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3 Proposal

The present paper proposed a new MODRL framework on DQN coded in
Python. It includes the use of linear and non-linear methods to develop the
framework which is able to accommodate both single-policy and multi-policy
strategies. And the resulting performance on the two previously proposed
benchmarks, which are the Deep Sea Treasure and Mountain-Car problems,
indicate the convergence to the optimal Pareto solutions effectively.



4 Introduction

The author has summarised the past researches by quoting some good researches
as below.

e (Q-Learning[13]: Tabular method requiring huge memory so that imprac-
tical in practice.

e DRL(e.g., Deep Q network by Mnih et al., 2015[2]) to overcome the prob-
lem using experience replay and function approximation techniques

e Mossalam et al. (2016) [3] extended deep Q-network to handle single-
policy linear MORL

e Tajmajer(2017) [4] has extended DQN with a non-linear action selection
approach based on a subsumption architecture

e Vamplew et al.(2017) [9] developed an MORL framework named MORL_Glue
which is based on RL_Glue(Tanner and White, 2009) [5]. Unfortunately,
this framework was not compatible with Deep neural networks.

5 MORL Methods and Deep Learning Exten-

sions

5.1 Overview of MORL Methods

MORL extends the conventional single-objective RL methods to accommodate
two or more objectives simultaneously; The reward signal of MORL is vectorised
corresponding to each objective. Hence, by solving the multi-objectives prob-
lems leads us to the optimal Pareto Front which represent compromised the
solutions among the objectives with the consideration regarding the preferences
among the objectives. Indeed, current MORL methods can be classified into
two categories

e Single-Policy(e.g., Chebyshev scalarization method by Van Moffaert et al,.
2013 [10])

e Multi-Policy(Van Moffaert et al,. 2014 [11])

In general, Single-policy methods require less computational resource though,
they need appropriate prior information which bothering the practitioners. Whereas,
in multi-policy methods, they can approximate the true Pareto front using mul-
tiple solutions so that users can select a suitable solution satisfying their require-
ments, yet predictably we have to compromise with regards to the computational
cost.

Scalarisation method to transform the multi-objective problem into a single
objective one(Vamplew et al,. 2008[8]).

e Nonlinear approach(Tesauro et al,. 2008[6])
e Linear approach(Castelletti et al,. 2013[1])
e Two-phase Local Search(Van Moddaert et al,. 2014[12])



Analytic Hierarchy Process

Geometric

e Ranking
e Convex Hull

e Varying Parameter approaches

5.2 MODRL Framework Development
5.2.1 Single-Policy DQN

This is to learn the optimal policy for a single-objective Markov Decision Process
for which the objectives have been pre-scalarised into a single reward. In the
present paper the agent, however, receives a vector of rewards on each time step.
In addition, the agent is provided with a fixed weight vector w indicating the
relative preference among the objectives.

w = {w,wa, ..., wy} (1)
r={ry,re,..., T} (2)

L(0) = ZLiw) (3)
Li(9) = E[(ymax Qi(s',a'; ') - Qi(s,a;0))%] (4)

where v is the discount factor, L(6) is the loss function, s,s’,a,a’,6,60" de-
note current state, next state, current action, next action, estimation network’s
weights and target network’s weights respectively.

Fig.1 intuitively describes the network configuration used in our framework,
which includes the layers as below.

Layer Index | Layer Description Activation | # filters | Size | Stride
1 Convolutional Layer ReLU 32 8x8 | 4

2 Fully Connected Layer ReLU N/A N/A | N/A
3 Convolutional Layer ReLLU 64 4x4 | 2

4 Fully Connected Layer ReLU N/A N/A | N/A
5 Convolutional Layer ReLLU 64 3x3 |1

6 Fully Connected Layer ReLU N/A N/A | N/A

Output Layer(the number of
7 objectives) N/A N/A N/A | N/A

5.2.2 Multi-policy DQN

1 just copied this section from the original paper... sorry The choice of weights
in a linear scalarisation is intended to represent the desirable trade-off between
different objectives. In many problems, the user’s preferences over objectives
may change over time. In their framework, we implement multiple threads to
allow the agents to learn in parallel multiple policies, such that it has an optimal
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Fig. 1. Neural network structure used in our DQN-based MODRL framework.

policy in advance for any possible set of weights (linear weighted sum) or thresh-
olds (nonlinear TLO) which it might encounter. In this way, it can immediately
adapt its behaviour when informed of a change in weights or thresholds.

6 Proposal

The authors proposed two approaches
e Linear Weighted Sum
e Threshold Lexicographic Ordering(TLO)

Table 1. DQN settings for our experiments

Parameters Values

Initial epsilon 1.0

Final epsilon 0

Learning rate 0.0001

Gamma (discounted rate) 0.9

Target network update 1000 steps

RO(.)t mean square (RMS) decay = 0.99, epsilon = le-6

optimizer

Width of environment DST width =3 DST width = 5 Mountain-car
Action repeat 1 1 5
Epsilon annealing steps 46,000 190,000 200,000
Experience replay size 50,000 100,000 20,000
Warmup steps 5,000 10,000 2,000
Training steps 50,000 200,000 200,000

7 Experiment Settings and Evaluations
He has examined the proposition with two different benchmarkd games.

e MO-mountain-car: 2 objectives

e Deep sea treasure: 3 objectives



As for evaluation, he has adapted the hypervolume approach introduced by
Vamplew et al,[7]. in 2011 as descibed in Fig.2

q

08+

Objective Two

0

06 1

04+

021

r

1]

02 04 06 08 1
Objective One

Fig. 2. The hypervolume is derived by the shaded region, bounded by the optimally
approximated front and the reference point r (Vamplew et al., 2011).

8 Conclusions and Further Work

In this paper, the author proposed two generic novel approaches in MODRL.
Most importantly, according to the author, it is so generic that they can ac-
commodate different existing DRL algorithms, e.g., DQN, Dual DQN, A3C,
UNREAL, Double DQN and so on, in various environments, e.g., gridworlds,

Atari, and MuJoCo and so on.
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