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Abstract

We first reviewed the symmetric top problem, then we have numer-
ically obtained solutions of different possible motions. We have given
an explanation about the rise of the symmetric top during nutation in
terms of torque and angular momentum. We have encountered with
previously unnoticed properties of motion and studied them. During
the study, calculations gave some surprising results that the symmetric
top can change its spin direction.

1 Introduction

Since child’s top has very special properties, many people are interested in its
motion starting from antiquity and the symmetric top problem became one of
the long-studied topics of physics. The study on this topic starts with Euler
and continues through Lagrange, Kovalevskaya and so on. Its unintuitive
motion, nutation and precession are some of the interesting properties of the
symmetric top.

The unintuitive property of the symmetric top is related to its being a
non-inertial system. In our daily life, in general, we are familiar with inertial
objects and this makes non-inertial object’s motion unintuitive. Euler has
obtained equations describing such motions of rotating rigid bodies under
the influence of torque, these are known as Euler equations.

These equations can result in some complicated coupled equations and
sometimes obtaining their solution analytically is impossible. This problem
is studied with geometric techniques related to our historical background.
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One of the important works with these geometric techniques on this problem
is given by Routh in his book[1], which has explanations on sleeping top and
eight different types of motion. There is also another work involving geomet-
ric techniques written by Klein and Sommerfeld[2]. They discuss different
types of motion and regular precession.

There are more books involving chapters on the symmetric top problem,
and some of them use a technique based on conservation of energy and an-
gular momenta[3, 4, 5], usage of these is related to previous works on the
problem with geometrical techniques. This technique is a bit hard to imag-
ine since mathematical transformations and functions hide physical motion.
Some other books on classical mechanics and dynamics or symmetric top in-
clude the effective potential, and they are a bit easier to imagine[6, 7, 8, 9, 10].
Some of these books also include the technique based on conservation of en-
ergy and angular momenta.

In this work, we will deal with the problem in a detailed way by using
the effective potential and we will give physical explanations. In section
[2], we will firstly review the symmetric top problem and obtain equations
by using Euler equations, and then we will shortly review the problem in
terms of Lagrangian and energy. In section [3], we will study the symmetric
top problem with examples by using the effective potential and conservation
of energy and angular momentum, we will also give explanations in terms
of torque and angular momentum. We will study on sleeping top, regular
precessions and ten different types of motion. In section [4], we will give a
summary of some important points.

2 Symmetric top

2.1 Euler angles and Angular velocities

We can define rotations of rigid bodies with Euler angles. Let us consider
two reference frames; one is stationary S ′(x′, y′, z′) and the other one is fixed
to the rotating rigid body S(x, y, z). φ defines the rotation of the rigid body
around stationary z′-axis; θ defines the rotation of the rigid body around the
lines of nodes, which is obtained by the intersection of stationary x′y′-plane
with body xy-plane; ψ defines the rotation around body z-axis. These three
angles, the line of nodes, the stationary and body reference frames are shown
in Fig. 1.
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Figure 1: Euler Angles. We see two coordinate system S(x, y, z) and
S ′(x′, y′, z′) and Euler angles together with the line of nodes, shown by N .
θ is the angle between z′-axis and z-axis, φ is the angle between x′-axis and
the line of nodes, and ψ is the angle between the line of nodes and x-axis.

It is customary to define domain of these angles as; 0 < θ < π, 0 < φ < 2π
and 0 < ψ < 2π. However, in some cases different domains can be used.

By using Euler angles, angular velocities of rotating rigid bodies can be
defined as; θ̇, φ̇ and ψ̇. θ̇ is shown in the direction of the line of nodes, φ̇ is
shown in the direction of ẑ′, and ψ̇ is shown in the direction of ẑ. Then the
angular velocities in body coordinate system are

wx = θ̇ cosψ + φ̇ sin θ sinψ

wy = −θ̇ sinψ + φ̇ sin θ cosψ (1)

wz = ψ̇ + φ̇ cos θ.

These angular velocities can be used to define rotations of rigid bodies
in the body coordinate system. We need to mention that these three angles
are not linearly independent of each other since z and z′ axes are not per-
pendicular to each other. Some of the complicated structure of rigid body
rotations are related to this structure. Though this complicated structure,
they are very successful.
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The motion of a symmetric top can also be studied in terms of these
angular velocities, Eq. (1). A symmetric top can be considered as child’s top
having rotational symmetry in one axis, but in general, any object having
such symmetry can be studied with below techniques.

Figure 2: Symmetric top and Euler angles. Primed letters represent axes of
the stationary reference frame, ordinary letters represent axes of the body
reference frame.

The main property of the symmetric top is related to moments of inertia,
i.e. Ix = Iy 6= Iz. For the child’s top, Fig. 2, Iz > Ix; and for cigar shaped
structures Iz < Ix. We see a symmetric top in Fig. 2, its symmetry axis
is chosen as z-axis and when we mention about symmetric top, mostly we
consider that it spins around that axis. For the case shown in the figure,
the fixed point is the tip of the symmetric top, the origin of both reference
systems. The body coordinates, S(x, y, z), are fixed on symmetric top and
rotates with it. Euler angles are also shown in the figure. To define the
motion of the symmetric top, we need to use 7 variables; θ, φ, ψ, θ̇, φ̇, ψ̇
and t. As symmetric top spins ψ changes, and the gravitational force causes
changes in θ, the change of θ causes changes in φ. There are many interesting
cases related to the motion of the symmetric top and we will explain these
below.
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2.2 Methods

To study the symmetric top problem, one need equations of motion, which
can be written directly from Euler equations or can be obtained from La-
grangian. Firstly, we will give the application of Euler equations to the
symmetric top problem and then we will obtain the same equations from
Lagrangian and energy.

2.2.1 Euler equations

If we apply a force to a rigid body with a fixed point, then that rigid body
can rotate. The torque, cause of the angular acceleration, is defined as

~τ = ~r × ~F (2)

where ~F is the force, and ~r is the vector representing the distance from the
rigid body’s fixed point to the acting point of the force.

If there is a torque applied to a rigid body, as time changes there will be a
change in the angular momentum, ~L = I ~w where I is the moment of inertia
tensor. In the stationary reference frame, the relation between torque and
angular momentum can be written as

d~L′

dt
= ~τ ′. (3)

While writing this equation in the body reference frame, we should take
into account that it is a non-inertial reference frame. In a rotating reference
frame, here it is the body coordinate system, we should consider the effects
of rotations and they will result in an additional term, ~w×, to the time
derivative,

(
d
dt

)
S′ =

(
d
dt

)
S

+ ~w×. Then, in the body coordinate system Eq.
(3) becomes

d~L

dt
+ ~w × ~L = ~τ (4)

Here we have an extra term, ~w × ~L, which is the key to understanding rigid
body rotations. This extra term acts like torque in the body coordinate
system. We can write components of Eq. (4) in the body coordinate system
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as

τx = Ixẇx − (Iy − Iz)wywz
τy = Iyẇy − (Iz − Ix)wxwz (5)

τz = Izẇz − (Ix − Iy)wxwy

where Ii’s are corresponding moments of inertia and wi’s are angular veloci-
ties given in Eq. (1). Equations in Eq. (5) are Euler equations for a rotating
rigid body in the body reference frame, and they correspond to equations
of motion for them. The left-hand side of these equations corresponds the
relevantly applied torque, the first term at the right-hand side is angular ac-
celeration times moment of inertia in the considered direction and the second
term corresponds to the inertial torque arising from being non-inertial refer-
ence frame. Euler equations are written in the traditional way in Eq. (5),
however, taking the second term to the left-hand side may help to understand
in a better way. In that case, we can write Euler equations as

τx + (Iy − Iz)wywz = Ixẇx

τy + (Iz − Ix)wxwz = Iyẇy (6)

τz + (Ix − Iy)wxwy = Izẇz.

Now, terms at the left-hand side correspond to the torque, felt by the rigid
body, and the terms at the right-hand side are angular acceleration times
moment of inertia.

Now, we will consider a symmetric top and write Euler equations for that
symmetric top under the influence of the gravitational field. In the body
reference frame, the torque caused by the gravitational force is

~τ = ~r × ~F

= Mgl sin θ(cosψx̂− sinψŷ) (7)

where l is the distance from the fixed point to the center of mass and M
is mass of the rigid body. The direction of this torque is in the direction
of the line of nodes. If there is not any initial angular momentum, then
the torque will only cause an angular acceleration in the direction of lines
of nodes, θ̈, and the motion will be like a pendulum. If there is an initial
angular momentum the motion will be complex and other components of
the angular momentum will also change. This complex system is defined by
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Euler equations. One may consider that in such a case we can use inertial
reference frame to avoid such complications, however in that case complexity
will show itself in another place, and moments of inertia will be much more
complex and resulting equations will be same. In one way or another way
we need to deal with this complex system.

If we insert the torque arising from the gravitational interaction in Eq. (6)
and use angular velocities in terms of Euler angles in the case of a symmetric
top, we obtain Euler equations for that symmetric top as

Mgl sin θ cosψ + (Ix − Iz)(ψ̇ + φ̇ cos θ)(−θ̇ sinψ + φ̇ sin θ cosψ) (8)

= Ix(θ̈ cosψ − θ̇ψ̇ sinψ + φ̈ sin θ sinψ + φ̇θ̇ cos θ sinψ + φ̇ψ̇ sin θ cosψ),

−Mgl sin θ sinψ + (Iz − Ix)(ψ̇ + φ̇ cos θ)(θ̇ cosψ + φ̇ sin θ sinψ) (9)

= Ix(−θ̈ sinψ − θ̇ψ̇ cosψ + φ̈ sin θ cosψ + φ̇θ̇ cos θ cosψ − φ̇ψ̇ sin θ sinψ),

0 = Iz(ψ̈ + φ̈ cos θ − φ̇θ̇ sin θ). (10)

Now, we need to make the necessary simplifications to be able to analyze
motion. Eq. (10) is obtained from Izẇz and it is equal to zero, as it is
seen from the equation. From this equation, we can conclude that Izwz is
constant, and we can write it in terms of another constant a as

Ixa = Iz(ψ̇ + φ̇ cos θ). (11)

This constant is chosen in this way by considering future simplifications.
Multiplying Eq. (8) with sinψ and Eq. (9) with cosψ and adding them

we obtain

φ̈ =
θ̇

sin θ

(
−2φ̇ cos θ +

Iz
Ix

(ψ̇ + φ̇ cos θ)

)
. (12)

We can write this in terms of a as

φ̈ =
θ̇

sin θ
(−2φ̇ cos θ + a). (13)

We can multiply it by sin2 θ and we can write it as a total time derivative

d

dt

[
φ̇ sin2 θ + a cos θ

]
= 0. (14)

Since this total time derivative is equal to zero, the term inside the parenthesis
is equal to another constant

b = φ̇ sin2 θ + a cos θ. (15)
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By using constants a and b, we can write Eq. (13) as

φ̈ =
θ̇

sin θ

(
−2

b− a cos θ

sin2 θ
cos θ + a

)
. (16)

Also multiplying Eq. (8) with cosψ and Eq. (9) with sinψ and subtract-
ing the first one from the second we obtain

θ̈ = sin θ

(
Mgl

Ix
+ φ̇2 cos θ − Iz

Ix
φ̇(ψ̇ + φ̇ cos θ)

)
. (17)

We can rewrite this equation in terms of the defined constants as

θ̈ = sin θ

(
Mgl

Ix
+

(
b− a cos θ

sin2 θ

)2

cos θ − ab− a cos θ

sin2 θ

)
. (18)

We can also find ψ̈ by using Eq. (12) in Eq. (10) as

ψ̈ = − cot θθ̇

[
Iz
Ix

(ψ̇ + φ̇ cos θ)− 2φ̇ cos θ

]
+ φ̇θ̇ sin θ, (19)

and we can write this equation in terms of constants as

ψ̈ = θ̇

[
−a cot θ +

b− a cos θ

sin3 θ
(1 + cos2 θ)

]
. (20)

We obtained the three angular accelerations from Euler equations in two
ways. In one case Eq.s (12), (17) and (19), they are obtained in terms of θ
and angular velocities. In the other case Eq.s (16), (18) and (20), they are
obtained in terms of θ, θ̇ and constants of motion a and b.

We can also get θ̇ in terms of constants of motion. We can multiply
Eq.(17) by 2θ̇ and Eq.(12) by 2φ̇ sin2 θ and add these to get

2θ̇θ̈ + 2φ̇φ̈ sin2 θ + 2θ̇φ̇2 sin θ cos θ − 2
Mgl

Ix
θ̇ sin θ = 0. (21)

The left-hand side of this equation can also be written as a total time deriva-
tive

d

dt

[
θ̇2 + φ̇2 sin2 θ + 2

Mgl

Ix
cos θ

]
= 0. (22)
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This gives us another constant and by multiplying it with Ix/2, we can define
it as

E ′ =
Ix
2
θ̇2 +

Ix
2
φ̇2 sin2 θ +Mgl cos θ, (23)

or

E ′ =
Ix
2
θ̇2 +

Ix
2

(b− a cos θ)2

sin2 θ
+Mgl cos θ (23’)

and if we add another constant, a2I2x/(2Iz), we will get the energy as a result.
We can write θ̇2 from Eq. (23’) as

θ̇2 =
2E ′

Ix
− (b− a cos θ)2

sin2 θ
− 2Mgl

Ix
cos θ. (24)

As it is seen, θ̇ is also obtained in terms of constants of motion. Then we
can obtain all angular accelerations in terms of constants of motion (a, b and
E ′ or E) and as functions of θ. We have mentioned that there are 7 variables
to define this system, 3 of them (φ, ψ and t) are not available in the angular
accelerations, then we left with 4 variables (θ, θ̇, φ̇ and ψ̇) in equations giving
angular accelerations. Equations giving angular accelerations correspond to
the equations of motion since these three variables are not available in angular
acceleration equations then the system should be symmetric with respect to
these; there are some quantities that do not change as these variables change.
According to Noether’s theorem, we should have three constants of motion.
We already obtained these; E ′ or E corresponds to conservation of energy and
related to t symmetry, a corresponds to conservation of angular momentum in
z-direction and related to ψ symmetry, and b corresponds to the conservation
of angular momentum in z′-direction and related to φ symmetry.

These constants of the motion can be determined by the initial values; θ0,
θ̇0, φ̇0 and ψ̇0. After determining these constants we can get angular accel-
erations in terms of these constants, and then angular accelerations depend
on only one variable θ. We do not have to use angular accelerations to get
necessary information on the system. By using constants of motion, i.e. Eq.
(11) and Eq. (15), we can get angular velocities φ̇ and ψ̇ as

φ̇ =
b− a cos θ

sin2 θ
(25)

and

ψ̇ =
Ix
Iz
a− b− a cos θ

sin2 θ
cos θ. (26)
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These equations together with Eq. (24) show that all angular velocities and
accelerations can be obtained in terms of constants of motion (a, b and E ′)
and as functions of θ. Hence, we can say that if we are able to find θ(t), we
can find all other variables as functions of t.

Now, we should focus on θ. Its change is given by θ̇, Eq. (24). We see
that θ̇ is a function of θ and it is obtained as a square and we need to take
the square root to get it. From Eq. (24), we can say that the right-hand side
of it should be positive for physical motion. The solution of Eq. (24) is in
terms of elliptic integrals. Without entering its mathematical details, we can
comment on motion without finding the solution of Eq. (24). If we consider
the second term in Eq. (24), we see that it goes to negative infinity as θ
goes to 0 or π. Then, the right-hand side of this equation can be positive
only for an interval. The first term, which should be calculated by using
Eq. (23) from the initial values and corresponds to energy, determines that
interval mainly. We can also say that for each θ value making the right-hand
side positive, θ̇ can be positive or negative. On the other hand φ̇ and ψ̇ can
get only one value for each θ value. This is related to the motion of the
symmetric top, which will be clear in the next sections.

We should also mention that if θ is greater than π/2, then there is a
possibility that E ′ can be negative. This is related to the definition of the
origin. We should also keep in mind that E ′ is not the energy, it gives energy
only if we add another constant related to the spin.

We have seen that angular velocities and accelerations can be written in
terms of constants of the motion. Then, we can use two different set to define
the motion of the symmetric top; θ and angular velocities or θ and constants
of the motion. Both sets are equivalent and they define the motion of the
symmetric top. We will use both to analyze the motion.

One can obtain variables (θ, φ and ψ) to describe the motion of the
symmetric top in two different ways. The first way is to find θ(t) from Eq.
(24) and find angular velocities by using it and get ψ(t) and φ(t). The second
way is solving angular accelerations Eq.s (12), (17) and (19). We will use
both, however, we will not get ψ(t) and φ(t) from the first technique. We
will use numerical techniques in both. We will consider different possibilities
in the following sections.
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2.2.2 Lagrangian and Energy

Now, we will obtain the equations derived in the previous section from La-
grangian and energy.

For a spinning symmetric top with a fixed point, the kinetic energy is the
total of kinetic energies due to all angular velocities

T = Ixw
2
x + Ixw

2
y + Izw

2
z (27)

and under the gravitational field, the potential energy is

U = Mgl cos θ. (28)

Then, Lagrangian becomes

L = T − U

=
Ix
2

(θ̇2 + φ̇2 sin2 θ) +
Iz
2

(ψ̇ + φ̇ cos θ)2 −Mgl cos θ. (29)

We can find equations of motion from this Lagrangian by using Euler-Lagrange

equations, d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0. In this problem qi’s correspond ψ, φ and θ.

There are two cyclic coordinates, ψ and φ, and there should be two corre-
sponding conserved angular momenta since they define rotations. One can
obtain these conserved angular momenta from Euler-Lagrange equations for
angular momenta in z and z′ direction as

Lz = Iz(ψ̇ + φ̇ cos θ),

Lz′ = Ixφ̇ sin2 θ + Iz(ψ̇ + φ̇ cos θ) cos θ. (30)

Using these conserved angular momenta, we can define following constants

a =
Iz(ψ̇ + φ̇ cos θ)

Ix
,

b = φ̇ sin2 θ +
Iz
Ix

(ψ̇ + φ̇ cos θ) cos θ

= φ̇ sin2 θ + a cos θ.

These are the same constants that are obtained in the previous section. As
it is seen, these constants of motion are in the dimension of angular velocity.
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φ̇ can be written in terms of them as

φ̇ =
b− a cos θ

sin2 θ
(25)

and ψ̇ becomes

ψ̇ =
Ix
Iz
a− b− a cos θ

sin2 θ
cos θ. (26)

There is another variable in Lagrangian, θ, and corresponding Euler-Lagrange
equation can be found as

θ̈ = sin θ

[
Mgl

Ix
+ φ̇2 cos θ − Iz

Ix
φ̇2 cos θ − Iz

Ix
φ̇ψ̇

]
. (17)

These equations are the same as the ones in the previous section. If we write
the angular velocities in terms of constants in Eq. (17), then we obtain Eq.
(18).

We can also find other angular accelerations by taking the time derivative
of Eq.s (25) and (26) as

φ̈ =
θ̇

sin θ
(a− 2

b− a cos θ

sin2 θ
cos θ), (16)

and

ψ̈ =
θ̇

sin3 θ
(b+ b cos2 θ − 2a cos θ). (20)

These equations are also the same as the previously obtained ones. If we
write a and b in terms of angular velocities then we obtain Eq.s (12) and
(19).

We can also obtain θ by using the energy. Since we are considering
dissipation free cases, there is another conserved quantity in the motion,
energy. We can also see conservation of energy from the independence of
kinetic energy and potential energy from time. Energy is the total of the
kinetic energy and potential energy, E = T + U , and for the symmetric top
it is

E =
Ix
2

(θ̇2 + φ̇2 sin2 θ) +
Iz
2

(ψ̇ + φ̇ cos θ)2 +Mgl cos θ. (31)

From the definition of a, we see that the second term is constant and by
subtracting it from the energy we obtain another constant

E ′ =
Ix
2
θ̇2 +

Ix
2

(b− a cos θ)2

sin2 θ
+Mgl cos θ. (23’)
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This is the same constant that we obtained previously. If we take the total
time derivative of E ′ by considering it depends on θ and θ̇, by equating it to
zero we obtain Eq. (18).

If we change variable by using u = cos θ, from Eq. (23’) we obtain

u̇2 = (1− u2)(α− βu)− (b− au)2, (32)

where α = 2E ′/Ix and β = 2Mgl/Ix. We can take the square root of both
sides and obtain time as an integral of u

t =

∫
du√

(α− βu)(1− u2)− (b− au)2
. (33)

This kind of integrals are known as elliptic integrals, and again we encoun-
tered with them and we will not deal with details of these integrals as we did
in the previous section. We will do this integration numerically, and then we
will get t for different u values, and using this result it is possible to obtain
θ for different t. After obtaining θ, one can obtain θ̇, φ̇ and ψ̇ by using Eq.s
(23), (25) and (26) and also φ and ψ by using them. However, obtaining φ
and ψ from these can be cumbersome due to not evenly spaced time.

Without finding the solution of the equation, it is possible to make some
comments on the motion using Eq. (32). Firstly let us call the right-hand
side of Eq. (32) as f(u)

f(u) = (1− u2)(α− βu)− (b− au)2. (34)

Since u = cos θ, the time derivative of u corresponds θ̇. Then, the roots of
f(u) correspond to θ̇ = 0. For the motion of the symmetric top, the domain
of θ can be considered as [0, π] and then u can take values −1 ≤ u ≤ 1.

f(u) can have three roots since it is a cubic function. Two of the roots
correspond to turning angles of θ. The third one is irrelevant from the phys-
ical motion of the symmetric top. u and constants of the motion can also be
used to analyze the motion of the symmetric top.

3 Motion of a spinning symmetric top

We have seen that we have an extra term in the Euler equations, ~w × ~L. It
is related to the symmetric top’s being non-inertial reference frame. For the
symmetric top, angular velocity and angular momentum can be in different

13



directions. These two things make harder to understand the motion of the
symmetric top from torque and angular momentum. Here, we will solve
Euler equations for the symmetric top numerically and explain its motion
from these solutions.

We have seen that we can use two equivalent set to study motion; E ′,
b, a and u (or θ) or φ̇, ψ̇, θ̇ and θ. By using φ̇0, ψ̇0 and θ0 we can deter-
mine b and a, and including θ̇0 we can determine E ′. We mentioned that
these three constants E ′, b and a correspond to conservation of energy, the
conservation of the angular momentum in z direction and the conservation
of the angular momentum in z′ direction respectively. Both sets have their
own advantages; the first set provides advantages to understand the motion
in terms of conserved quantities and provides insight, and the second one
provides advantages to study the motion dynamically. In this work, we will
use them in a mixed way to understand the motion.

Let us consider a symmetric top with moments of inertia Ix and Iz, mass
M , the distance from tip to center of mass l, and also consider that this
symmetric top spins with some initial angular velocity ψ̇0 and started to
its motion with an initial inclination θ0. It can also have initial angular
velocities φ̇0 and θ̇0; even if φ̇0 and θ̇0 are zero at the beginning, they can
be developed during the motion. Precession is related to φ̇ and nutation
is related to θ̇. There are different types of motion for the symmetric top.
These can be obtained from different initial values and can be understood
from the constants of the motion.

It is easier to consider the motion of the symmetric top with the constants
of motion. E ′ can be used to understand the changes in θ and θ̇. a and b
can be used to understand changes in ψ̇ and φ̇ according to changes in θ. ψ̇
and φ̇ are not linearly independent of each other, then a and b are entangled.
Though this entangled structure, they provide the necessary information to
understand the motion. By using changes in θ, we can understand changes
in φ̇ mainly from b and in ψ̇ mainly from a. We can also use Eq.s (25) and
(26) to understand these changes.

In some places f(u) is used to consider the motion of the symmetric top
in θ, however, it is hard to imagine the symmetric top’s motion in terms of
u. It is also possible to use an effective potential to analyze the motion in θ,
and it is much more convenient for interpretation.

We will mainly use the effective potential to understand some parts of the
motion, but we will also consider f(u) for comparison. By considering Eq.
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(23’) and using E ′ = Ixθ̇
2/2 + Ueff , the effective potential can be written as

Ueff (θ) =
Ix
2

(b− a cos θ)2

sin2 θ
+Mgl cos θ. (35)

It is seen that Ueff depends only one variable θ. One may consider that only
changes in θ will effect θ̇, but this is not true since all things are coupled,
and these coupled variables affect each other obeying conservation of energy
and angular momenta. It can be seen from Eq. (18) that change in θ is more
complex.

This effective potential will go to infinity at the domain boundaries of
θ, [0, π], and have a minimum within these limits. Then, the form of the
potential is like a well. We see the general structure of the Ueff in Fig. 3.
The minimum of the effective potential can be negative and depends on Ix,
Mgl, b and a.

 0  0.5  1  1.5  2  2.5  3

U
e

ff
 

θ

Figure 3: General form of Ueff for 0 < θ < π.

Firstly, let us consider the motion from the effective potential and start
with the denominator of the first term to understand different types of the
motion; if θ goes to 0 or π, the denominator approaches to zero and the first
term goes to infinity.

By looking at these infinities, one can consider that the motion at θ =
0 or π is not possible, however, it is possible. If at the beginning of the
motion θ0 is equal to 0 or π together with θ̇0 = 0, then this configuration
corresponds sleeping top and in these two cases the torque arising from the
gravitational force on the symmetric top is equal to zero and the symmetric
top will continue its spinning without any change in θ.
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There are different possibilities for E ′ with respect to the minimum of
the effective potential and other things. These will result in different types
of motion.

If E ′ is equal to the minimum of Ueff , then the right-hand side of Eq. (24)
becomes equal to zero. Since the right-hand side can not be negative for the
physical motion then only one θ value is possible, and θ̇ will be equal to zero
throughout the motion. There are other things that should be considered for
this type of motion, which we will consider later. This case will correspond
to regular precession.

If E ′ is greater than the minimum value of Ueff . Then at two different
values of θ, Ueff will be equal to E ′. These two different θ values correspond
to the turning angles of the symmetric top. Since θ will change between
these two turning angles periodically, θ̇ should be either positive or negative
at different parts of the period. As θ changes between these two turning
angles, φ̇ will have different values and these values will identify the type of
motion.

To understand different possibilities for φ̇, we will consider φ̇ in terms of
constants of motion and θ;

φ̇ =
b− a cos θ

sin2 θ
. (25)

We already considered cases making denominator zero, they were giving in-
finities for Ueff . The nominator can be zero, greater than zero or less than
zero, dependently φ̇ will have the same properties. These three possibilities
together with E ′ and Ueff relation will result in different types of motion.
There will be changes in the angular velocity ψ̇ as well. It will change as φ̇
changes according to the constant a and b. We will analyze these changes
for different types of motion.

We have mentioned that calculations of φ and ψ can be cumbersome
from the previously mentioned method, i.e. using the integration of Eq.
(33). There is another method that we can calculate variables of the motion:
numerical solutions of the angular accelerations. In this numerical solution,
the cumbersome structure is not present and it is preferable. However, solving
with only one method can sometimes lead problems. When we solve from
two different methods, we obtain a checking point for calculations. Then
we will follow such a structure and calculate from both techniques. We will
not calculate φ and ψ from the first technique since if φ̇ and ψ̇ calculations
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are consistent there will be no need to deal with an unevenly spaced time
interval.

We will solve following angular accelerations

θ̈ = sin θ

[
Mgl

Ix
+ φ̇2 cos θ − Iz

Ix
φ̇2 cos θ − Iz

Ix
φ̇ψ̇

]
φ̈ =

θ̇

Ix sin θ

[
Izψ̇ + Izφ̇ cos θ − 2Ixφ̇ cos θ

]
ψ̈ = − cot θ

[
Iz
Ix
θ̇ψ̇ +

Iz
Ix
θ̇φ̇ cos θ − 2θ̇φ̇ cos θ

]
+ θ̇φ̇ sin θ

by integrating numerically. Since they are all coupled, we will integrate them
in a coupled way to get the solution. For all cases we will take φ0 = 0 and
ψ0 = 0. We will obtain three angles and three angular velocities as a function
of time from this technique. Then we will plot three-dimensional figures, and
these plots will give more insight into the motion. Remaining plots related
to θ, φ, ψ, θ̇, φ̇ and ψ̇ will be available at the appendix. All results given
below are consistent in θ, θ̇, φ̇ and ψ̇ for two techniques.

Now let us overview of the motion of the symmetric top to understand
these three-dimensional figures; ψ will be related to rotation around symme-
try axis, θ and φ will be related to the motion of the symmetry axis. If we
plot the points defined by θ and φ, obtained from equations describing the
motion of the symmetric top, in three-dimensional way, we will get the inter-
section of the unit sphere having the origin at the tip of the symmetric top
with the symmetry axis of the symmetric top. So, these three-dimensional
figures correspond to the motion of the symmetry axis. These type drawings
are known as the locus of the figure (symmetry) axis on the unit sphere.

We need to mention another point about the first method. At the turning
angles of θ there are some discontinuities, arising from the separation of the
integration as increasing and decreasing part. This separation causes loss
of some information, decreasing integration step to smaller values will be
helpful.

3.1 Sleeping top

Sleeping top is a case that the symmetric top continues its spinning with
initial ψ̇0 without changing its orientation. There are two possible θ values
for the sleeping top; 0 and π. To obtain such a motion, it is enough to let the
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symmetric top spin along z′ or −z′ axis without any initial θ̇. In these cases,
the symmetric top continues its spinning without changing its orientation.

Let us consider the denominator of Eq. (25), if θ is equal to 0 or π,
it becomes zero and gives infinities. These infinities do not mean that φ̇
becomes infinite, it shows that φ̇ can be irrelevant for the motion in these
cases.

In the sleeping top case, body z-axis becomes parallel or anti-parallel
to the stationary z′-axis, and φ̇ becomes irrelevant for the motion since it
defines how body z-axis rotates around stationary z′-axis. To obtain equa-
tions describing such a case one needs to rearrange terms with φ̇. If φ̇ is
not eliminated from the relevant equations, there can be some misleading
situations.

If θ0 = 0 then z-axis overlaps with z′-axis. As we mentioned previously
we should eliminate terms with φ̇ from the equations. After eliminating φ̇
from the relevant equations and letting θ = 0, from Eq.s (30) we see that
Lz becomes equal to L′z. Then from Eq. (17), we see that the angular
acceleration θ̈ is equal to zero. If θ0 = π, then z-axis overlaps with negative
z′-axis and we get Lz = −L′z. Again θ̈ becomes zero. Since θ̇0 = 0 and θ̈ = 0,
there will be no change in θ.

In these two cases, the torque arising from the gravitational force on
the symmetric top is equal to zero and the symmetric top will continue its
spinning without any change in θ. Here we are considering dissipation free
cases, then the spin angular momentum arising from ψ̇ does not decay.

In daily life, for the spinning symmetric top, there is always friction and
this friction causes decay of ψ̇. However, this is not the reason for falling
off the symmetric top. If the symmetric top’s symmetry axis is parallel to
stationary z′-axis which is the direction of gravitational force then torque will
be always zero and the symmetric top will not change its orientation. The
reason of the change in the orientation of the symmetric top is small fluctu-
ations in the direction of the symmetric top, any small change independent
of the amount will cause torque and this will trigger motions different than
sleeping top. We will later give some more explanations for such cases.

3.2 Regular precession

The regular precession is the precession that θ does not change and φ̇ is
constant. For the regular precession, the spinning symmetric top should
start its motion with an initial inclination θ0 and angular velocity φ̇0 and
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continue its precession without nutation, θ̇0 = 0. We can find such values by
using the effective potential.

If E ′ is equal to the minimum of Ueff , then only one θ value is possible.

Since θ does not change, θ̇ is always zero. To find initial values for such a
configuration, we can take the derivative of Ueff

dUeff (θ)

dθ
=
Ix

2

(
2(b− a cos θ)a sin θ

sin2 θ
−

2(b− a cos θ)2 cos θ
sin3 θ

)
−Mgl sin θ (36)

and then equate it to the zero. We can write this equation after inserting b
and a in terms of φ̇ and ψ̇ as

(φ̇2 cos θ(Iz − Ix) + φ̇ψ̇Iz −Mgl) sin θ = 0. (37)

Here sin θ is a common multiplier and it is zero when θ equals to 0 or π,
which correspond sleeping top. We will look at the cases which makes the
terms in the parenthesis equal to zero.

If we eliminate sin θ, we get

φ̇2 cos θ(Iz − Ix) + φ̇ψ̇Iz −Mgl = 0. (38)

The discriminant of this equation is D = (Izψ̇)2 + 4(Iz − Ix)Mgl cos θ. If
4(Iz−Ix)Mgl cos θ = −(Izψ̇)2 then the discriminant will be equal to zero and
only one φ̇ will give regular precession. Since (Izψ̇)2 is always positive, the
left-hand side should be negative for equality. If Iz < Ix, then θ should be
between 0 and π/2; if Iz > Ix, then θ should be between π/2 and π, otherwise
regular precession with one φ̇ is not possible. Since the maximum value of
| cos θ| = 1, then for regular precession with single φ̇, the spin angular velocity
ψ̇ should be smaller than

√
4Mgl|Iz − Ix|/I2z . We will use the angular velocity√

4Mgl|Iz − Ix|/I2z to discriminate regular precessions with single φ̇ and two

φ̇ and designate it with w̃. Since w̃ corresponds small angular velocities we
will name symmetric tops spinning with smaller angular velocity than w̃ as
”weak top”. If ψ̇ > w̃, then we will use ”strong top” definition.

We can write Eq. (38) as

φ̇2 cos θ − φ̇a+
Mgl

Ix
= 0. (39)

We see that the discriminant will be equal to a2 − 4Mgl cos θ/Ix. If a2 <
4Mgl/Ix, then θ should be between π/2 and π to get regular precession.
However, it is still possible to get regular precession when 0 < θ < π/2,
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which is mentioned previously when Iz < Ix. Using constant a makes harder
to see these cases. On the other hand, if we use the previous relation it is
easier to see them.

Still there are advantages of using a. We can also use ã =
√

4Mgl/Ix to
make discrimination for the symmetric top as ”strong top” or ”weak top”.
This is an approximation because of ignoring cos θ. If |a| > ã the symmetric
top will be designated as ”strong top”, and if |a| < ã the symmetric top will
be designated as ”weak top”. Both weak or strong top definitions are nearly
the same, and either ψ̇ or a can be used to determine it. However, in some
situations at the border, these definitions can conflict as a result of making
approximations.

If we use Eq. (39), determination of φ̇ and ψ̇ will not be as straightforward
as Eq. (38), since constant a involves both. Here, we will use Eq. (38).

In regular precessions with single φ̇ cases the relation between θ and ψ̇ is

cos θ = −(Izψ̇)2/(4(Iz − Ix)Mgl). (40)

The second possibility for regular precessions is obtained when the dis-
criminant is positive. For a positive discriminant, giving regular precession
for two φ̇ value, roots can be obtained by using

φ̇1,2 =
−Izψ̇ ±

√
D

2(Iz − Ix) cos θ
. (41)

After assigning suitable values to θ and ψ̇ for a symmetric top, from Eq. (41)
it is possible to find φ̇, which will give a precession without nutation.

Now, we will obtain roots of Eq. (38) for different ψ̇ values. We will con-
sider a symmetric top with parameters Ix = 0.00014kgm2, Iz = 0.00022kgm2

and Mgl = 0.068J for this and later calculations in this work. In this case
β becomes 971.4. These parameters can correspond to the child’s top or
a symmetric top with disc-like structure, and gives w̃ = 21.20rad/s and
ã = 44.08.

If we take ψ̇ equal to
√

4Mgl(Iz − Ix)/I2z , from Eq. (40) we obtain θ as π,
which corresponds to sleeping top and we can not obtain regular precession
with single φ̇, then we need to take smaller ψ̇ values to obtain such a motion.

If we take ψ̇ as 17rad/s, then we obtain θ as 2.269rad for the regular
precession with single φ̇. In this case φ̇ becomes 36.36rad/s. For this case,
Ueff is shown in Fig. 4. It is seen that E ′ intersects Ueff at its minimum, at

20



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

U
e
ff
 

θ

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

-1 -0.5  0  0.5  1  1.5

f(
u

)

u

Figure 4: Ueff at left, and f(u) (the right-hand side of Eq. (32) as a
function of u = cos θ) at right. E ′ is plotted with straight black line in Ueff
graph. This case gives regular precession with single φ̇, and initial values
and constants of motion for this case as follows; θ0 = 2.269rad, θ̇0 = 0,
ψ̇0 = 17rad/s, φ̇ = 36.36rad/s, E ′ = 0.01060J , a = −10.02, b = 27.78 and
α = 151.2.

θ = 2.269rad. We see it also from f(u); it intersects with zero twice, and one
of them gives regular precession, u = −0.6428 corresponding θ = 2.269rad.

If we choose ψ̇ greater than w̃, then we need to specify θ as well to find φ̇.
If we choose ψ̇ = 50rad/s and θ = 1.1rad, then we obtain ψ̇1 = −309.2rad/s
and ψ̇2 = 6.061rad/s. For these cases, the graphs of Ueff are available in
Fig. 5. It is seen that the minimum of Ueff is at θ = 1.1rad and E ′ intersects
Ueff at there.

In Eq. (38) we have three variables θ, ψ̇ and φ̇. We found φ̇ by assigning
values to others. It is also possible to find any one of the variables after
assigning suitable values to others.

In this case, we can not use integration with respect to u to find the time,
since only one u value is available. However we can integrate numerically
angular accelerations, and results are available in Fig. 6. In Fig. 6, we see
shapes of locus for regular precession with single φ̇ and two φ̇. The first one is
for the precession with single φ̇, seen at the left. Second and third one plotted
on the same graph, seen at the right, since they precess without nutation at
the same θ value, they are overlapped and it looks like one line. One of them
precessing in negative direction with greater angular velocity, the other one
in the positive direction with smaller angular velocity. Results of θ, φ, ψ, θ̇,
φ̇ and ψ̇ (obtained from numerical integration of angular accelerations) for
this and next cases are available in the appendix; Fig. 41 shows results for
regular precession with single φ̇, Fig. 42 and Fig. 43 show results for regular
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Figure 5: At left; Ueff and E ′ for φ̇1(top E ′ = 5.346J) and φ̇2(bottom
E ′ = 0.03289J) for regular precession. At right; corresponding f(u)s. For
the first one ψ̇0 = 50rad/s, θ0 = 1.1rad, φ̇ = −309.2rad/s, a = −141.8,
b = −309.9, α = 76370 and Mglb/a = 0.1486. For the second one ψ̇0 =
50rad/s, θ0 = 1.1rad, φ̇ = 6.061rad/s, a = 82.89, b = 42.41, α = 469.8 and
Mglb/a = 0.03479.

precession with two φ̇.
Here, it is better to mention some points. The gravitational force gives

torque, if initial angular momentum is zero then this torque causes rotation
around the line of nodes and θ will increase. For the symmetric top, this
torque is still available, however, for this regular precession case it does not
result in an increase in θ. This shows that there is an effect balancing this
torque. If we look at the effective potential this effect is the result of Ixφ̇

2/2.
This shows that for the symmetric top, the angular momentum around sta-
tionary z′-axis can cause a rise of the symmetric top. We will consider this
rise with details in the next cases.

3.3 Cup like motion

For the cup like motion, it is better to start studying in terms of ψ̇, φ̇, θ̇ and
θ. This type of motion is one of the most seen cases.
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Figure 6: Shapes of the locus on unit sphere for the regular precession. The
left one for the single φ̇ with initial values θ0 = 2.269rad, φ0 = 0, ψ0 = 0,
θ̇0 = 0, φ̇0 = 36.36rad/s, ψ̇0 = 17rad/s. (Animated version is available at
https://youtu.be/0ELpFh459CI .) The right one for φ̇1 = −309.2rad/s
(continuous line) and φ̇2 = 6.061rad/s (dashed line) with initial values θ0 =
1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, ψ̇0 = 50rad/s. (Animated version is
available at https://youtu.be/0fYYfVLhRVM for backward precession and
https://youtu.be/xgOwpagyJyg for forward precession.)

Now let us consider a symmetric top spinning with an initial angular
velocity ψ̇0. If we let it spin with an initial inclination θ0 and with zero
angular velocities φ̇0 = 0 and θ̇0 = 0, we see cup like motion.

Initially, the symmetric top will rotate an infinitesimal amount around
the line of nodes by the effect of torque caused by the gravitational force and
dependently θ will increase. Then according to φ̇ = (b − a cos θ)/ sin2 θ, the
symmetric top will start to gain some angular velocity φ̇. As the magnitude
of φ̇ increases, the magnitude of ψ̇ will decrease according to the conserved
quantity a.

We can see from the initial values that E ′ = Mgl cos θ0, which is equal to
the effective potential at that point. We also see from the initial values that
b = a cos θ0 and if |b| < |a|, similar to this case, we can say θ0 = arccos(b/a),
which makes E ′ = Mglb/a. Then one of the intersection angles of E ′ and
Ueff occurs at θ0, which is the minimum since θ increases after the start of
the motion. As θ increases Ueff decreases, this decrease is compensated by
an increase in θ̇ and the total energy remains constant. The increase in θ
gives the necessity of positive θ̇. From the shape of Ueff , we can conclude
that after some time θ̇ will start to decrease and it will eventually be equal
to 0 at the θmax. After θmax, θ̇ will have negative values and the symmetric
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top will rise till θ reaches its initial value. θ̇ should be naturally zero at the
turning angles and have extrema at θ values where the minimum value of
Ueff occurs.

In this case b = a cos θ0, and if we consider φ̇ = (b−a cos θ)/ sin2 θ relation
we can understand the changes in φ̇. We have mentioned that φ̇ will gain
some angular velocity as θ increases. During this motion, the magnitude of
φ̇ will reach the maximum value when θ reaches its maximum value. After
reaching the maximum value, θ will gradually decrease and dependently φ̇
will also decrease. When θ returns to its initial value, φ̇ will also and become
zero. The magnitude of ψ̇ will firstly decrease and then increase to its initial
value corresponding to changes in φ̇. All changes are similar to harmonic
motion, but not exactly the same.

The turning angles of θ are two important parameters of the motion. In
this case, we have seen that θ0 is the minimum angle. The maximum angle
can be found from f(u) or from the solution of Ueff = E ′.

For a case with initial values θ0 = 0.175rad, φ̇0 = 0, θ̇0 = 0 and ψ̇0 =
100rad/s, we obtained results. With these initial values constants in f(u)
becomes a = 157.1, b = 154.7 and α = 956.6. The results are depicted in Fig.
7, 8 and 9. At left of Fig. 7, we see the general structure of f(u), and at right
we see close view of it and the relevant roots, u1 = 0.9834 and u2 = 0.9847.
Corresponding θ values to these roots are θ1 = 0.1823 and θ2 = 0.1750rad.
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Figure 7: f(u) (left) and its close view (right) for a = 157.1, b = 154.7 and
α = 956.6. Roots occur at u = 0.9834 and u = 0.9847.

In Fig. 8, we see Ueff and E ′ for this situation. From the graph we see
possible θ values; for physical cases, E ′ should be greater than Ueff , which is
possible if θ is between 0.1750 and 0.1823rad. From this graph, we can say
that the motion of the symmetric top in θ will be periodic between these two
turning angles. It starts from the initial θ value, 0.1750rad, then as a result
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Figure 8: Ueff and E ′, and its close view (right). It is seen that θ can take
values between 0.1750 and 0.1823rad when E ′ = Mglb/a = 0.06696J . The
minimum of Ueff (0.06694J) is at 0.1786rad. Initial values are θ0 = 0.175rad,
θ̇0 = 0, φ̇0 = 0 and ψ̇0 = 100rad/s and resulting constants are the same as
Fig. 7.

of the gravitational force the symmetric top will fall and θ will gradually
increase till 0.1823rad. Then, the symmetric top will return from that angle
and continue its motion toward the other turning angle and the motion will
continue in this way.

Using Eq. (33), we can find θ(t) and θ̇(t), and then using θ(t) we can find
φ̇(t) and ψ̇(t) from Eq.s (25) and (26). Due to the structure of Eq. (33), we
need to consider one period in two parts; from θmin to θmax and then from
θmax to θmin. In this procedure, there can be some discontinuities due to this
separation. The results are shown in Fig. 9.

From Ueff , we made conclusions about θ and θ̇. The mentioned changes
for θ and θ̇ can be seen in Fig. 9. We also see changes in φ̇ and ψ̇ at that figure.
Now let us consider these changes in terms of conserved quantities, which
show themselves as constants a and b. b corresponds to the conservation of
angular momentum in z′, a component of ψ̇ contribute to it via a cos θ. As
θ increases this contribution decreases, then the conservation of the angular
momentum in z′ direction assures an increase in the magnitude of φ̇. But
this increase should also be consistent with the conservation of the angular
momentum in z-direction, related to a, and as the magnitude of φ̇ increases,
the magnitude of ψ̇ should decrease. After the maximum θ value, θ starts
to decrease and the mentioned changes happen in the reverse order. We can
see how these took place from the graphs in Fig. 9.

We see that φ̇ is at the maximum when θ is at the maximum, and zero
when it is minimum, so the symmetric top precesses in a slower rate when
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Figure 9: θ(t) (up left), θ̇(t) (up right), φ̇(t) (down left) and ψ̇(t) (down
right), obtained by integration of Eq. (33). Initial values are the same as
Fig. 8.

θ is near to its minimum. This produces a cup like figure if we draw a
three-dimensional figure.

We have obtained changes in variables with respect to time by numerically
integrating angular accelerations. The three-dimensional plots are available
in Fig. 10. Plots for angles and angular velocities are available in the ap-
pendix, Fig. 44. All angular velocities oscillate due to torque felt by the
symmetric top and obey conservation of angular momenta and energy; a, b
and E ′.

In this type of motion, φ̇ will have positive values if a is positive, and if a
is negative it will have negative values. For the cup like motion, b can take
values between −a to a depending on θ0.

Now, we can explain the rise of the symmetric top in terms of the an-
gular momentum in z′-axis. In the previous case, we have seen that the
gravitational torque is balanced by an effect caused by the angular momen-
tum in z′-axis. The gravitational torque is parallel to the line of nodes. If
we consider ~w × ~L term, Eq. (4), and take the cross product of ~w with the
angular momentum in z′ direction we obtain a vector anti-parallel to the
line of nodes. This is also possible if the angular momentum is in −z′ direc-
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Figure 10: Shapes of the locus on unit sphere for the cup like motion. At
the left we see a few nutation period, and at the right we see precession for
2π. Initial values are the same as Fig. 8. ( Animated version is available at
https://youtu.be/UxhQCDL8YuQ .)

tion. This vector acts like torque and it is available because of the symmetric
top’s being a non-inertial reference frame. It is just like the inertial forces or
pseudo-forces appeared in non-inertial reference frames, and we will refer it
by inertial torque.

In this case, at the beginning φ̇ was zero and it was gradually increasing.
Then, we can say that at the beginning, the magnitude of the gravitational
torque was greater than the magnitude of the inertial torque. But after some
time the magnitude of the inertial torque around the line of nodes becomes
equal to the magnitude of the gravitational torque, at that moment θ̇ reaches
its maximum value and the minimum value of Ueff occurs. However, θ
continues to increase some more time. When θ̇ reaches zero, the magnitude
of the inertial torque around the line of nodes is already greater than the
gravitational torque. This difference results with a negative torque around
the line of nodes and negative θ̈, as a result of this the symmetric top rises.
As it rises the φ̇ becomes smaller, and at a point again the torque around the
line of nodes becomes zero, where again the minimum value of Ueff occurs.
This rise continues for a while as a consequence of negative θ̇. Finally, θ
reaches its initial value and rise stops, where φ̇ is zero. Then this procedure
repeats itself.

3.4 Wavy precession

In this case, we will consider that the symmetric top precesses toward the
same direction at both θmin and θmax, and nutation takes place many times
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during one precession. This kind of motion is possible if the initial φ̇ is
different than zero, and it should have the same sign at both extrema of θ.

φ̇ = (b−a cos θ)/ sin2 θ, then it will be equal to the zero if θ = arccos(b/a),
which requires |b| < |a|. If we use θ = arccos(b/a) in Ueff , we obtain it as
Mglb/a. E ′ determines possible interval of θ according to Ueff , and if E ′

is smaller than Mglb/a then θ does not take values which makes φ̇ equal to
zero. Since φ̇ is a continuous quantity then φ̇ does not change sign and always
precesses in one direction in this case. Then we can say that to obtain this
kind of motion the absolute value of b should be smaller than the absolute
value of a, and E ′ should be smaller than Mglb/a, and Mglb/a should be
greater than Ueff . In this case |b| > |a cos θ|.
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Figure 11: Ueff , E
′ (black straight line), Mglb/a (dotted line) at left and

f(u) at right. This case gives wavy precession, and initial values for this case
as follows; θ0 = 0.2056rad, θ̇0 = 0, ψ̇0 = 148.3rad/s, φ̇ = 0.8968rad/s and
resulting E ′ = 0.06657J . Turning angles for θ are 0.2056 and 0.2077rad, and
the minimum of Ueff is at 0.2067rad. For this case a = 234.4, b = 229.5 and
α = 951.0.

To obtain such a case we can choose θ0 = 0.2056rad, θ̇0 = 0, φ̇0 =
0.8968rad/s and ψ̇0 = 148.3rad/s. With these initial valuess, the constants
become a = 234.4, b = 229.5 and α = 951.0. Then, Mglb/a = 0.06658J and
E ′ = 0.06657J , which is smaller than Mglb/a. The turning angles of θ are
0.2056 and 0.2077rad, and these can be obtained from Ueff by using E ′ or
from f(u), whose plots are available in Fig. 11.

In Fig. 12, we see the results obtained numerically from Eq.s (33), (25)
and (26). The initial value of θ is the minimum value, then as time passes
it increases in the first part of motion. We can understand this change from
Ueff , as θ increases θ̇ increases till the minimum of the effective potential
then starts to decrease. As θ increases, φ̇ increases to obey conservation
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Figure 12: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
11.

of angular momentum in z′-direction since a cos θ decreases, seen from b =
φ̇ sin2 θ+a cos θ. As φ̇ increases, ψ̇ decreases in accordance with conservation
of angular momentum in z-direction, seen from a = (Iz/Ix)(ψ̇ + φ̇ cos θ).
When θ reaches its maximum, θ̇ becomes zero. In the second half of the
motion these changes take place in the reverse order.

By numerically integrating angular acceleration for the mentioned initial
values we obtained results. Three-dimensional plots are available in Fig. 13,
other results can be found in the appendix, Fig. 45. Wavy structure of the
precession is visible in the three-dimensional figure.

This kind of motion can take place as long as the absolute value of b is
smaller than the absolute value of a, i.e. |b| < |a|, provided that Ueffmin

<
E ′ < Mglb/a. If a is positive, φ̇ becomes always positive and the symmetric
top precesses always in the forward direction. If a is negative, φ̇ becomes
always negative and the symmetric top precesses in the backward direction.

If we consider the motion in terms of the gravitational torque and the
angular momentum in z′ direction, we can say that at the beginning of the
motion the component of the inertial torque in the direction of the line of
nodes, obtained from ~w× ~Lz′ , is smaller than the gravitational torque. Then
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Figure 13: Shapes of the locus on unit sphere for the wavy precession. Initial
values are the same as Fig. 11. ( Animated version is available at https:

//youtu.be/rCs_XorW6mQ .)

the symmetric top falls and θ increases, meanwhile this increase resulted
with an increase in φ̇. At some point, this increase resulted with a negative
torque around the line of nodes. The consequences of this will not be seen
immediately as a rise, this rise will be seen after it makes θ̇ zero. Its effect
is not enough to rise the symmetric top to reach the necessary height to
provide negative φ̇ values. After some time, the gravitational torque will
become dominant and then the symmetric top will start to fall again. Then
this motion will repeat itself.

3.5 Looping motion

If the symmetric top has both negative and positive φ̇ and θ̇ values, then the
combination of motions forms a looping motion.

In this case, b−a cos θ should be equal to the zero for a value of θ between
θmin and θmax. Then φ̇ becomes sometimes positive, sometimes negative and
zero in between. Zero of φ̇ occurs at θ = arccos(b/a), this requires |b| < |a|
because of the possible range of cos θ. We have seen in the previous case that
if E ′ < Mglb/a then φ̇ never becomes zero and always gets the same sign.
So for the looping motion, E ′ should be bigger than Mglb/a. Then, φ̇ will
have a reverse sign for some θ values and it will precesses toward different
directions at θmin and θmax. So, the conditions for the looping motion can be
written as θmin < arccos(b/a) < θmax and E ′ > Mglb/a > Ueffmin

provided
that |b| < |a|. Since the symmetric top precesses in one direction at θmin and
in other direction at θmin, there will be a looping motion.

Now, we will get results for this looping motion. We will choose the
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initial values to provide that φ̇ have negative and positive values at the
extrema of θ. To obtain such a case, we can choose θ0 = 0.27rad, θ̇0 = 0,
φ̇0 = 10rad/s and ψ̇0 = 100rad/s. With these initial values, the constants
become a = 172.3, b = 166.8 and α = 943.3. In this case E ′ = 0.06603J and
Mglb/a = 0.06582J . The turning angles of θ are 0.2472 and 0.2700rad, and
these can be obtained from the effective potential by using E ′ or f(u), their
graphs are available in Fig. 14.
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Figure 14: Ueff , E
′ (black straight line) and Mglb/a (dotted line) at left,

and f(u) at right. This case gives looping motion, and initial values for this
case as follows; θ0 = 0.27rad, θ̇0 = 0, ψ̇0 = 100rad/s, φ̇ = 10rad/s and
resulting E ′ = 0.06603J . Turning angles for θ are 0.2472 and 0.27rad, and
the minimum of Ueff is at 0.2583rad. For this case a = 172.3, b = 166.8 and
α = 943.3.

Let us again start to analyze the motion from Ueff . This time the motion
starts with the maximum θ value since initial φ̇0 and a are positive, then
the most of changes happen in reverse order with respect to previous cases.
From the effective potential, we can conclude that θ will reduce till the smaller
turning angle, 0.2472rad, and then increase till its initial value. Since the
minimum of Ueff is at θ = 0.2583rad, at these values θ̇ should have extremum
values.

Now let us analyze motion in terms of conservation of angular momenta.
The results obtained by integration of Eq. (33) are seen in Fig. 15. We
see that the motion is started from the maximum θ, then it decreases as
time passes. As it decreases, the contribution from constant a in b increases
and φ̇ should decrease to obey conservation of angular momentum in z′-
direction, and this decrease continues to negative values. As φ̇ decreases
its contribution in a decreases, then ψ̇ should increase to obey conservation
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Figure 15: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
14.

of angular momentum in z-direction. We also see that φ̇ is positive at the
maximum value of θ, and it is negative at the minimum value of θ.

The three-dimensional graphs obtained from numerical integration of an-
gular accelerations are seen in Fig. 16. Looping structure is clearly seen.
Other results are available in the appendix, Fig. 46.

If a is positive, then at the maximum of θ, φ̇ is positive, and it is negative
at the minimum. If a is negative, φ̇ takes reverse signs.

Now let us consider the motion in terms of angular momentum and torque.
This motion starts from θmax since θ̇0 = 0 and φ̇ and a are positive. The
inertial torque in the direction of the line of nodes originated from φ̇ is big
enough to rise the symmetric top to have negative φ̇ values. At the negative φ̇
values, ~w × ~Lz′ contribute to the gravitational torque in the same direction,
then the symmetric top falls till reaching the initial θ and φ̇ value. The
mentioned procedure repeats itself and the average value of φ changes in
every looping motion.
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Figure 16: Shapes of the locus on unit sphere for looping motion. The
initial values are the same as Fig. 14. ( Animated version is available at
https://youtu.be/hA3DCV7AbVc .)

3.6 Precession with single nutation

In the cup like motion, the wavy precession and the looping motion, the
absolute value of b was always smaller than the absolute value of a. Now we
will consider that |b| > |a|. In the regular precession, there were some cases
with |b| > |a|, however, at that cases there was no nutation. In the wavy
precession, φ̇ was having always the same sign with a careful determination
of E ′, with this determination possible θ values was resulting with always
the same sign for φ̇ though |b| < |a| and there were many nutations in one
precession. Differently from that case, in this case there will be nearly one
nutation during one precession and φ̇ will have always the same sign as a
result of |b| > |a|. |b| > |a| provides precession always in the same direction
independent of θ, with E ′ > Mglb/a and E ′ > Ueffmin

.
In this one, we will choose initial values to provide that φ̇ is always positive

and different than zero with condition |b| > |a|. If we use initial values
θ0 = 1.310rad, θ̇0 = 0, φ̇0 = 190rad/s and ψ̇0 = 100rad/s, then we obtain
such a motion. With these initial values, the constants become a = 234.1,
b = 237.7 and α = 33950. By using f(u) or Ueff and E ′, we find extrema of
θ as 0.02013 and 1.310rad for this configuration.

Graphs of f(u) and Ueff are available in Fig. 17. If we look at the shape of
Ueff from the graph, we see that it has a high asymmetry and the minimum
value of Ueff is very close to the smaller turning angle. This asymmetry
causes very rapid changes in θ̇ near that turning angle.

By using integral in Eq. (33), we obtained θ, θ̇, φ̇ and ψ̇, available in Fig.
18. θ starts from the maximum value, then it gradually reduces, and as it
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Figure 17: Ueff , E
′ (straight black line), Mglb/a (dotted line) at left and

f(u) at right. This case gives precession with single nutation, and initial
values for this case as follows; θ0 = 1.310rad, θ̇0 = 0, ψ̇0 = 100.0rad/s,
φ̇ = 190rad/s and resulting E ′ = 2.377J and Mglb/a = 0.06905. Turning
angles for θ are 0.02013 and 1.310rad, and the minimum of Ueff (0.186145)
is at 0.1760rad. For this case a = 234.1, b = 237.7 and α = 33950.

comes closer to the minimum value its change becomes more rapid. We see
that θ decreases till the minimum θ value, then a sharp change occurs and θ
start to increase. This sharp change is seen in θ̇ in a better way; θ̇ reaches
its minimum value, a negative one, then it starts to increase and becomes
zero. After turning angle of θ, θ̇ suddenly increases to its maximum value
and then gradually decreases to zero.

The change in φ̇ is more interesting, it starts with its positive initial value
then decreases but do not reach zero. Before the symmetric top having its
minimum θ value, there is a sudden increase in φ̇ and then it reaches to its
maximum value, more than 40 times of its initial value, at the minimum of θ.
At the same time, there occurs a sudden change in ψ̇, while it was decreasing
gradually from its initial value it suddenly drops to very high negative values.

Now let us analyze these from conservation of angular momenta. If we
consider constant b = φ̇ sin2 θ + a cos θ, as θ decreases cos θ increases and
φ̇ should decrease to compensate this and preserve angular momentum z′-
direction. At the beginning of motion we see this decrease. However, as θ
approaches to θmin, very close to zero, the multiplication factor of φ̇ becomes
very small. To compensate this, φ̇ takes very great values.

We have another constant of motion a, corresponding conservation of an-
gular momentum in z direction. At the beginning of the motion, there is
slight decrease in φ̇. In this part, the increase rate of cos θ is greater than
that decrease, and then φ̇ cos θ increases. Then ψ̇ decreases to compensate for
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Figure 18: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
17.

this increase. As motion continues, φ̇ increases with an increasing rate. As
φ̇ becomes larger and larger, ψ̇ firstly becomes zero then takes high negative
values to obey conservation of angular momentum. ψ̇ is related to the sym-
metric top’s spin and its negative values mean that it spins in the reverse
direction. The spin in the reverse direction is much faster than its initial
value, more than 80 times. The symmetric top’s spin in the reverse direction
of its initial spin with very high values is a very interesting situation.

These changes happen during the rise of the symmetric top, after reaching
turning angle the symmetric top starts to fall and all these changes happen
in the reverse order.

There is another point related to this case; the symmetric top has nearly
equal precession and nutation periods, nutation period is slightly greater
than the precession period.

The three-dimensional graphs obtained from numerical integration of an-
gular accelerations are available in Fig. 19. From the left one we see that
nutation period and precession period is nearly the same, and from the right
one we see that it slightly precesses forward after each nutation. Other results
obtained from numerical integration of angular accelerations can be found in
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Figure 19: Shapes of the locus on unit sphere for precession with single
nutation. Initial values are the same as Fig. 17. ( Animated version is
available at https://youtu.be/3gOgRb6CwaY .)

the appendix, Fig. 47.
In this case, there are two possibilities; forward and backward precession.

If b is positive, then the precession is forward and if b is negative it is back-
ward, both cases are independent of the sign of a. This case is an example
of the forward precession.

If we consider this case in terms of the torque and angular momentum,
we can easily say that at the beginning the effect of ~w × ~Lz′ is bigger than
the gravitational torque, and it rises the symmetric top. The rise continues
up to very small θ values. The astonishing changes in φ̇ and ψ̇ are better
understood from conservation of the angular momenta and we have already
given the explanation. After the rise of the symmetric top to θmin, ~w × ~Lz′
becomes very small because of very small θ values and the gravitational
torque becomes dominant and the symmetric top falls till θ0.

3.7 Precession with single nutation for weak top

In the previous case, E ′ was greater than Mglb/a. Now we will consider
a case, |a| < |b| and Ueffmin

< E ′ < Mglb/a. Previous case and this case
are similar in many ways, however, for the completeness, we will analyze
this case also. We should choose initial values according to these conditions,
which require small |a| and |b| values. These small values can be obtained
for weak top.

If we choose initial values as θ0 = 0.9225rad, θ̇0 = 0, ψ̇0 = 1.225rad/s
and φ̇ = 22.21rad/s we obtain such a configuration. In this case constants
of motion becomes a = 23, b = 28, α = 900.0; and we get E ′ = 0.06300J and
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Mglb/a = 0.08278J .
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Figure 20: Ueff , E
′ (straight black line) and Mglb/a (dotted line) at left,

and f(u) at right. Initial values for this case as follows; θ0 = 0.9225rad,
θ̇0 = 0, ψ̇0 = 1.225rad/s, φ̇ = 22.21rad/s and resulting E ′ = 0.06300J .
Turning angles for θ are 0.9225 and 1.759rad, and the minimum of Ueff is at
1.423rad and equal to 0.05336J . For this case a = 23, b = 28 and α = 900.0.

In Fig. 20, we see Ueff and f(u). It is also seen that E ′ is smaller than
Mglb/a. E ′ and Ueff intersects when θ is equal to 0.9225 and 1.759rad. As
it is seen, the smaller turning angle is away from θ = 0 point. This is related
to the shape of Ueff and when a and b are small the minimum of the Ueff
occurs at greater angles. Since initial θ value is the minimum value, we can
say θ will increase till 1.759rad.

Results obtained from the numerical integration of Eq. (33) are available
in Fig. 21. It is seen that at the beginning φ̇ slightly decreases as θ increases.
We can understand this decrease from conservation of angular momentum in
z′-direction by using b = φ̇ sin2 θ+a cos θ; the increase in sin2 θ is faster at the
beginning and to compensate it φ̇ decreases. As θ increases, the decrease in
cos θ becomes dominant and φ̇ increases to compensate it. We can understand
the increase in ψ̇ from the mentioned decrease in cos θ from conservation of
angular momentum by using a = (Iz/Ix)(ψ̇ + φ̇ cos θ); its decrease is faster
than the increase in φ̇ in the second part and to compensate it ψ̇ increases.
The increase in the first part can be understood from decrease of both φ̇ and
cos θ.

By integrating angular accelerations numerically, we plotted three-dimensional
figure for this case, available in Fig. 22. We see that again nutation and pre-
cession periods are nearly equal, however, differently from the previous case
nutation period is a bit smaller than precession period and interval for θ does
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Figure 21: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
20.
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Figure 22: Shapes of the locus on unit sphere precession with single nutation
for weak top. Initial values are the same as Fig. 20. ( Animated version is
available at https://youtu.be/_W_sTyeSNkI.)
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not cover small values. Then the three-dimensional figure becomes different
than the previous case. Other results obtained from numerical integration of
angular accelerations are available in the appendix, Fig. 48.

In this case, precession direction depends on the sign of b, if it is positive
(negative) then the precession direction is positive (negative). Both b and a
should have the same sign to be able to get E ′ < Mglb/a.

The motion starts from its minimum θ value, though initially φ̇ is different
than zero, the inertial torque is smaller than the gravitational torque. This
difference causes fall of the symmetric top. As the symmetric top falls, φ̇
becomes greater, and then inertial torque increases. At some point, inertial
torque becomes greater than gravitational torque as a result of the increase
in φ̇, and eventually, it rises the symmetric top. Then this motion repeats
itself.

3.8 Motion with the same precessional angular veloc-
ity at extrema

In one of the previous cases, we obtained the cup like motion when initial
values satisfy E ′ = Mglb/a and b < a. In previous two cases for |b| > |a|,
E ′ was either greater or smaller than Mglb/a. In this case, we choose initial
values to provide b > a and E ′ = Mglb/a > Ueffmin

, and at the end, we get
a really interesting result; φ̇ becomes equal at θmin and θmax.

Let us rewrite Eq. (23’) for E ′ = Mglb/a; if we consider extrema of θ,
where θ̇ becomes zero, then Eq. (23’) becomes

Mgl
b

a
=
Ix
2

(b− a cos θext)
2

sin2 θext
+Mgl cos θext. (42)

By taking Mgl cos θext to the left-hand side and dividing both sides to b −
a cos θext, after some arrangement we get

b− a cos θext
sin2 θext

=
2Mgl

Ixa
. (43)

Here the left-hand side is equal to φ̇ when θ = θext, then φ̇ becomes 2Mgl/(Ixa)
at both extrema of θ.

Now let us see this interesting case from an example. If we choose θ0 =
0.04097rad, θ̇ = 0, φ̇ = 41.51rad/s and ψ̇ = −26.59rad/s, we obtain; a =
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Figure 23: Ueff and E ′ at left, f(u) at right. This case gives motion with the
same precessional angular velocity at extrema, and initial values for this case
as follows; θ0 = 0.04097rad, θ̇0 = 0, ψ̇0 = −26.59rad/s, φ̇ = 41.51rad/s and
resulting E ′ = 0.06815J . Turning angles for θ are 0.04097 and 2.021rad, and
the minimum of Ueff is at 1.508rad and equal to 0.03822J . The constants
of motion: a = 23.4, b = 23.45 and α = 973.5.

23.4, b = 23.45 and E ′ = Mglb/a = 0.06815J . For this case turning angles
becomes θmin = 0.04097 and θmax = 2.021rad.

In Fig. 23, we see Ueff and f(u). It is seen that θ covers from very small
values to values greater than π/2. By using our previous experience, we can
say from Ueff and E ′ that the symmetric top will make a periodic motion
between its two turning angles.

In Fig. 24, we see results obtained by numerical integration of Eq. (33).
The results related to θ and θ̇ are compatible with Ueff . Asymmetry seen in
θ̇ near greater turning angle is a result of asymmetry in Ueff . We can under-
stand changes in φ̇ from conservation of angular momentum in z′-direction
by using b. We see at the beginning φ̇ decreases, this decrease compensates
the increase in sin θ to preserve b. Then we see an increase in φ̇, this increase
occurs to compensate the decrease in cos θ again to preserve b. When θ be-
comes larger than π/2, both sin θ and cos θ decrease, and the increase in φ̇
becomes more rapid. This increase continues till φ̇ reaching its initial value,
which is the result of choosing E ′ = Mglb/a.

Changes in ψ̇ can be explained from conservation of angular momentum
in z-direction by using a. As φ̇ decreases, ψ̇ increases to preserve a. When φ̇
starts to increase the decrease rate of cos θ is faster and ψ̇ should still increase
to preserve a. When θ passes π/2, the contribution in a from φ̇ becomes
negative and the increase in ψ̇ becomes more rapid to obey conservation of
angular momentum in z-direction.
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Figure 24: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
23.
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Figure 25: Shapes of the locus on unit sphere for motion with the same
precessional angular velocity at extrema. Initial values are the same as Fig.
23. ( Animated version is available at https://youtu.be/qLof6AgLRUY .)
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We see three-dimensional figures in Fig. 25. We see that the symmetric
top makes a motion like a spiral without the inner part. We know that from
the above calculations at the bottom and top φ̇ has the same values, though
the linear speeds at these points are different. Other results are available in
the appendix, Fig. 49.

If we consider the motion in terms of torque and angular momentum,
there is an interesting situation; we have the same φ̇ at the bottom and top,
however, in one case the symmetric top rises, in the other it falls. It is directly
related to the cross product and existence of sin θ, which results with greater
inertial torque with respect to gravitational torque at the bottom and results
with smaller inertial torque at the top. Then when the symmetric top is at
the bottom it rises gradually till reaching smaller turning angle, and when it
is at the top it gradually falls. This structure repeats itself in the motion.

3.9 Motion through pseudo-singular points

We have seen that the effective potential has infinities at θ = 0 and θ = π.
These infinities occur because sin θ equals to zero at these angles. However, if
we consider |b| = |a|, one of the singularities at these angles can be removed
by simplifications. Now, we will study this interesting case.

In the sleeping top case, we have already dealt with |b| = |a| situation,
however, in that case, b was becoming equal to ±a because of overlapping.
b corresponds to angular momentum in z′-direction and a corresponds to
angular momentum in z-direction, then the equivalence of magnitudes of
angular momenta assures equivalence of a and b, i.e. if Lz = ±Lz′ then
b = ±a. This time we will analyze the motion with b = a and without such
an overlap.

If we choose θ0 = 1.2rad, θ̇0 = 0, φ̇0 = 198.2rad/s and ψ̇0 = 100rad/s,
then b becomes equal to a, b = a = 270.0. For this case f(u) is shown in
Fig. 26. The roots of f(u) are u = 0.3624 and 1, which correspond 1.2rad
and 0 values for θ. In this case, there is a difference between f(u) and Ueff ,
related to transformation, u = cos θ.

This case is different than all previously considered cases because of the
disappearing infinity in Ueff , which is at θ = 0 for b = a. Then it is better
to consider the previous restrictions on the motion. While considering Euler
angles it is mentioned that usually the domain of θ is considered as [0, π].
However, if we use this interval for θ, Ueff goes to its minimum at θ = 0 and
leaves no turning angle in one side for the symmetric top. Now let us change
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Figure 26: f(u). This case is possible with initial values θ0 = 1.2rad, θ̇0 = 0,
φ̇0 = 198.2rad/s and ψ̇0 = 100rad/s. Here E ′ = 2.413J . The roots of f(u)
occur at u = 0.3624 and 1 corresponding to turning angles for θ 1.2rad and
0. For this case constants: b = a = 270.0 and α = 34470.
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Figure 27: Ueff , E
′ (straight black line) and Mglb/a (dotted line). Turning

angles for θ are 1.2 and −1.2rad, and the minimum of Ueff is at θ = 0 and
equal to Mgl. Initial values and constants are the same as Fig. 26.

the interval of the domain to [−π, π], and leave the evaluation of this change
to the later. In Fig. 27, we see Ueff plotted for mentioned initial values
with the extended domain. It is seen that the extended interval provides an
effective potential with two turning angles.

When a = b, there are some simplifications and the effective potential
becomes

Ueff (θ) =
Ix
2

a2(1− cos θ)

1 + cos θ
+Mgl cos θ. (44)

This difference in the effective potential brings the necessity of studying this
case separately from previously studied types of moton.

In Fig. 28, we see the results obtained from the integration of Eq. (33).
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Figure 28: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
26.

It is seen that the first half of the motion starts from θmax = 1.2rad and
goes to θmin = −1.2rad, which is consistent with the effective potential. If
we look at θ̇, it decreases to its minimum at θ = 0. This shows that for this
case the symmetric top approaches to θ = 0 with a negative angular velocity
and it should continue its motion with that angular velocity. If we had kept
the domain for θ between 0 and π, then we need to change θ̇ from negative
to positive values. Since θ̇ is a continuous quantity, it is better to change the
domain of θ to [−π, π] with keeping in mind that we are not using one to one
mapping between coordinate systems.

If we return to the consideration of f(u); it does not give turning angle
θ = −1.2rad, it gives 0 and 1.2rad. Trigonometric property of cos θ is lost
during the change of variable, and we can not get results corresponding to the
extended domain. In this work, in necessary cases we will use the extended
domain to analyze the motion. In this case (θ, φ) and (−θ, φ+π) corresponds
to the same points in xyz coordinate system. For this work it does not cause
any trouble; three-dimensional plots will represent the motion without any
problem.

If we look at the changes in φ̇ and ψ̇, there is a repeat. This is an
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Figure 29: Shapes of the locus on unit sphere for motion through pseudo-
singular points. Initial values are the same as Fig. 26. ( Animated version
is available at https://youtu.be/yHX8faDair4.)

expected result since these two angular velocities are independent of θ̇, and
cos θ is even and sin θ shows itself as a square in related equations. Here
we can write φ̇ = a/(1 + cos θ), then as θ goes to zero φ̇ decreases. We can
also understand this decrease from conservation of angular momentum by
using b = φ̇ sin2 θ + a cos θ, as θ goes to 0 cos θ increases and φ̇ decreases to
obey conservation of angular momentum in z′-direction. As φ̇ decreases ψ̇
is decreasing. The increase of cos θ is faster than the decrease in φ̇ then ψ̇
also decreases to obey the conservation of angular momentum in z-direction,
which can be seen from a = (Iz/Ix)(ψ̇ + φ̇ cos θ).

Here it is better to mention about one more point. In the sleeping top
case, we claimed that φ̇ becomes irrelevant from the motion. At there, it
is irrelevant because z and z′ are always the same. In this case, z and z′

momentarily become equal and there is a motion which brings conservation
of angular momentum. Then, φ̇ should have some value at θ = 0, which
can be found from φ̇ = a/(1 + cos θ) as a/2, and in this example we have
φ̇ = a/2 = 135rad/s.

Three-dimensional figures obtained from numerical integration of angular
accelerations are available in Fig. 29. During numerical integration for very
small values of θ because of the singularity at θ = 0, here and other necessary
cases we have used Eq. (25) and Eq. (26). The apex of the symmetric
top passes from θ = 0 and makes nearly a loop, however, there is a slight
difference between periods of nutation and precession and the symmetric top
precesses slightly at each loop like motion. Other results can be found in the
appendix, Fig. 50.
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In this case, the symmetric top precesses in the forward direction. If
both a and b were negative, then the motion would be similar to this case
but the symmetric top would precess backward. If b = −a, then the infinity
of Ueff at θ = π will disappear and the motion will take place at the bottom
including θ = −π point.

In this case, the positive φ̇ causes an inertial torque to rise up the sym-
metric top, then it rises and passes from θ = 0 point. Then, the symmetric
top falls from the other side of θ = 0 point and falls till −θmax, where it has
its initial angular velocity φ̇. Then the motion repeats itself.

In the previous cases, the structure of the effective potential and the
conservation of angular momenta were preventing the symmetric top to pass
from θ = 0 point. However, in this case, the symmetric top passes from θ = 0
point since a = b.

3.10 Regular precession when a = b

There are other changes in the motion of the symmetric top when b = a.
There are two main reasons for these; change in Ueff and φ̇. We already
gave the effective potential when a = b as

Ueff (θ) =
Ix
2

a2(1− cos θ)

1 + cos θ
+Mgl cos θ. (44)

Here, if a is smaller than
√

4Mgl/Ix then there exist a local maximum at

θ = 0, which is equal to Mglb/a (or Mgl). If a is greater than
√

4Mgl/Ix,
this maximum becomes the minimum with the same value, the previous case,
which is the motion through pseudo-singular points, is an example for such
potential with minimum Mglb/a.

If a local maximum exists and E ′ is smaller than Mglb/a then we can
obtain regular precession and two turning angles for θ between 0 and π.

The other change is related to φ̇. When b = a, φ̇ becomes

φ̇ =
a

1 + cos θ
. (45)

Here, φ̇ does not change sign and never become zero. Then we can not obtain
cup like motion or looping motion.

Now we can consider the regular precession when a = b. In the previous
study of the regular precession, the potential and φ̇ were different than in
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this case. In this case, if we take the derivative of Ueff with respect to θ and
equate it to zero we obtain

0 =

[
Ix
2

2a2

(1 + cos θ)2
−Mgl

]
sin θ. (46)

This time θ = 0 corresponds to unstable equilibrium or sleeping top and
θ = π corresponds to the sleeping top. Here, it is possible to find a minimum
for the potential other than θ = 0 if a <

√
4Mgl/Ix. If a >

√
4Mgl/Ix the

minimum of the effective potential occurs always at θ = 0.
Here, it is also seen that previous strong and weak top definition in terms

of ã are consistent with b = a case.
By using Eq. (45) and Eq. (46), for regular precession φ̇2 is obtained as

φ̇2 =
Mgl

Ix
. (47)

This gives constant φ̇ for regular precession, when a <
√

4Mgl/Ix. φ̇ can
have positive and negative values, positive (negative) one corresponds to
positive (negative) a. By using the definition of a and Eq. (45), we obtain
ψ̇ as

ψ̇ =
Ix
Iz
φ̇

(
1 + cos θ − Iz

Ix
cos θ

)
. (48)

Then we need to specify either θ0 or ψ̇0 and determine the other one from Eq.
(48) to obtain a regular precession as long as there exists a local maximum.
This case is simpler than b 6= a case and we can obtain the minimum of the
Ueff in terms of constants in a simple way as

Ueffmin
=

√
Ixa2

2
− (
√
Mgl −

√
Ixa2)

2. (49)

For the symmetric top, that we are considering in this work, φ̇ becomes
22.04rad/s for the precession in the positive direction. If we choose θ =
1.1rad, then ψ̇ becomes 10.39rad/s. In this case b = a = 32.04 and E ′ =
Ueffmin

= 0.05785 together with θ̇ = 0. In Fig. 30, we see Ueff and f(u).
E ′ intersects Ueff at its minimum and the symmetric top regularly precesses
around z′-axis.

In Fig. 31, we see results obtained by numerical integration of angular
acceleration. The symmetric top precesses in the positive direction. The
other results are available in Fig. 51.
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Figure 30: Ueff , E
′ (straight black line) Mglb/a (dotted line) and left, f(u)

at right. This case gives regular precession, and initial values for this case as
follows; θ0 = 1.1rad, θ̇0 = 0, ψ̇0 = 10.39rad/s, φ̇ = 22.04rad/s and resulting
E ′ = 0.05785J . For this case: b = a = 32.04 and α = 826.4.
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Figure 31: Shapes of the locus on unit sphere for regular precession when
b = a. Initial values are the same as the ones given in Fig. 30. ( Animated
version is available at https://youtu.be/fNwjZQcO8IY .)

If we had chosen φ̇ as −22.04rad/s, for θ = 1.1rad ψ̇ would be equal
to −10.39rad/s, and the symmetric top would be precessing in the negative
direction. With these negative values, a would be negative.

We have mentioned that if b = −a, then the singularity at θ = π dis-
appears, however, regular precession is not possible since there is no local
maximum at θ = π.

3.11 Precession in one direction when a = b

If there is a local maximum and E ′ is greater than Ueffmin
and smaller than

that local maximum, which is equal to Mglb/a, then we can obtain two
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turning angles for θ between 0 and π. We have seen that φ̇ does not change
sign when b = a. Then, in this case, we see only a precession in one direction
and the direction of the precession is determined by the sign of a. Since ψ̇
is small for these configurations, the precession is faster and we do not see
many nutations for one precession period.

If we take θ0 = 1.097rad, φ̇0 = 20.88rad/s and ψ̇0 = 9.824rad/s, then
b = a = 30.4. In our example Mgl = 0.068J . Then together with θ̇0 = 0, E ′

becomes 0.05518J which is smaller than Mglb/a. As it is expected from the
sign of a, the precession is in the positive direction. We see Ueff and f(u) in
Fig. 32 with these initial values. We see the possible interval for θ from the
figure. From the effective potential and E ′, we can say that the symmetric
top will nutate between two turning angles.
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Figure 32: Ueff , E
′ (straight black line), Mglb/a (dotted line) at left, and

f(u) at right right. This case gives a precession in one direction and initial
values for this case as follows; θ0 = 1.097rad, θ̇0 = 0, ψ̇0 = 9.824rad/s,
φ̇ = 20.88rad/s and resulting E ′ = 0.05518J . Turning angles for θ are
1.097 and 1.259rad, and the minimum of Ueff is at 1.182rad. For this case:
b = a = 30.40 and α = 788.3.

In Fig. 33, we see changes in θ and angular velocities obtained by using
Eq. (33). We see from the figure that θ changes between two turning angles,
θ̇ have positive and negative values satisfying nutation. φ̇ takes only positive
values as we expected, and ψ̇ changes as φ̇ changes obeying the conservation
of angular momenta which can be seen from a and b. As θ increases φ̇
increases to obey conservation of angular momentum because of the decrease
in cos θ, which can be understood by using b = φ̇ sin2 θ+ a cos θ. ψ̇ increases
again because of the decrease in cos θ, which can be understood from a =
(Iz/Ix)(ψ̇ + φ̇ cos θ). Here we should mention that values of b and a are the
same, but this case is different than sleeping top; b and a correspond different
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Figure 33: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
32.

angular momenta and both are conserved separately. If we consider fall of
the symmetric top, the initial φ̇ is not enough to satisfy necessary torque and
the gravitational torque is dominant. As the fall continues φ̇ becomes great
enough to cause a torque greater than gravitational one and the symmetric
top rises. These repeat again and again as precession continues.
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Figure 34: Shapes of the locus on unit sphere for precession in one direction
when b = a. Initial values are the same as Fig. 32. ( Animated version is
available at https://youtu.be/PqJ8ubaiFTk.)
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In Fig. 34, we see three-dimensional figure obtained from the numerical
integration of angular accelerations. It is seen that it precesses away from
the θ = 0 point. The other results are available in the appendix, Fig. 52.

3.12 Spiraling motion

Now we will consider that E ′ is equal to the local maximum of Ueff at θ = 0
when b = a, we see graph of the effective potential for such a case in Fig. 35.
From Ueff , it is seen that the turning angles occur at negative and positive
θ values and it is better to extend the domain of θ with remembering that it
corresponds double defined points in xyz coordinate system. If we do not use
the extended domain while solving this case, there can be a problem at θ = 0
point about which direction the symmetric top will go at that point. When
we use the extended domain, it continues its motion obeying conservation of
angular momenta, so it is better to use the extended domain. We can say
that the symmetric top will oscillate between these two turning angles while
precessing. The existence of precession result with a spiraling motion while
the symmetric top falls from θ = 0 to θ = θmax.
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Figure 35: Ueff , E
′ (straight black line), Mglb/a (dotted line) at left,

and f(u) at right. E ′ and Mglb/a are overlapped since they are equal.
This case gives spiral like motion, and initial values for this case as follows;
θ0 = 1.619rad, θ̇0 = 0, ψ̇0 = 20.90rad/s, φ̇0 = 31.95rad/s and resulting
E ′ = 0.06800J . Turning angles for θ are −1.619 and 1.619rad, and the
minimum of Ueff is at 1.182rad. f(u) has roots at u = −0.04866 and u = 1,
corresponding to θ = 1.619 and θ = 0. For this case constants of the motion
are b = a = 30.4 and α = β = 971.4.

We see the results obtained by using Eq. (33) in Fig. 36 for initial values
θ0 = 1.619rad, θ̇0 = 0, φ̇0 = 31.95rad/s and ψ̇0 = 20.90rad/s. With these
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Figure 36: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
35.

initial values b = a = 30.40 and α = β = 971.4. From the figure, we can
say that θ starts with the maximum value and decreases negative of that
maximum value and the symmetric top passes from θ = 0 point.

It is seen from Fig. 35 that when θ is close to zero, θ̇ will be close to
zero. So the symmetric top spends more time at these θ values. Results
of this are seen in Fig. 36; θ̇, φ̇ and ψ̇ do not change much when θ is
close to zero. If we look at φ̇ as the symmetric top rises (θ decreases), it
decreases. But, this decrease is not enough for fall of the symmetric top;
it rises till θ reaching 0 and falls from a different side. If we consider b =
φ̇ sin2 θ + a cos θ; as θ decreases the contribution from a increases and to
obey conservation of the angular momentum in z′-direction φ̇ should also
decrease. If we consider a = (Iz/Ix)(ψ̇ + φ̇ cos θ); the contribution from φ̇
increases since cos θ increases faster, then ψ̇ should also decrease to obey
conservation of the angular momentum in z-direction. The following part of
the motion is something like an inverted structure of this as θ goes to −θmax.
After θ reaching −θmax, the above procedure will take place in the reverse
order.

In Fig. 37, we see results obtained from the numerical integration of
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Figure 37: Shapes of the locus on unit sphere for spiraling motion. Initial
values are the same as Fig. 35. ( Animated version is available at https:

//youtu.be/TjYqZDDUZMY .)

Eq.s (36). It is seen that from θ = θmax to 0 the symmetric top makes a
spiraling motion. The other results obtained from the integration of angular
accelerations can be found in the appendix, Fig. 53.

If we consider torque and angular momentum, at the beginning φ̇ causes
an inertial torque greater than the gravitational one and top rises. This
inertial torque is enough to rise the symmetric top to θ = 0 point and then
top falls from a different side by the effect of gravitational torque. This fall
causes an increase in φ̇ and at θ = θmax the symmetric top starts to rise
again. This motion repeats itself.

Here, it will be better to consider this case with dissipation. If we put
a spinning gyroscope or symmetric top in the sleeping top position, θ = 0,
its spin will decrease as time passes due to dissipation. If at the beginning
|a| >

√
4Mgl/Ix, small deviations from the sleeping top will result in a

return of the symmetric top to the sleeping position. As time passes the spin
of the symmetric top will slow down and |a| will be smaller than

√
4Mgl/Ix.

In this case, the motion will look like b = a and E ′ = Mglb/a case, and the
symmetric top will fall slowly with a spiraling motion. This motion can be
seen from gyroscopes. However, the situation for child’s top is a bit different.
As child’s top falls the contact point with the surface changes, when this
combines with impurities we see wobbling motion.

3.13 Motion over the bump

The last case, that we will consider here is b = a, E ′ > Mglb/a and |a| <√
4Mgl/Ix. In this case, the motion will look like the motion through pseudo-
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regular points, but in this case, we have a bump. In Fig. 38, we see Ueff
together with E ′ and f(u) for such a case. From the effective potential graph,
if the symmetric top starts its motion from θmax we can say that θ̇ will have
negative values at the beginning to rise the symmetric top. The magnitude
of θ̇ will reach its maximum when Ueff is at the minimum. Then we will see
the effect of the bump; the magnitude of θ̇ will decrease till θ reaching to 0.
At θ = 0, the symmetric top will fall to the other side with its negative θ̇
value till θ reaching −θmax. Then the motion will take place in the reverse
order.
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Figure 38: Ueff , E
′ (straight black line), Mglb/a (dotted line) at left, and

f(u) at right. This case gives a motion over a bump, and initial values for this
case as follows; θ0 = 1.770rad, θ̇0 = 0, ψ̇0 = 26.85rad/s, φ̇ = 37.91rad/s and
resulting E ′ = 0.08318. Turning angles for θ are −1.770 and 1.770rad, and
the minimum of Ueff is at 1.182rad. The roots of f(u) occurs at u = −0.1981
and u = 1 corresponding to θ = 1.770rad and θ = 0. Constants of motion:
b = a = 30.40 and α = 1188.

In Fig. 39, we see the results obtained by using Eq. (33) for initial values
θ0 = 1.770rad, θ̇0 = 0, ψ̇0 = 26.85rad/s and φ̇ = 37.91rad/s. We see that the
change in θ̇ at the local maximum of the effective potential does not affect
too much φ̇ and ψ̇. Change in φ̇ and ψ̇ is similar to the motion through
pseudo-singular points case. Explanations will be similar to that case.

In Fig. 40, we see results obtained by numerical integration of angular
accelerations. The symmetric top goes to θ = 0 point after making a curve
and then falls from a different side, this repeats itself and at each case it passes
from θ = 0 point with different crossings. The other results are available in
the appendix, Fig. 54.
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Figure 39: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are ob-
tained from the integration of Eq. (33). Initial values are the same as Fig.
32.

4 Summary

We have studied the symmetric top problem in detail. This study showed
that there are some previously unnoticed interesting situation related to the
motion of the symmetric top. We also have learned that the inertial torque
arising from the non-inertial structure of the spinning symmetric top rises
it. This inertial torque shows itself in the effective potential via constants
a and b, which correspond conserved angular momenta in z and z′-direction
respectively. After writing the effective potential we see that θ changes mostly
between two turning angles in accordance with conservation of energy.

The inertial torque originated from ~w × ~L term in Euler equations is
responsible from both precession and nutation. A component of it in z′-
direction causes precession, and another component in the direction of the
line of nodes causes nutation. These components can change throughout
the motion, depending on the content of the ~w × ~L. In the precession, θ̇
plays a role by causing change in φ̇, and in the nutation φ̇ plays a role with
contributing inertial torque.

We also have seen that conservation of angular momenta is vital for un-

55



-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

z

x

y

z

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

z

x

y

z

Figure 40: Shapes of the locus on unit sphere for motion over the bump.
Initial values are the same as Fig. 38. ( Animated version is available at
https://youtu.be/DCNZ66YlGnE .)

derstanding the motion of the symmetric top. It can keep the symmetric top
from θ = 0 point, or force it to pass from that point depending on values
of angular momenta. We have seen that conservation of angular momentum
can change spin direction of the symmetric top in an unimaginable way.
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5 Appendix

Graphs for θ, φ, ψ, θ̇, φ̇ and ψ̇ for the above cases, these are obtained from
the numerical solutions of the angular accelerations.
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Figure 41: Regular precession with single φ̇; θ (up left), φ (up middle), ψ (up
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Figure 42: Regular precession with two φ̇; θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) for initial values
θ0 = 1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = −309.2rad/s and ψ̇0 = 50rad/s.

 1.085

 1.09

 1.095

 1.1

 1.105

 1.11

 1.115

 0  0.2  0.4  0.6  0.8  1

θ
 (

ra
d
)

t (s)

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.2  0.4  0.6  0.8  1

φ
 (

ra
d
)

t (s)

 0

 10

 20

 30

 40

 50

 60

 0  0.2  0.4  0.6  0.8  1

ψ
 (

ra
d
)

t (s)

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

θ.  (
ra

d
/s

)

t (s)

 6

 6.02

 6.04

 6.06

 6.08

 6.1

 6.12

 6.14

 0  0.2  0.4  0.6  0.8  1

φ.  (
ra

d
/s

)

t (s)

 49.4

 49.6

 49.8

 50

 50.2

 50.4

 50.6

 0  0.2  0.4  0.6  0.8  1

ψ.
 (

ra
d
/s

)

t (s)

Figure 43: Regular precession with two φ̇; θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) for initial values
θ0 = 1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 6.061rad/s and ψ̇0 = 50rad/s.
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Figure 44: Cup like motion, changes in θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 0.175rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 0 and
ψ̇0 = 100rad/s.
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Figure 45: Wavy precession, changes in θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 0.2056rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 0.8968rad/s
and ψ̇0 = 148.3rad/s.
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Figure 46: Looping motion, changes in θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 0.270rad, φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s, φ̇0 = 10rad/s
and ψ̇0 = 100rad/s.
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Figure 47: Precession with single nutation, changes in θ (up left), φ (up
middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as
time changes for initial values θ0 = 1.310rad, φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s,
φ̇0 = 190rad/s and ψ̇0 = 100rad/s.
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Figure 48: Precession with single nutation for weak top, changes in θ (up
left), φ (up middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇
(down right) as time changes for initial values θ0 = 0.9225rad, φ0 = 0,
ψ0 = 0, θ̇0 = 0rad/s, φ̇0 = 22.21rad/s and ψ̇0 = 1.225rad/s.
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Figure 49: Motion with same precessional angular velocity at extrema,
changes in θ (up left), φ (up middle), ψ (up right), θ̇ (down left), φ̇ (down
middle) and ψ̇ (down right) as time changes for initial values θ0 = 0.04097rad,
φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s, φ̇0 = 41.51rad/s and ψ̇0 = −26.59rad/s.
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Figure 50: Motion through pseudo-singular points, changes in θ (up left),
φ (up middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down
right) as time changes for initial values θ0 = 1.200rad, φ0 = 0, ψ0 = 0, θ̇0 = 0,
φ̇0 = 198.2rad/s and ψ̇0 = 100rad/s.
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Figure 51: Regular precession when b = a , changes in θ (up left), φ (up
middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right)
as time changes for initial values θ0 = 1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0,
φ̇0 = 22.04rad/s and ψ̇0 = 10.39rad/s.
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Figure 52: Precession in one direction when b = a, changes in θ (up left), φ
(up middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right)
as time changes for initial values θ0 = 1.097rad, φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s,
φ̇0 = 20.88rad/s and ψ̇0 = 9.824rad/s.
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Figure 53: Spiralling motion, changes in θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 1.619rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 31.95rad/s and
ψ̇0 = 20.90rad/s.
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Figure 54: Motion over the bump, changes in θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 1.770rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 37.91rad/s and
ψ̇0 = 26.85rad/s.
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