Proof that as the Standard Deviation of a Log Normal Distribution
Approaches Zero the Distribution Becomes a Normal Distribution
with a Mean of e Where u is the Mean of the Natural Logarithms
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Abstract

While it is fairly easy to prove that the Log Normal distribution becomes a
Benford distribution as the standard deviation approaches infinity (see appendix
A), it is a bit more difficult to prove that as the standard deviation approaches
zero that the distribution becomes a Normal distribution with a mean of e where
u is the mean of the natural logarithms of the data set values.

Proof:

Proof that as the standard deviation of a Log Normal
distribution approaches 0 the distribution becomes a Normal
distribution with a mean of e* where u is the mean of the
natural logarithms of the data set values.
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20) Which is a Normal Distribution with a mean of e* and a standard

deviation of o e%

The following graphs are plots of the Log Normal distribution with given values
Of mean (u) and standard deviations of o v. the Normal distribution with a mean
of e* and a standard deviation of o e".
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The plots were derived from a Microsoft Excel spreadsheet. They strongly indicate
empirically that as the standard deviation does approach zero the Log Normal
distribution with a given mean and standard deviation does converge to a Normal
distribution with the mean equal to e raised to Log Normal mean and the
standard deviation equal to the Normal times the Log Normal standard deviation.



Appendix A

Proof that as the standard deviation of a Log Normal
distribution approaches infinity the distribution becomes
a Benford distribution i.e. the probability density function
approaches k/x

1) The Benford probability density function = 1/xIn(10).
1
2) The Log Normal probability density function =
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4) Normalize by multiplying the Log Normal distribution by
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5) The difference between the two distributions is :
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7) For any given value of x the value 1-e
k(constant)
0; sincee ¢ approaches 1 as ¢ approaches o~.
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