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Abstract

In Newtonian single-particle dynamics, time is invariant under inertial transformations, and the particle’s
speed has no upper bound. In special relativity, it is the particle’s proper time, rather than an arbitrary
observer’s time, which is inertial-transformation invariant, and it is the particle’s proper-time speed which
has no upper bound. Thus it is reasonable to surmise that the proper-time version of Newton’s Second
Law is implicit in special-relativistic single-particle dynamics. In fact, gamma times the usual special-
relativistic force on a particle equals its rest mass times its proper-time acceleration, and gamma of
course goes to unity in the nonrelativistic limit. Furthermore, we show that the scalar potential, the
four-vector (electromagnetic) potential and all analogous such tensor potentials, as well as the metric
(gravitational) potential, each produces a proper force on the particle equal to its rest mass times its
proper-time acceleration. It is to be noted that the Lorentz-covariant four-vector completion of proper-
time acceleration, as well as of proper force, has only three components which are mutually independent.

Observed versus proper-length constant velocity of a special relativistic object

An object’s constant velocity can be calculated by dividing the vector segment of its trajectory which it
instantaneously intersects by the time it requires to traverse that segment , but special-relativistic observed
length contraction of that trajectory segment by the factor γ−1 [1], where,

γ−1 def
=
(
1− |ṙ/c|2

) 1
2 ≤ 1, (1a)

implies that the object’s special-relativistic observed constant velocity ṙ equals γ−1 times its proper-length con-

stant velocity , i.e., its proper-length constant velocity equals γṙ, whose magnitude |γṙ| =
(
|ṙ|2/

(
1− |ṙ/c|2

)) 1
2

is unbounded, notwithstanding that |ṙ| < c. Moreover, γṙ is equal to (dr/dτ), the object’s velocity calculated
using its Lorentz-invariant differential proper time dτ , which of course is,

dτ =
(
(dt)2 − |dr/c|2

) 1
2 . (1b)

That γṙ is equal to (dr/dτ) is a general fact because,

γ =
(
1/
(
1− |ṙ/c|2

)) 1
2 =

(
(dt)2/

(
(dt)2 − |dr/c|2

)) 1
2 =

(
(dt)2/(dτ)2

) 1
2 = (dt/dτ) ⇒

γṙ = (dt/dτ)ṙ = (dt/dτ)(dr/dt) = (dr/dτ).
(2)

An object’s Lorentz-transformation invariant differential proper time dτ is somewhat analogous to the
Galilean-transformation invariant time of Newtonian physics and, since an object’s proper-time speed
|dr/dτ | = |γṙ| is unbounded, that speed is somewhat analogous to the unbounded speed of Newtonian physics.

The Lorentz-covariant proper-time extension of Newton’s Second Law

The usual presentation of single-particle special-relativistic dynamics is,

(dp/dt) = f , (3a)

where f is the force and the relativistic single-particle momentum p is given by,

p = mγṙ, (3b)

where m is the particle’s rest mass. From Eq. (2) we see that Eq. (3b) can be rewritten,

p = m(dr/dτ), (3c)

so Eq. (3a) becomes,
m(d(dr/dτ)/dt) = f . (3d)
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We now multiply the left side of Eq. (3d) by (dt/dτ) and its right side by γ, as per Eq. (2), which yields,

m(d(dr/dτ)/dt)(dt/dτ) = γf . (3e)

We simplify the left side of Eq. (3e) and denote γf on its right side as the proper force F to obtain,

m
(
d2r/dτ2

)
= F, (3f)

the relativistic extension of Newton’s Second Law via proper time. An example of Eq. (3f) is the proper force
exerted by an electromagnetic field on a particle of charge e, namely,

F = eγ(E + ((ṙ/c)×B)) . (3g)

The fully Lorentz-covariant four-vector completion of Eq. (3f) must of course read ,

m
(
d2xµ/dτ2

)
= Fµ, (3h)

but the nature of proper time ensures that only three of the four components of the proper force Fµ can be
mutually independent . We begin the demonstration of this fact by using Eq. (2) to show that,

(dxµ/dτ) (dxµ/dτ) = (ẋµẋµ)(dt/dτ)2 = (ẋµẋµ)γ2 =
(
c2 − |ṙ|2

)
/
(
1− |ṙ/c|2

)
= c2, (3i)

which furthermore implies that,(
d2xµ/dτ2

)
(dxµ/dτ) = 1

2 (d((dxµ/dτ)(dxµ/dτ))/dτ) = 1
2

(
d
(
c2
)
/dτ
)

= 0. (3j)

Eq. (3h) together with Eq. (3j) implies that,

Fµ(dxµ/dτ) = m
(
d2xµ/dτ2

)
(dxµ/dτ) = 0. (3k)

Therefore only three of the four components of the proper force Fµ can be mutually independent. In greater
detail, Eq. (3k) together with Eq. (2) yields that,

0 = Fµ(dxµ/dτ) = (Fµẋµ)(dt/dτ) =
(
F 0c− F · ṙ

)
/
(
1− |ṙ/c|2

) 1
2, which implies that F 0 = F · (ṙ/c). (3l)

We thus see that F 0 vanishes altogether in the nonrelativistic limit |ṙ/c| → 0, for which it is also true that

(dt/dτ) = γ =
(
1− |ṙ/c|2

)− 1
2 → 1, so in the nonrelativistic limit Eq. (3h) reduces to Newton’s mr̈ = f .

Eq. (3f) shows that the concept of inertial mass, which is the same as rest mass, is just as relevant to
relativistic physics as it is to Newtonian physics. Indeed, the development of Higgs field physics [2] has
elaborated the inertial mass concept. An intriguing inertia issue is the existence of particles, e.g., photons,
which have zero inertial mass (these are asserted to not couple at all to the Higgs field). According to
Eq. (3c), a zero-inertial-mass particle which has nonzero momentum |p| > 0 has infinite proper-time speed
because |dr/dτ | = limm→0(|p|/m) =∞. We now show that this corresponds to observed speed |ṙ| being c by
inverting the Eq. (2) relation of proper-time velocity (dr/dτ) to observed velocity ṙ, namely,

(dr/dτ) = γṙ =
(
1− |ṙ/c|2

)− 1
2 ṙ.

The inverse of this relation is,

ṙ = (dr/dτ)
(
1 + |(dr/dτ)/c|2

)− 1
2 , (3m)

which has the asymptotic form,

ṙ ∼ c ((dr/dτ)/|dr/dτ |) as |(dr/dτ)/c| → ∞. (3n)

This result shows that zero-inertial-mass particles of nonzero momentum |p| > 0, which therefore have
infinite proper-time speed |dr/dτ | = limm→0(|p|/m) =∞, consequently have observed speed |ṙ| equal to c.

We next work out the proper force Fµ exerted on a mass m relativistic particle by a scalar potential
φ(xα), a four-vector (electromagnetic) potential Aν(xα) and any analogous tensor potential Φν1···νn(xα), as
well as by a metric (gravitational) symmetric second-rank tensor dimensionless potential gµν(xα). To obtain
the equations of motion for these potentials, we construct their relativistic single-particle Lagrangians.
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A rest-frame approach to special-relativistic single-particle Lagrangians

A mass m, ṙ = 0 special-relativistic particle has energy mc2 plus its ṙ = 0 “rest” potential energy Vrest,

Hrest = mc2 + Vrest, (4a)

so since the usual Lagrangian term ṙ ·p vanishes entirely when ṙ = 0, the special-relativistic particle’s “rest”
Lagrangian Lrest and consequent “rest” action Srest are,

Lrest = −Hrest = −
(
mc2 + Vrest

)
⇒ Srest = −

∫ (
mc2 + Vrest

)
dt. (4b)

The special-relativistic extension of Srest is required to be Lorentz invariant , and therefore is of the form,

Sinv = −
∫ (
mc2 + Vinv

)
dτ = −

∫ (
mc2 + Vinv

)
(dτ/dt)dt, (4c)

where dτ is the particle’s Lorentz-invariant differential proper time, and Vinv is its Lorentz-invariant potential
energy, which must reduce to Vrest in the limit ṙ→ 0. Extending Vrest to the Lorentz-invariant Vinv is dealt
with case-by-case. Eq. (4c) implies that the full special-relativistic Lagrangian Lrel is given by,

Lrel = −
(
mc2 + Vinv

)
(dτ/dt). (4d)

The proper force exerted by a scalar potential

A relativistic particle of mass m which couples to a scalar potential φ(xα) with dimensionless coupling

strength k has both V φrest and V φinv equal to (kφ), so from Eqs. (4d) and (2),

Lφ = −
(
mc2 + kφ

)
(dτ/dt) = −

(
mc2 + kφ

)
γ−1 = −

(
mc2 + kφ

)(
1− |ṙ/c|2

) 1
2 . (5a)

Since the generic equation of motion implied by any single-particle Lagrangian L is,

d(∂L/∂ẋi)/dt = (∂L/∂xi), where i = 1, 2, 3, (5b)

it is very useful in the case of the Lagrangian Lφ of Eq. (5a) to note that,(
∂
(
γ−1

)
/∂ẋi

)
= −c−2γẋi = −c−2(dt/dτ)ẋi = −c−2(dxi/dτ). (5c)

From Eqs. (5a)–(5c) we obtain that,

d
((
m+

(
kφ/c2

))
(dxi/dτ)

)
/dt = −k(∂φ/∂xi)(dτ/dt). (5d)

Upon multiplying both sides of Eq. (5d) by (dt/dτ) and noting that xi = −xi, it becomes,

d
((
m+

(
kφ/c2

))
(dxi/dτ)

)
/dτ = k(∂φ/∂xi), (5e)

whose fully Lorentz-covariant four-vector completion clearly is,

d
((
m+

(
kφ/c2

))
(dxµ/dτ)

)
/dτ = k(∂φ/∂xµ). (5f)

Noting that (dφ/dτ) = (∂φ/∂xν)(dxν/dτ), we carry out the outer d/dτ differentiation on the left side of
Eq. (5f) and then move all terms except m

(
d2xµ/dτ2

)
to its right side to obtain,

m
(
d2xµ/dτ2

)
= k

[
(∂φ/∂xµ)−

(
1/c2

)[
(dxµ/dτ)(∂φ/∂xν)(dxν/dτ) + φ

(
d2xµ/dτ2

)]]
= Fµ, (5g)

where Fµ is the proper force φ(xα) exerts on a mass m particle of coupling strength k.
By applying the identities given by Eqs. (3i) and (3j), namely that,

(dxµ/dτ)(dxµ/dτ) = c2 and
(
d2xµ/dτ2

)
(dxµ/dτ) = 0, (5h)

we verify that the Eq. (5g) proper force Fµ satisfies the consistency requirement Fµ(dxµ/dτ) = 0 of Eq. (3k).
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We also note that if the scalar potential φ(xα) is constant in xα, Eq. (5g) implies that,(
m+

(
kφ/c2

))(
d2xµ/dτ2

)
= 0, (5i)

i.e., the particle’s mass m is effectively modified by the addition to it of the constant term
(
kφ/c2

)
. The Higgs

field is thought of as such a constant scalar potential which is able to give an effective mass to otherwise
zero-mass particles if they have nonzero dimensionless coupling strength k with that scalar potential [2].

The proper force exerted by a four-vector (electromagnetic) potential

A particle of mass m and charge e at rest in a four-vector electromagnetic potential Aν(xα) has potential

energy V
Aν(xα)
rest = eA0(xα), whose Lorentz-invariant extension V

Aν(xα)
inv is given by,

V
Aν(xα)
inv = (e/c)(dxν/dτ)Aν(xα).

Thus from Eqs. (4d) and (2),

LAν = −
(
mc2 + (e/c)(dxν/dτ)Aν

)
(dτ/dt) = −mc2γ−1 − (e/c)ẋνA

ν = −mc2γ−1 − eA0 + (e/c)ṙ ·A. (6a)

Applying Eqs. (5b) and (5c) to the Eq. (6a) Lagrangian LAν yields,

d
(
m(dxi/dτ) + (e/c)Ai

)
/dt = −(e/c)ẋν

(
∂Aν/∂xi

)
. (6b)

Multiplying both sides of Eq. (6b) by (dt/dτ) and noting that xi = −xi produces,

d
(
m(dxi/dτ) + (e/c)Ai

)
/dτ = (e/c)(dxν/dτ)(∂Aν/∂xi), (6c)

which we reexpress as,

m
(
d2xi/dτ2

)
= (e/c)

[
(dxν/dτ)(∂Aν/∂xi)−

(
dAi/dτ

)]
. (6d)

Since
(
dAi/dτ

)
=
(
∂Ai/∂xν

)
(dxν/dτ), we can rewrite Eq. (6d) as,

m
(
d2xi/dτ2

)
= (e/c)(dxν/dτ)

[
(∂Aν/∂xi)−

(
∂Ai/∂xν

)]
, (6e)

whose fully Lorentz-covariant four-vector completion clearly is,

m
(
d2xµ/dτ2

)
= (e/c)(dxν/dτ)[(∂Aν/∂xµ)− (∂Aµ/∂xν)]= Fµ, (6f)

where Fµ is the proper force Aµ(xα) exerts on a mass m particle of charge e. The proper force Fµ satisfies
the consistency requirement Fµ(dxµ/dτ) = 0 of Eq. (3k) because (dxν/dτ)(dxµ/dτ) is symmetric under
interchange of ν and µ, whereas [(∂Aν/∂xµ)− (∂Aµ/∂xν)] is antisymmetric under that interchange. Eq. (6f)
also implies Eq. (3g), since for µ = i = 1, 2, or 3,

F i = (e/c)(γẋν)
[
(∂Aν/∂xi)−

(
∂Ai/∂xν

)]
=

eγ
[
−
(
∂A0/∂xi

)
− (1/c)Ȧi

]
+ (e/c)γ

3∑
j=1

(
ẋj
)[(
∂Aj/∂xi

)
−
(
∂Ai/∂xj

)]
=

eγ
(
−
(
∇rA

0
)
− (1/c)Ȧ

)i
+ (e/c)γ ((∇r (ṙ ·A))− ((ṙ · ∇r)A))

i
=

eγ (E + ((ṙ/c)× (∇r ×A)))
i

= eγ (E + ((ṙ/c)×B))
i
.

(6g)

The proper force exerted by a broad class of Lorentz-invariant potential energies

For a tensor potential Φν1···νn(xα), the Lorentz-invariant potential energy V
Φν1···νn(xα)
inv analogous to the

Lorentz-invariant potential energy V
Aν(xα)
inv given above Eq. (6a) for the four-vector potential Aν(xα) is,

V
Φν1···νn(xα)
inv = K(dxν1/dτ) · · · (dxνn/dτ)Φν1···νn(xα).
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This Lorentz-invariant potential energy V
Φν1···νn(xα)
inv is one of a broad class (“bc”) of Lorentz-invariant

potential energies V bc
inv((dxν/dτ), xα) which are functions of the particle’s proper four-velocity (dxν/dτ) and

its space-time location xα. The special-relativistic single-particle Lagrangian Lbc that corresponds to V bc
inv is,

Lbc = −
(
mc2 + V bc

inv((dxν/dτ), xα)
)
γ−1. (7a)

Eq. (5c) tells us that, (
∂
(
γ−1

)
/∂ẋi

)
= −c−2(dxi/dτ), (7b)

and it is similarly the case that,
(∂γ/∂ẋi) = c−2(dxi/dτ)γ2, (7c)

from which we obtain,

(∂(dxν/dτ)/∂ẋi) = (∂(γẋν)/∂ẋi) =
(
c−2(dxi/dτ)(dxν/dτ)− δνi

)
γ. (7d)

We now use Eqs. (7b) and (7d) together with the Eq. (7a) Lagrangian Lbc to calculate (∂Lbc/∂ẋ
i),

(∂Lbc/∂ẋ
i) =

(
(dxi/dτ)

(
m+ c−2V bc

inv

)
−
(
∂V bc

inv/∂(dxν/dτ)
) (
c−2(dxi/dτ)(dxν/dτ)− δνi

))
=(

(dxi/dτ)
(
m+ c−2

(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)

(dxν/dτ)
)))

+
(
∂V bc

inv/∂(dxi/dτ)
))
.

(7e)

Eq. (7a) also yields,
(∂Lbc/∂x

i) = −
(
∂V bc

inv/∂x
i
)
γ−1 =

(
∂V bc

inv/∂xi
)

(dτ/dt), (7f)

where we have used γ−1 = (dτ/dt) and xi = −xi.
Upon multiplying the equation of motion d(∂Lbc/∂ẋ

i)/dt = (∂Lbc/∂x
i) through by (dt/dτ), it becomes,

d(∂Lbc/∂ẋ
i)/dτ = (∂Lbc/∂x

i)(dt/dτ) = ∂V bc
inv/∂xi, (7g)

where the last equality is from Eq. (7f). We next insert the Eq. (7e) (∂Lbc/∂ẋ
i) into Eq. (7g) to obtain,

d
(
(dxi/dτ)

(
m+ c−2

(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

)))
+
(
∂V bc

inv/∂(dxi/dτ)
))
/dτ = ∂V bc

inv/∂xi, (7h)

whose Lorentz-covariant four-vector completion is clearly,

d
(
(dxµ/dτ)

(
m+ c−2

(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

)))
+
(
∂V bc

inv/∂(dxµ/dτ)
))
/dτ = ∂V bc

inv/∂xµ, (7i)

from which we obtain the proper force Fµ,

m(d2xµ/dτ2) = Fµ = − c−2(d2xµ/dτ2)
(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

))
− c−2(dxµ/dτ)d

(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

))
/dτ − d

(
∂V bc

inv/∂(dxµ/dτ)
)
/dτ +

(
∂V bc

inv/∂xµ
)
.

(7j)

We next calculate the value of Fµ(dxµ/dτ) which is implied by the second equality of Eq. (7j), noting from
Eqs. (3i) and (3j) that (dxµ/dτ)(dxµ/dτ) = c2 and (d2xµ/dτ2)(dxµ/dτ) = 0, so,

Fµ(dxµ/dτ) = − d
(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

))
/dτ

−
(
d
(
∂V bc

inv/∂(dxµ/dτ)
)
/dτ
)
(dxµ/dτ) +

(
∂V bc

inv/∂xµ
)
(dxµ/dτ).

(7k)

We expand the first of the three terms on the right side of Eq. (7k) by calculating both that,

− d
(
V bc

inv

)
/dτ = −

(
∂V bc

inv/∂xµ
)
(dxµ/dτ)−

(
∂V bc

inv/∂(dxν/dτ)
)(
d2xν/dτ

2
)
. (7l)

and also that,
d
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

)
/dτ =(

d
(
∂V bc

inv/∂(dxµ/dτ)
)
/dτ
)
(dxµ/dτ) +

(
∂V bc

inv/∂(dxν/dτ)
)(
d2xν/dτ

2
)
.

(7m)
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Adding Eq. (7m) to Eq. (7l) yields the following result for the first term on the right side of Eq. (7k),

− d
(
V bc

inv −
((
∂V bc

inv/∂(dxν/dτ)
)
(dxν/dτ)

))
/dτ =(

d
(
∂V bc

inv/∂(dxµ/dτ)
)
/dτ
)
(dxµ/dτ)−

(
∂V bc

inv/∂xµ
)
(dxµ/dτ),

(7n)

which when substituted into the right side of Eq. (7k) yields,

Fµ(dxµ/dτ) = 0, (7o)

so the broad class of proper forces Fµ given by Eq. (7j) all satisfy the Eq. (3k) consistency requirement .

The proper force exerted by a metric (gravitational) potential

A sufficiently simple special-relativistic dynamical system is coupled to a dimensionless symmetric-tensor
metric potential gµν(xα) by substituting gµν(xα) for occurrences of the Minkowski metric tensor ηµν in the
system’s Lorentz-invariant action. To study a single particle’s interaction with gµν(xα) only , the Lorentz-
invariant action in which occurrences of ηµν are replaced by gµν(xα) must be that of the free particle, i.e.,

Sfree = −
∫
mc2dτ, (8a)

whose Lorentz-invariant proper differential time dτ is given by Eq. (1b),

dτ =
(
(dt)2 − |dr/c|2

) 1
2 = (dxµdxµ)

1
2/c = (dxµηµνdx

ν)
1
2/c. (8b)

Having expressed dτ in terms of ηµν , we replace ηµν by gµν(xα), which changes the Eq. (8a) free-particle
action Sfree to the following action Sgµν for the interaction of the particle with the metric potential gµν(xα),

Sgµν = −
∫
mc(dxµgµνdx

ν)
1
2 = −

∫
mc(ẋµgµν ẋ

ν)
1
2 dt,

from which the Lagrangian Lgµν for the interaction of the particle with gµν(xα) follows,

Lgµν = −mc(ẋµgµν ẋν)
1
2 = −mc

(
ẋ0g00ẋ

0 + 2ẋ0
∑3
j=1 g0j ẋ

j +
∑3
j=1

∑3
k=1 ẋ

jgjkẋ
k
) 1

2

, where ẋ0 = c. (8c)

Since Lgµν is given in the observer’s time t, presenting its equation of motion in the particle’s proper time τ

requires (dτ/dt)—we saw above that the particle’s coupling to gµν(xα) changed dτ from (dxµηµνdx
ν)

1
2/c to

(dxµgµνdx
ν)

1
2/c, which implies that that coupling correspondingly changed (dτ/dt) from (ẋµηµν ẋ

ν)
1
2/c to,

(dτ/dt)gµν
def
= (ẋµgµν ẋ

ν)
1
2/c. (8d)

A crucial physics-related restriction on gµν(xα) is that for all xα, its four matrix eigenvalues are required
have the same signs as the matrix eigenvalues of ηµν , namely {+,−,−,−} [3]. Therefore for all xα, gµν(xα)
has a matrix inverse, which is conventionally denoted gλκ(xα). Thus, for example,

gλκ(xα)gκν(xα) = δλν . (8e)

Before we work out the equation of motion implied by the Eq. (8c) Lagrangian Lgµν , we note the gener-
alizations of the proper-velocity and proper-acceleration identities given by Eqs. (3i) and (3j) that ensue in
the presence of a metric potential gµν(xα). The easily-guessed generalization of the Eq. (3i) identity is,

(dxµ/dτ)gµν(dxν/dτ) = (ẋµgµν ẋ
ν)/((dτ/dt)gµν )2 = c2, (8f)

where the last equality follows from Eq. (8d). The Eq. (3j) identity’s generalization is then obtained via
differentiation with respect to τ of the Eq. (8f) identity,

0 = d
(
c2
)
/dτ = d((dxµ/dτ)gµν(dxν/dτ))/dτ =

2
(
d2xµ/dτ2

)
gµν(dxν/dτ) + (dxµ/dτ)(∂gµν/∂x

κ)(dxκ/dτ)(dxν/dτ),
(8g)
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which implies the following generalization of the Eq. (3j) identity,(
d2xλ/dτ2

)
gλγ(dxγ/dτ) = − 1

2 (dxµ/dτ)(∂gµν/∂x
κ)(dxκ/dτ)(dxν/dτ). (8h)

Given this identity, a purported proper force Fλ on a particle of mass m that is claimed to adhere to,

m
(
d2xλ/dτ2

)
= Fλ, (8i)

must be such that it satisfies the consistency requirement ,

Fλgλγ(dxγ/dτ) = − 1
2m(dxµ/dτ)(∂gµν/∂x

κ)(dxκ/dτ)(dxν/dτ). (8j)

We now work out the equation of motion implied by the Eq. (8c) Lagrangian Lgµν = −mc(ẋµgµν ẋν)
1
2 ,

(∂Lgµν/∂ẋ
i) = − 1

2mc
(

2gi0ẋ
0 + 2

∑3
j=1 gij ẋ

j
)
/(ẋµgµν ẋ

ν)
1
2 =

−mc(giν ẋν)/(c(dτ/dt)gµν ) = −mgiν(dxν/dτ),

(8k)

and,
(∂Lgµν/∂x

i) = − 1
2mc(ẋ

µ(∂gµν/∂x
i)ẋν)/(ẋµgµν ẋ

ν)
1
2 =

− 1
2mc(ẋ

µ(∂gµν/∂x
i)ẋν)/(c(dτ/dt)gµν ) = − 1

2m(ẋµ(∂gµν/∂x
i)(dxν/dτ)).

(8l)

Inserting the Eq. (8k) and (8l) results into the generic Eq. (5b) equation of motion produces,

−m(d(giν(dxν/dτ))/dt) = − 1
2m(ẋµ(∂gµν/∂x

i)(dxν/dτ)). (8m)

After dividing both sides of Eq. (8m) by (dτ/dt)gµν , this equation of motion can be reexpressed as,

−m(d(giν(dxν/dτ))/dτ) = − 1
2m((dxµ/dτ)(∂gµν/∂x

i)(dxν/dτ)). (8n)

The four-vector completion of Eq. (8n) clearly is,

−m(d(gκν(dxν/dτ))/dτ) = − 1
2m((dxµ/dτ)(∂gµν/∂x

κ)(dxν/dτ)). (8o)

Carrying out the outer d/dτ differentiation on the left side of Eq. (8o) yields two terms,

−mgκν
(
d2xν/dτ2

)
−m((dxµ/dτ)(∂gκν/∂x

µ)(dxν/dτ)) = − 1
2m((dxµ/dτ)(∂gµν/∂x

κ)(dxν/dτ)). (8p)

Because ((dxµ/dτ)(dxν/dτ)) is symmetric under interchange of µ and ν, Eq. (8p) can be rewritten as,

−mgκν
(
d2xν/dτ2

)
= 1

2m((dxµ/dτ)[(∂gκν/∂x
µ) + (∂gκµ/∂x

ν)− (∂gµν/∂x
κ)](dxν/dτ)). (8q)

Making use of Eq. (8e), we multiply both sides of Eq. (8q) by −gλκ and sum over the index κ to obtain,

m
(
d2xλ/dτ2

)
= − 1

2mg
λκ(dxµ/dτ)[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)](dxν/dτ) = Fλ, (8r)

where Fλ is the proper force gµν(xα) exerts on a mass m particle.
To check that Fλ satisfies the consistency requirement of Eq. (8j), we use gλκ = gκλ to rewrite Fλ as,

Fλ = − 1
2m(dxµ/dτ)[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)](dxν/dτ)gκλ, (8s)

which, since gκλgλγ = δκγ , yields that,

Fλgλγ(dxγ/dτ) = − 1
2m(dxµ/dτ)[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)](dxν/dτ)(dxκ/dτ) =

− 1
2m(dxµ/dτ)(∂gµν/∂x

κ)(dxκ/dτ)(dxν/dτ),
(8t)

as required by Eq. (8j), where the last equality ensues after appropriately renaming contracted indices.
It is to be noted that Eq. (8r) is conventionally written using the Christoffel symbol Γλµν , i.e. [4],(

d2xλ/dτ2
)

+ (dxµ/dτ)Γλµν(dxν/dτ) = 0 where,

Γλµν = 1
2g
λκ[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)].
(8u)
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