The curvature and dimension of surfaces

S. Halayka*

December 26, 2018

Abstract

The curvature of surfaces can lead to fractional dimension. In this paper, the properties of the 2-sphere surface of a 3D ball and the 2.x-surface of a 3D fractal set are considered.

1 Tessellation of surfaces

Approximating the surface of a 3D shape via triangular tessellation allows us to calculate the surface's dimension, somewhere between 2.0 and 3.0. For instance, for a 2-sphere, the *local* curvature vanishes as the size of the triangles decreases. This results in a dimension of 2.0. See Figures 1, 2, and 3.

On the other hand, for a fractal set, the local curvature does not vanish. This results in a dimension greater than 2.0, but no greater than 3.0. See Figures 4, 5, and 6.

^{*}sjhalayka@gmail.com

2 Core C++ code

```
int main(int argc, char **argv)
\mathbf{if} (2 != argc)
         return 1;
indexed_mesh mesh;
if (false = mesh.load_from_binary_stereo_lithography_file(argv[1]))
         return 2;
vector< vector<size_t>> tri_neighbours;
vector<vertex_3> tri_normals;
tri_neighbours.resize(mesh.triangles.size());
tri_normals.resize(mesh.triangles.size());
for (size_t i = 0; i < mesh.triangles.size(); i++)
         mesh.get_tri_neighbours(i, tri_neighbours[i]);
         tri_normals[i] = mesh.get_tri_normal(i);
float final_measure = 0;
for (size_t i = 0; i < mesh.triangles.size(); i++)
         vertex_3 n0 = tri_normals[i];
         vertex_3 n1 = tri_normals[tri_neighbours[i][0]];
         vertex_3 n2 = tri_normals[tri_neighbours[i][1]];
         vertex_3 n3 = tri_normals[tri_neighbours[i][2]];
         float dot1 = n0.dot(n1);
         float dot 2 = n0.dot(n2);
         float dot3 = n0.dot(n3);
         float d = (dot1 + dot2 + dot3) / 3.0 f;
         float measure = (1.0 \, \text{f} - \text{d}) / 2.0 \, \text{f};
         final_measure += measure;
}
cout << "Dim:" << 2.0 + final_measure/mesh.triangles.size() << endl;
return 0;
```


Figure 1: Low resolution surface for the iterative equation is $Z=Z^2$. The surface's dimension is 2.01682.

Figure 2: Medium resolution surface for the iterative equation is $Z=Z^2$. The surface's dimension is 2.05516.

Figure 3: High resolution surface for the iterative equation is $Z=Z^2$. The surface's dimension is 2.00097.

Figure 4: Low resolution surface for the iterative equation is $Z=Z\cos(Z)$. The surface's dimension is 2.05266.

Figure 5: Medium resolution surface for the iterative equation is $Z = Z \cos(Z)$. The surface's dimension is 2.10773.

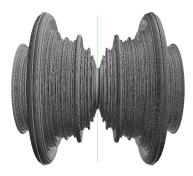


Figure 6: High resolution surface for the iterative equation is $Z = Z \cos(Z)$. The surface's dimension is 2.07679.