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Abstract: This paper is a didactic exploration of the geometry of the experiments measuring the 
anomalous magnetic moment. It is argued that there may be nothing anomalous about it. We argue that 
Schwinger’s α/2π factor and the other quantum-mechanical corrections might be explained by a form 
factor: the electron should, perhaps, not be thought of as a perfect sphere or a perfect disk. If this 
possibility is allowed for, the anomalous magnetic moment might possibly be explained in terms of a 
classical explanation.    
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The Not-So-Anomalous Magnetic Moment 

I. Classical Theory 

Basic concepts and equations 

The theory around the anomalous magnetic moment is straightforward but complicated at the same 
time. We should note, from the outset, that what is actually being measured in the experiments is a 
ratio of two frequencies. There is, therefore, no direct measurement of the electron’s magnetic moment. 
So, what frequencies are being measured then? We will get into that in a moment. We will first define 
the anomalous magnetic moment because the confusion starts right there – with its definition, that is. 
The Physics Today article on the 2006 experiments1 defines the electron’s anomalous magnetic moment 
(denoted by ae) as the (half-)difference between (1) a supposedly real gyromagnetic ratio (a measured 
ge) and (2) Dirac’s theoretical value for the gyromagnetic ratio of a spin-only electron (g = 2): 

𝑎௘ =
𝑔௘ − 𝑔

2
=

𝑔௘ − 2

2
=

𝑔௘

2
− 1 

That looks like a non-starter to us: it is plain weird to use the (theoretical) g-factor for the intrinsic spin 
of an electron (g = 2) because the electron in the magnetron (a Penning trap) is not a spin-only electron. 
It follows an orbital motion – in fact, there is a superposition of motions here, as we will explain shortly 
– and, hence, if some theoretical value for the g-factor has to be used here, then it should probably the 
g-factor that is associated with the orbital motion of an electron, which is that of the Bohr orbitals (g = 
1). 

The attentive reader may wonder why we italicized the if in the phrase above. The answer is that we do 
so because we think the concept of the gyromagnetic ratio may not be all that useful: in our humble 
view, the introduction of separate g-factors does not clarify but obscure the classical coupling between 
orbital and spin angular momentum. However, we are not there yet. Let us stay clear from the more 
popular accounts of the actual experiments and explore the journal articles themselves.2  

The original experiment was done by a group of researchers from the Physics Department from Harvard 
University and we will use their 2009 article because that is freely available online.3 While this article 
does provide some theory as well, it does not invoke the theoretical g-factor for a spin-only electron. It 
simply writes ae as: 

                                                           
1 See: Physics Today, 1 August 2006, p. 15 (https://physicstoday.scitation.org/doi/10.1063/1.2349714). Physics 
Today is the flagship publication of the American Institute for Physics. While one would not expect top-notch 
journal articles in Physics Today (the aim is more to promote such articles), one would also not expect any 
misrepresentation of research. However, that seems to be the case here.  
2 We will continue to refer to the above-mentioned article a couple of times for the sake of correcting its mistakes. 
3 See: D. Hanneke, S. Fogwell, N. Guise, J. Dorr and G. Gabrielse, More Accurate Measurement of the Electron 
Magnetic Moment and the Fine-Structure Constant, in: Proceedings of the XXI International Conference on Atomic 
Physics. As mentioned, we prefer this article over the 2006 article (G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, 
and B. Odom, New Determination of the Fine Structure Constant from the Electron g Value and QED, Phys. Rev. 
Lett. 97, 030802, 2006) because it can be freely consulted online: 
http://gabrielse.physics.harvard.edu/gabrielse/papers/2009/PushingTheFrontiersOfAtomicPhysics.pdf. 
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𝑎௘ =
𝑔

2
− 1 

The 2009 article states that the measured value of g/2 is equal to 1.00115965218073(28). The 28 
(between brackets) is the (un)certainty: it is equal to 1.00000000000028, i.e. 28 parts per trillion (ppt) 
and it is measured as a standard deviation. In 2006, its measured value was 1.00115965218085(76), so 
that’s an improvement in the accuracy of a factor of about 73/28 ≈ 2.7. More recent experiments have 
come up with even more precise numbers. However, let us repeat that these experiments do not 
directly measure ae. What is being measured in the  Penning traps that are used in these experiments 
are frequencies. What frequencies? According to the mentioned Physics Today article, only two 
frequencies matter: a cyclotron frequency – which is defined as the frequency of the electron orbitals in 
the cyclotron (a Penning trap4) – and a precession frequency – which is said to be caused by the 
electron’s intrinsic spin. According to the same article, the anomalous magnetic moment ae is then 
defined as the fractional difference between the two: 

𝑎௘ =
𝑓௦

𝑓௖
− 1 

The two frequencies can be easily calculated – we will do so in a moment5 - but we should first note that 
the Physics Today formula is a simplification which may or may not make sense. The motion in these 
Penning traps is very complicated and one needs to think about three motions and, therefore, three 
frequencies – for starters, that is. The three frequencies are illustrated below.6 

 

 Figure 1: The three principal motions and frequencies in a Penning trap 

                                                           
4 The terms cyclotron and magnetron are, de facto, used interchangeably. This is a bit regrettable, but it is what it 
is. In any case, the Penning trap combines features of both: there is a magnetic field and an electric field. 
5 An easy-to-follow derivation for the cyclotron frequency is: https://www.didaktik.physik.uni-
muenchen.de/elektronenbahnen/en/b-feld/anwendung/zyklotron2.php. As for the precession frequency, we refer 
to Feynman’s Lectures (II-34-3, The Precession of Atomic Magnets): 
http://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S3.   
6 We took this illustration from an excellent article on the complexities of a Penning trap: Cylotron frequency in a 
Penning trap, Blaum Group, 28 September 2015 (https://www.physi.uni-
heidelberg.de/Einrichtungen/FP/anleitungen/F47.pdf).  
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Let us go through the motions – literally! We first have the cyclotron frequency, which is written as ω 
here and which – confusingly – should actually be referred to as the magnetron frequency: in the 
context of a Penning trap, one will, effectively refer to the ω+ motion as the cyclotron frequency, while 
the circular motion (associated with the ω frequency) is the magnetron frequency. The reason is 
simple: the regular circular motion ω is caused by the magnetic field (B) – and the magnetic field only. 
In contrast, the ω+ is caused by an additional electric field (E). We will come back to this. As we are now 
used to the subscript c, we should probably think of c for circular then.  

It is the orbital motion – the blue loop – and the related frequency is easily calculated from a simple 
analysis of the Lorentz force, which is just the magnetic force here: 𝐅 =  q(𝒗 × 𝐁). This force equals the 
centripetal force here. We can therefore write: 

q ∙ 𝑣 ∙ B = F௖ = 𝑚 ∙ F௖ =
𝑚𝑣ଶ

𝑟
 

The v2/r factor is the centripetal acceleration, and the mass factor is just the equivalent mass of the rest 
energy of the electron. Hence, the F = m·v2/r does effectively represent Newton’s force law. The 
equation above yields the following formula for v and the v/r ratio: 

𝑣 =
q ∙ 𝑟 ∙ B

m
⇒

𝑣

𝑟
=

q ∙ B

m
 

Note that the velocity will usually be non-relativistic (v << c). One should, therefore, not be confused by 
the subscript: the c in fc stands for circular, centripetal, or – preferably not for the reasons mentioned 
above – cyclotron. Hence, c stands for everything but the speed of light ! We can now derive the orbital 
frequency fc from the following equation: 

𝑣 = ω ∙ 𝑟 = 2π ∙ 𝑓௖ ∙ 𝑟 ⟺ 𝑓௖ =
𝑣

2π ∙ 𝑟
 

Re-arranging and substituting v for q·r·b/m yields the formula we expected to find: 

𝑓௖ =
q ∙ B

2π ∙ m
 

Note that the frequency does not depend on the velocity or the radius of the circular motion. This is 
actually the whole idea of the trap: the electron can be inserted into the trap with a precise kinetic 
energy and will follow a circular trajectory if the magnetic field can be kept constant. Let us now 
calculate the associated magnetic moment and the angular momentum. To calculate the magnetic 
moment, we can calculate the associated current, which is equal to: 

I = q ∙ 𝑓 = q
𝑣

2π ∙ 𝑟
=

qଶ ∙ B

2π ∙ m
 

The magnetic moment (μ) is equal to the current times (I) times the area of the loop (πr2). We get: 

μ = I ∙ π ∙ 𝑟ଶ = q
𝑣

2π ∙ 𝑟
∙ π ∙ 𝑟ଶ =

q ∙ 𝑣 ∙ 𝑟

2
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For the angular momentum (L), we need to calculate the moment of inertia (I).7 For regular shapes, we 
always have an easy formula for the moment of inertia and, hence, for the angular momentum: it is just 
mr2 times a form factor. The form factor for a disk, for example, is 1/2. We write: I = (1/2)·mr2. However, 
here we just have a rotating point mass. Hence, the form factor is 1 and we can simply write: 

L = 𝐼 ∙ ω = m𝑟ଶ ∙
𝑣

𝑟
= m ∙ 𝑟 ∙ 𝑣 

Hence, we can write the g-factor for the orbital motion as: 

𝑔௖ =
2m

q

μ

L
=

2m

q
∙

q ∙ 𝑣 ∙ 𝑟

2m ∙ 𝑟 ∙ 𝑣
= 1 

It is what we would expect it to be: it is the gyromagnetic ratio for the orbital angular momentum of the 
electron. It is one, not 2.  

We should now note a very common mistake. Because the g-factor is equal to 1 for the orbital, it is 
tempting to write the following: 

2m

q

μ

J
= 1 ⇔

μ

J
=

q

2m
 

However, this is an identity which should not be used in subsequent calculations when analyzing the 
other motions. One first needs to examine what the impact of the two other oscillatory motions will be 
on the current, the magnetic moment and the angular momentum. In other word, it would, effectively, 
be a logical mistake to conclude – from the analysis above only, which is the analysis of just one layer in 
the motion of our electron – that the g-factor for the whole system should be equal to 1.  

Such mistake is, in effect, of the same order as the mistake made in the mentioned Physics Today article, 
where the author – for some obscure reason (probably lack of familiarity with the topic) – assumes the 
g-factor for the whole system should, somehow, be equal to 2. 

The form factor 

We mentioned what we refer to as a form factor in the context of the angular momentum because it 
explains the g = 2 result for the intrinsic spin moment of an electron in the Zitterbewegung model or – if 
the reader prefers a more sophisticated model – the Dirac-Kerr-Newman electron.8  The formulas below 
illustrate the profound difference between the concept of intrinsic spin and the concept of orbital 
angular momentum.  

                                                           
7 J is the symbol which Feynman uses. In many articles and textbooks, one will read L instead of J. Note that the 
symbols may be confusing: I is a current, but I is the moment of inertia. It is equal to m·r2 for a rotating mass. 
8 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008 (https://arxiv.org/abs/hep-
th/0507109). For the (much simpler) Zitterbewegung model, see: Jean Louis Van Belle, A geometric interpretation 
of Schrödinger’s equation, 12 December 2018 (http://vixra.org/pdf/1812.0202v1.pdf).  
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Table 1: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S௡ = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐ଶ E௡ = −
1

2

αଶ

𝑛ଶ
m𝑐ଶ = −

1

𝑛ଶ
Eோ  

𝑟 = 𝑟େ =
ℏ

m𝑐
 𝑟௡ = 𝑛ଶ𝑟୆ =

𝑛ଶ𝑟େ

α
=

𝑛ଶ

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣௡ =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=

E

ℏ
 ω௡ =

𝑣௡

𝑟௡

=
αଶ

𝑛ଷℏ
m𝑐ଶ =

1
𝑛ଶ αଶm𝑐ଶ

𝑛ℏ
 

L = 𝐼 ∙ ω =
ℏ

2
 L௡ = 𝐼 ∙ ω௡ = 𝑛ℏ 

μ = I ∙ π𝑟େ
ଶ =

qୣ

2m
ℏ μ௡ = I ∙ π𝑟௡

ଶ =
qୣ

2m
𝑛ℏ 

g =
2m

qୣ

μ

L
= 2 g௡ =

2m

qୣ

μ

L
= 1 

 

Note that the formulas in the right column are the formulas for the properties of the Bohr orbitals. 
These resemble the cyclotron orbitals – to some extent – but one should not confuse them: the 
cyclotron orbitals have no nucleus at their center. In fact, the oft-quoted description of these magnetron 
orbitals – or of the Penning trap itself – as an artificial atom9 is quite confusing and, therefore, not very 
useful: the radius and kinetic energy of the electron in a magnetron is of an entirely different order of 
magnitude! As such, we should – perhaps – not have mentioned the Bohr orbitals. We did so only to 
point to the popular misconception that, somehow, these electrons in Penning traps would resemble an 
electron in an atom. They do not. There are similarities, but these may actually be misleading – as 
opposed to helpful – in our understanding of what’s going on.  

We have been quite verbose here. Let us, therefore, move on and have a look at the other frequencies 
now. Before we do so, we should point out that the formulas above do show us the natural unit for 
measuring a magnetic moment. Indeed, one recognizes the Bohr magneton in the formulas, which is 
defined as: 

μ୆ =
qୣ

2m
ℏ ≈ 9.274 ∙ 10−24 J

T
 

The J/T unit is joule (J) per tesla (T). Needless to say, the tesla is the SI unit for the magnitude of a 
magnetic field. We can also write it as [B] = N/(m·A), using the SI unit for current, i.e. the ampere (A). 
Now, 1 C = 1 A·s and, hence, 1 N/(m·A) = 1 (N/C)/(m/s). Hence, the physical dimension of the magnetic 
field is the physical dimension of the electric field (N/C) divided by m/s. We like the [E] = [B]·m/s 
                                                           
9 See, for example, this story: https://physics.aps.org/story/v4/st11, which variously describes the Penning trap as 
a ‘quantum cyclotron’ and ‘an example of an artificial atom.’ We think such language is exaggerated or, worse, 
misleading and, therefore, inappropriate. 
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expression because it reflects the geometry of the electric and magnetic field vectors. Onwards! 

Precession 

We will first deal with the precession, because that is easiest to explain. The fs frequency in the Physics 
Today article is the Larmor or precession frequency. It is a classical thing: if we think of the electron as a 
tiny magnet with a magnetic moment that is proportional to its angular momentum, then it should, 
effectively, precess in a magnetic field. In the illustration above, it is written as the angular frequency ωz. 
That notation makes a lot of sense because it is, effectively, an oscillation along the z-direction 
(assuming the xy-plane is the plane of the orbital rotation). It is, therefore, also referred to as an axial 
frequency. 

However, we will argue it is not exactly along the z-direction: there is a classical coupling between the 
two motions. Let us analyze it. The geometry of the situation is shown below.  

 

Figure 2: The precession of an orbital electron 

Let us go through the derivation of the formula for the precession frequency10. The angular momentum 
change from J to J’ in some small time interval t. The boldfaced J to J’ makes it clear these are vector 
quantities: their magnitude is the same, but their direction is not. In fact, that is the whole point of the 
analysis. The angle with the z-direction – which is the direction of the magnetic field B – is equal to the 
angle of precession, which we write as . Now, we wrote J to J’ as vectors, but the J in the illustration is 
an actual distance – not a vector. The geometry of the situation shows us that we can write it as: 

ΔJ=(J·sin)·(ωp·Δt) 

Hence, the rate of change of the angular momentum is equal to: 

𝑑J

𝑑𝑡
= ω௣ · J · 𝑠𝑖𝑛θ 

This must equal the torque11: 

                                                           
10 This derivation is taken from Feynman’s Lectures (II-34-3), from which we also copied the illustration – to which 
we added the angular momentum vector L. We like it because it is precise but intuitive at the same time. 
11 We are sorry to have to bother the reader with the basics of circular motion, but it is necessary. 
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τ = μ · B · 𝑠𝑖𝑛θ 

We, therefore, can write the following: 

ω௣ ∙ J =
𝑑J

𝑑𝑡
·

1

𝑠𝑖𝑛θ
=

τ

𝑠𝑖𝑛θ
=

μ · B · 𝑠𝑖𝑛θ

𝑠𝑖𝑛θ
= μ · B ⟺ ω௣ =

μ

J
∙ B 

What g-factor would we associate with this? It is tempting to think it is just the same one and – 
technically speaking – it is. We’re just measuring in another plane. Indeed, the plane of rotation is 
wobbling around now but we can still define a g-factor for it. The velocity v and radius r remain the 
same, right? They do. We can, effectively, write something like this: 

𝑔௣ =
2m

q

μ

J
=

2m

q
∙

q ∙ 𝑣 ∙ 𝑟

2m ∙ 𝑟 ∙ 𝑣
= 1 

However, this does not make much sense, because we have a new angular momentum J and μ here. 
Their magnitude is the same as that of the L and μ vectors we were looking at before – when we were 
considering orbital motion only, but their direction has changed. To be precise, we can write the orbital 
angular momentum vector L as a vector dot product of the angular precession vector ωp and the new 
angular momentum vector J: 

𝐋 = 𝛚𝒑 ∙ 𝐉 = ห𝛚𝒑ห ∙ |𝐉| · 𝑠𝑖𝑛θ = ω௣ ∙ J · 𝑠𝑖𝑛θ 

This equation gives us the coupling between the orbital and precessional motion. The precession 
effectively causes the electron to wobble: its plane of rotation – and, hence, the axis of the angular 
momentum (and the magnetic moment) – is no longer fixed. This wobbling motion changes the orbital 
plane constantly and we can, therefore, we can no longer trust the values we have used in our formulas 
for the angular momentum and the magnetic moment. At first, we may think there will no impact on the 
current. Taking a radial view, the motion along the z-direction is going to look like this: 

 

Figure 3: A radial view of the precessional rotation 

Hence, we may think there will be no change in the amount of current that is going around, because 
electric charge is relativistically invariant: the up-and-down motion comes with a higher (linear) velocity, 
but that does not cause any change in the amount of charge over the distance, which we wrote as λ = r 
in the illustration above. However, it is easy to see that the up-and-down motion will follow an arc-like 
trajectory – as illustrated below – which is going to reduce the effective radius of the orbital loop. As 
such, the effective current will also diminish. That is only logical because the energy – and the physical 



8 
 

action – in the loop remains the same. It is now just distributed over two superposed motions, rather 
than just one.   

 

Figure 4: A sideway view of the precessional rotation 

Now, the formulas above give us the angle that is to be associated with this arc: it is just the angle of the 
precession: we just turned it by 90 degrees. Hence, we may be tempted to just substitute the new 
values into the equations for the orbital magnetic moment (and the orbital angular momentum) and 
consider the problem solved but, no! We would, once again, make another logical mistake: we need to 
look at the system as a whole and, therefore, we need to solve a set of equations. At this point, we 
would like to quickly clarify why we wrote – somewhat disrespectfully, perhaps – that the introduction 
of separate g-factors does not clarify but obscure the classical coupling between orbital and spin angular 
momentum.  

Indeed, as we have pointed above, it is a mistake to equate the orbital angular momentum vector L with 
the combined angular momentum vector J. By now, the reader of this paper will say: yes, of course! 
However, this is what is, effectively, being done when calculating those ratios of g-factors. Let us have 
another look at this logical error that is routinely made in the more popular presentations of the 
experiment – and, more in particular, in the mentioned Physics Today article. The author associates a 
gyromagnetic ratio with the precessional motion. Logically, it should be equal to 1. We then get the 
following formula: 

𝑎௘ =
𝑔௣ − 𝑔௖

𝑔௖
=

𝑔௣ − 1

1
=

1 − 1

1
= 0 

Note that he or she made not one but two mistakes. First, it was totally random to equate gc with 2. 
Second, it makes no sense whatsoever to calculate a numerical ratio of these two quantities: the 
underlying vector quantities don’t have the same direction. The equation, therefore, becomes 
meaningless. In fact, if the equation would make sense – which it doesn’t – we should not wonder why 
the anomalous magnetic moment is not equal to one, but why it’s not equal to zero! 

Let us move to third layer of motion in the diagram above. 

The cyclotron frequency 

A Penning trap combines features of a magnetron and a cyclotron. There is a magnetic field – which 
explains the magnetron frequency (mistakenly referred to as the cyclotron frequency in the mentioned 
Physics Today article) – and there is an electric field, which explains what we’re going to explain now: 
the cyclotron frequency. It is the ω+ oscillation: a circular motion within the orbital motion, so to speak. 
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As mentioned, it is there because of the electric field (E) which – together with the magnetic field – 
keeps the electron effectively trapped in the… Well… The Penning trap. 😊 

 

Figure 5: The electric and magnetic fields in a Penning trap12 

We will not say too much about this, except that the velocities involved are (also) non-relativistic. All in 
all, the motion resembles Ptolemean physics – circular motion within circular motion, as illustrated 
below.13 

 

Figure 6: Ptolemean loops 

The large circular motion is referred to as the deferent, while the smaller circular motion is known as the 
epicycle. If we denote the (angular) frequency of the deferent and epicyclical motion as ω and ω+ 
respectively, then the illustrations below show what we get from combining the ω and ω+  motions.    

                                                           
12 The diagram is from Wikipedia (https://upload.wikimedia.org/wikipedia/commons/b/b6/Penning_Trap.svg).  
13 The first illustration is taken from the Project Gutenberg e-publications: The Life of Galileo, written by John Elliot 
Drinkwater Bethune (https://www.gutenberg.org/files/43877/43877-h/43877-h.htm). It is supposed to represent 
the motion of planets in the Ptolemean system. The second is the author’s simpler rendition of the pretty much 
the same thing – but in the context of presumed electron orbitals. 
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Figure 7: Ptolemean physics? 

The combined motion is referred to as an epitrochoid, and the illustration on the left shows the motion 
for ω+ = 0. Note that, if we are rotating a disk which can freely rotate itself, its inertia will not cause any 
rotation of the disk itself. Any point on that disk will, therefore, just cover the same distance as any 
point on the deferent. Hence, the epitrochoid will just describe the same circle as the deferent, but its 
center will move about. This leads to something interesting. Indeed, carefully look at the illustration on 
the right-hand side: the ratio of the two frequencies is equal to 8, but we do not have 8 loops within the 
larger loop. There are only 7. 

OK. This is all very interesting, but the question is: what is the impact on the (electric) current and, 
therefore, on the magnetic moment? We repeat the formulas here:  

I =
q

T
= q ∙ 𝑓 = q

𝑣

2π ∙ 𝑟
 

μ = I ∙ π ∙ 𝑟ଶ = q
𝑣

2π ∙ 𝑟
∙ π ∙ 𝑟ଶ =

q ∙ 𝑣 ∙ 𝑟

2
 

We are not very well versed in the math of epitrochoids but, intuitively, it would seem the superposition 
of the two motions would not change anything in regard to the current: the velocity (v) and the distance 
(r) will constantly change, of course, but the charge that goes round and round is the same and, hence, 
there will be some effective velocity and radius that will give us the same current we get from simple 
orbital motion.14 Hence, Ptolemean physics are probably not going to help to explain the anomalous 
frequency. However, they do need to be considered when calculating what is being calculated in these 
experiments. Indeed, it is now time to answer the burning question: what is actually being measured in 
those experiments? 

What is being measured, exactly?  

Let us give you the formula from the mentioned 2009 article of the Harvard group: 

                                                           
14 We may also note that charge – unlike mass or energy – is relativistically invariant. 
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Figure 8: The formula for the measured anomalous magnetic moment 

Does this make your headache any worse? If not, it should. We will refer to the mentioned article15 for 
the methodology. However, you can make sense of this equation by noting we do have three 
frequencies here, plus the so-called anomalous frequency, which is… Well… The supposed anomaly. 
Think of the other factors as relativistic and other corrections – which is what they are, really. 

The point is: when you see this formula – and considering the complexities as explained above – one 
really starts to wonder why the anomalous magnetic moment is, effectively, so nearly one. Indeed, what 
we find is that all these complicated motions, taken altogether, give us a (theoretical) gyromagnetic 
ratio that is very nearly equal to two. 

Yes, two. Not one. Because ae = g/2. Hence, we write, somewhat disrespectfully: 

𝑔௘ ≈ 2.00232 

We should, of course, give you the 14 digits but… Well… You can find them, right? 

  

                                                           
15 D. Hanneke, S. Fogwell, N. Guise, J. Dorr and G. Gabrielse, More Accurate Measurement of the Electron Magnetic 
Moment and the Fine-Structure Constant, in: Proceedings of the XXI International Conference on Atomic Physics. 
We prefer this article over the 2006 article (G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, New 
Determination of the Fine Structure Constant from the Electron g Value and QED, Phys. Rev. Lett. 97, 030802, 2006) 
because it can be freely consulted online: 
http://gabrielse.physics.harvard.edu/gabrielse/papers/2009/PushingTheFrontiersOfAtomicPhysics.pdf. 
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II. The quantum-mechanical explanation 

Quantum physicists explain the anomaly in the magnetic moment as a series of first-, second-, third-, nth-
order corrections, which are written as follows: 

𝑎௘ = ෍ 𝑎௡ ቀ
α

π
ቁ

௡

௡

 

The first coefficient (a1) is equal to 1/2 and the associated first-order correction is, therefore, equal to: 

α/2π ≈ 0.00116141 

Using “his renormalized QED theory”, Julian Schwinger had already obtained this value back in 1947. He 
got it from calculating the “one loop electron vertex function in an external magnetic field.” I am just 
quoting here from a well-informed article (Todorov, 201816). Indeed, Todorov’s article is an article that 
beautifully describes the math behind this “tennis match between experiment and theory” – as Brian 
Hayes referred to it.17  

Julian Schwinger is, of course, one of the most prominent representatives of the second generation of 
quantum physicists, and he has this number on this tombstone. Hence, we surely do not want to 
question the depth of his understanding of this phenomenon. However, the difference that needs to be 
explained by the 2nd, 3rd, etc. corrections is only 0.15%, and Todorov’s work shows all of these 
corrections can be written in terms of a sort of exponential series of α/2π and a phi-function φ(n) which 
had intrigued Euler for all of his life. We copy the formula for the (the sum of) the first-, second- and 
third-order term of the theoretical value of ae as calculated in 1995-1996 (th : 1996).18  

 

We also quote Todorov’s succinct summary of how this result was obtained: “Toichiro Kinoshita of 
Cornell University evaluated the 72 [third-order loop Feynman] diagrams numerically, comparing and 
combining his results with analytic values that were then known for 67 of the diagrams. A year later, the 

                                                           
16 See: Ivan Todorov, From Euler’s play with infinite series to the anomalous magnetic moment, 12 October 2018 
(https://arxiv.org/pdf/1804.09553.pdf).   
17 See: Brian Hayes, Computing Science: g-ology, in: American Scientist, Vol. 92, No. 3, May-June 2004, pages 212-
216. The subtitle says it all: it is an article ‘on the long campaign to refine measurements and theoretical 
calculations of a physical constant called the g factor of the electron.’ 
(https://pdfs.semanticscholar.org/4c12/50f66fc1fb799610d58f25b9c1e1c2d9854c.pdf).   
18 It is worth quoting Todorov’s succinct summary of how this result was obtained: Toichiro Kinoshita of Cornell 
University evaluated the 72 [Feynman] diagrams [corresponding to the third-order loop] numerically, comparing 
and combining his results with analytic values that were then known for 67 of the diagrams. later the last few 
diagrams were calculated analytically by Stefano Laporta and Ettore Remiddi of the University of Bologna. 
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last few diagrams were calculated analytically by Stefano Laporta and Ettore Remiddi of the University 
of Bologna.” 

Apparently, the calculations are even more detailed now: the mentioned Laporta claims to have 
calculated 891 four-loop contributions to the anomalous magnetic moment.19  

Hence, what is going on here? One gets an uncanny feeling here: if one has to calculate a zillion integrals 
all over space using 72 third-order diagrams to calculate the 12th digit in the anomalous magnetic 
moment, or 891 fourth-order diagrams to get the next level of precision, then there might something 
wrong with the theory. Is there an alternative? We think there is, and the idea is surprisingly simple. We 
explore a possible classical solution to the problem in the next and final section of our paper. 

 

  

                                                           
19 See: Stefano Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED,  
Stefano  (https://www.sciencedirect.com/science/article/pii/S0370269317305324). 
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III. The elements for a classical explanation 

In light of what we wrote above, it is obvious that our suggestion that there might be some rather 
simple classical explanation for the anomalous magnetic moment is quite disrespectful. However, that is 
what we are going to do: we are going to think of a very simple classical explanation: the form factor in 
the moment of inertia. 

As mentioned, for regular shapes, we always have an easy formula for the moment of inertia: it is just 
mr2 times a form factor. The idea is the following. The form factor for a disk is 1/2: I = (1/2)·mr2. It is this 
form factor which explains the g = 2 result for the intrinsic spin moment of an electron in the 
Zitterbewegung model or – if the reader prefers a more sophisticated model – the Dirac-Kerr-Newman 
electron.20 Now, we have detailed the model elsewhere and, hence, we will not go into too much detail 
here.21 It is an interpretation of an electron which goes back to Schrödinger and Dirac22, and which 
combines the idea of motion with the idea of a pointlike charge, which has no inertia and can, therefore, 
move at the speed of light. The most spectacular result of the model is the explanation for the rest mass 
of an electron: it is the equivalent mass of what we referred to as the rest matter oscillation. The model 
also gives the right formulas for all the measured properties of a free electron, such as angular 
momentum, magnetic moment, g-factor, etcetera:  

Table 2: The properties of the free electron (spin-only) 

Spin-only electron (Zitterbewegung) 

S = h 

E = m𝑐ଶ 

𝑟 = 𝑟େ =
ℏ

m𝑐
 

𝑣 = 𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=

E

ℏ
 

                                                           
20 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008 (https://arxiv.org/abs/hep-
th/0507109). For the (much simpler) Zitterbewegung model, see: Jean Louis Van Belle, A geometric interpretation 
of Schrödinger’s equation, 12 December 2018 (http://vixra.org/pdf/1812.0202v1.pdf).  
21 See, for example, Jean Louis Van Belle, Einstein’s Mass-Energy Equivalence Relation: an Explanation in Terms of 
the Zitterbewegung, 24 November 2018 (http://vixra.org/abs/1811.0364).  
22 Erwin Schrödinger derived the Zitterbewegung as he was exploring solutions to Dirac’s wave equation for free 
electrons. In 1933, he shared the Nobel Prize for Physics with Paul Dirac for “the discovery of new productive 
forms of atomic theory”, and it is worth quoting Dirac’s summary of Schrödinger’s discovery: “The variables give 
rise to some rather unexpected phenomena concerning the motion of the electron. These have been fully worked 
out by Schrödinger. It is found that an electron which seems to us to be moving slowly, must actually have a very 
high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a 
result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 
prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high 
and its amplitude is so small. But one must believe in this consequence of the theory, since other consequences of 
the theory which are inseparably bound up with this one, such as the law of scattering of light by an electron, are 
confirmed by experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 1933) 
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L = 𝐼 ∙ ω =
ℏ

2
 

μ = I ∙ π𝑟େ
ଶ =

qୣ

2m
ℏ 

g =
2m

qୣ

μ

L
= 2 

 

The reader should keep his wits about him23 here: the Zitterbewegung model should not be confused 
with the model for the Bohr orbitals. We do not have any centripetal force here. There is no nucleus or 
other charge at the center of the Zitterbewegung. Instead of a tangential momentum vector, we have a 
tangential force vector (F), which we thought of as being the resultant force of two perpendicular 
oscillations.24 This led us to boldly equate the E = mc2, E = m·a2·ω2 and E = ħ·ω equations – which gave us 
all the results we wanted. The zbw model – which, as we have mentioned in the footnote above, is 
inspired by the solution(s) for Dirac’s wave equation for free electrons – tells us the velocity of the 
pointlike charge is equal to c. Hence, if the zbw frequency would be given by Planck’s energy-frequency 
relation (ω = E/ħ), then we can easily combine Einstein’s E = mc2 formula with the radial velocity 
formula (c = a·ω) and find the zbw radius, which is nothing but the (reduced) Compton wavelength: 

𝑟େ୭୫୮୲୭୬ =
ℏ

m𝑐
=

λୣ

2π
≈ 0.386 × 10ିଵଶ m 

By now, the reader will probably wonder: what is the point here? What is the relation with the 
anomalous magnetic moment? The point is that the calculations also relate the Bohr radius to the 
Compton radius through the fine-structure constant: 

𝑟୆୭୦୰ =
ℏଶ

meଶ
=

4πε଴ℏଶ

mqୣ
ଶ

=
1

α
 ∙ 𝑟େ୭୫୮୲୭୬ =

ℏ

αm𝑐
≈ 53 × 10ିଵଶ m 

The same fine-structure constant also relates the respective velocities, frequencies and energies of the 
Bohr and Compton oscillations. Indeed, one easily show the following: 

𝑣 = α ∙ 𝑐 = 𝑟୆ ∙ ω୆ =
ℏ

αm𝑐
∙

αଶm𝑐ଶ

ℏ
= α ∙ 𝑐 ⇔ ω୆ =

αଶm𝑐ଶ

ℏ
 

The fact that the fine-structure constant pops up naturally here – as a dimensional constant, so to speak 
– makes us feel that this might explain two things in one movement: 

1. Why the measured g-factor is so close to two – i.e. the g-factor that is related to the spin angular 
momentum – as opposed to one, which is the g-factor that is related to the orbital angular 
momentum. 

2. Why the difference between the measured g-factor and 2 is equal to Schwinger’s α/2π factor. 

                                                           
23 The him could be a her, of course. 
24 A metaphor for such oscillation is the idea of two springs in a 90-degree angle working in tandem to drive a 
crankshaft. The 90-degree ensures the independence of both motions. See: Jean Louis Van Belle, Einstein’s mass-
energy equivalence relation: an explanation in terms of the Zitterbewegung, 24 November 2018 
(http://vixra.org/pdf/1811.0364v1.pdf).  
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The latter idea is related to the fact that we also have a classical electron radius, which is equal to25: 

𝑟୘୦୭୫ୱ୭୬ = 𝑟 =
eଶ

m𝑐ଶ
= α

ℏ𝑐

m𝑐ଶ
≈ 2.818 × 10ିଵହ m 

Hence, we have a trio of radii here, all related by the same constant (α): 

𝑟 = α ∙ 𝑟େ = αଶ ∙ 𝑟୆ 

If the fine-structure constant acts as a dimensional constant here, would it be any surprise it pops up as 
a form factor when calculating angular momenta? For us, this is an obvious intuition. Having said that, 
an intuition is, obviously, something else than a full-blown proof, of course. Of course, the second- and 
third-order corrections will also need explain. However, relativistic corrections may go a long here. 

Indeed, the Lorentz factor for v = α·c is equal to 1.000026627, and the table below shows we can also 
very rapidly explain a second-order difference when combining this factor with Schwinger’s α/2π factor. 

Table 3: Successive corrections using α/2π and the Lorentz factor 

α 0.00729735256640 
α/2π 0.00116140973243 

ae 0.00115965218073 
First-order difference -0.00000175755170 

% -0.152% 
Lorentz factor (γ) 1.00002662674068 

γα/2π 0.00116144065698 
Remaining difference -0.00000003092538 

% -0.003% 
 

Hence, the suggestion is that the so-called anomaly in the anomalous magnetic moment is just a simple 
form factor. In other words, the idea here is to not think of the electron as a perfect sphere or a perfect 
disk. 

Jean Louis Van Belle, 21 December 2018 

 

References 

All references are given in the footnotes.  

                                                           
25 The e2 is the squared electron charge but expressed in its natural unit: itself. Expressed in SI units, it is written as 
k·qe

2 = qe
2/4πε0. 


