cases and picking greatest value we reproduce formulae
(6), (7) and (8). Identical argument applies to minimum DS′(i). Application
of induction in the upwards direction (from leaves to consecutive ancestors)
finishes the proof.

3

Using Lemma 2.1 allows us to define a data structure we will call expanding
sum extrema tree (ESET), that for a given series of pairs of keys ki and
values vi keeps track of maximum and minimum of cumulative sum of values
(keys are used for labelling and ordering). It is based on static binary search tree
ordered by ki and with values vi added to nodes. If a key is repeated then two
or more pairs share a node, and its value is a sum of all key values. Moreover
it is supposed to have following properties:

• It can be constructed for N pairs in O(N logN) time.

• Any key-value pair can be removed in O(logN) time.

First property can be done by construction of balanced static binary search tree
and then evaluation of ui and di in bottom up manner.Second is allowed by
Lemma 2.1 - as we remove value we just subtract it from node value and tree
structure is unchanged. Then we need only to update O(logN) ancestors of a
given node. Obviously we could also insert values for any key that is present
in a tree, but it is not any more practical than removal. General insertion with
unchanged asymptotic complexity would require some additional mechanism
such as AVL rotations and the structure described in Lemma 2.1 would need
to become invariant or easily reproducible under such rotations. This seems
to be not very relevant in practical applications and simultaneously a difficult
problem beyond the scope of this work.

2.3 Algorithm for 2D Kolmogorov statistics

We reformulate our initial problem as follows: We have a set of triples:

S = {(xi, yi, vi) for i ∈ 1...N}

and we are interested in finding D such that:

D = sup
(a′,b′)

‖
N∑
i=0

Ixi<a′∧yj<b′vi‖ (9)

One can reproduce problem of finding 2d Kolmogorov statistics between two
data samples T = {(Xi, Yi)fori ∈ 1...N}, T ′ = {(X ′i, Y ′i)fori ∈ 1...N ′} by defin-
ing following set of triples:

S′ = {(Xi, Yi,
1

N1
) : i ∈ 1...N1} ∪ {(X ′i, Y ′i ,−

1

N2
) : i ∈ 1...N2}, (10)

then D(S′) is exactly 2D Kolmogorov statistics for T1, T2. We propose an Algo-
rithm 1 to evaluate D in O(N logN) time for N = |S|. The algorithm resembles
a standard procedure of computational geometry known as sweep [4] - we

4

Data: S′ = {(xi, yi, vi) : i ∈ 1...N}
Result: D
A← ESET tree built of (xi, vi);
x̂i, ŷi, v̂i ← xi, yi, vi ordered by yi;
D ← 0 ;
j ← N ;
while j ≥ 1 do

D = max(D,A.get max());
A.remove(x̂j , v̂j);
j ← j − 1;
while j > 1 ∧ ŷj = ŷj−1 do

A.remove(x̂j , v̂j);
j ← j − 1;

end

end
Algorithm 1: Evaluation of (9) formula.

Lemma 2.2. For a given main loop step with fixed j = j0, j0 ∈ {1...N}

A.get max() = sup
(x,y)∈{ŷj0}×{x̂1...x̂N}

D(x, y) (11)

Proof. In each step we remove one sample or more (in case of equal y values)
from ESET tree in y-descending order (by x̂i, ŷi definition). Thus at step j0
ESET-tree A contains up to date maximum of cumulative of vi in x-ascending
order for i s.t. ŷi < ŷj0 and this is this is exactly (11).

Theorem 2.3. Algorithm 1 correctly evaluates (9).

Proof. Let C = {x1...xN}×{y1...yN}. It follows from Lemma 1.1 that it suffices

to evaluate ‖
∑N

i=0 Ixi<a′∧yj<b′vi‖ for any c ∈ C to find D, and it follows from
C =

⋃
i{ŷi}×{x̂1...x̂N} and Lemma 2.2 that algorithm does this evaluation.

Algorithm takes O(N logN) time and O(N) memory. Initially we need to
build ESET-tree and store it in memory which takes O(N logN) time and O(N)
memory. Then we sort and store xi, yi and vi by yi which needs linear additional
memory and O(N logN) time if we use e.g. mergesort. Final loop comprises
update to D which is O(1) and N removals that cost O(logN) each and using
O(logN) memory.

3 Implementation

We share open source C++ implementation of the algorithm with bindings for
Python/Numpy. Implementation was inter allia tested for aggreement with
O(n2) algorithm from [3] on few sets of random real numbers, ranging from
100 to 10000. Implementation’s performance profiling confirmed significant im-
provement in asymptotic complexity and linear random-access-memory usage.

5

References

[1] Kolmogorov A, ”Sulla determinazione empirica di una legge di dis-
tribuzione”. G. Ist. Ital. Attuari. 4, 1933

[2] A. Justel, D. Peña, R. Zamar A multivariate Kolmogorov–Smirnov test of
goodness of fit . Statistics and Probability Letters, 35 (3)

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery Numerical
Recipes Cambridge University Press 1986

[4] L. Banachowski, K. Diks, W.Rytter Algorithms and data structures (Polish)
WNT 1996

6

