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Abstract: This paper is a very short didactic exploration of the geometry of the experiments measuring 
the anomalous magnetic moment. It is argued that there is nothing anomalous about it. The Larmor 
precession invalidates the usual substitution that is made for the gyromagnetic ratio of the precessional 
motion. In fact, if the substitution is made, one gets a value of 1/2 instead of zero. We should, 
therefore, not wonder why the anomalous magnetic moment is not equal to zero, but why it is so nearly 
zero. 

Text: What is referred to as the electron’s anomalous magnetic moment is actually not a magnetic 
moment. It is just some (real) number: it does not have a physical dimension – as opposed to, say, an 
actual magnetic moment, which – in the context of quantum mechanics – is measured in terms of the 
Bohr magneton μB = qeħ/2m ≈ 9.274×10−24 joule per tesla.1 To be precise, the electron’s anomalous 
magnetic moment – denoted by ae – is usually defined as the (half-)difference between (1) a supposedly 
real gyromagnetic ratio (ge) and (2) Dirac’s theoretical value for the gyromagnetic ratio of a spin-only 
electron (g = 2)2: 
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𝑔௘ − 𝑔
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𝑔௘ − 2

2
=
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2
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It is weird to use the g-factor for a spin-only electron, because the electron in the cyclotron (a Penning 
trap) is actually not a spin-only electron: it follows an orbital motion – as we will explain shortly. It is also 
routinely said (and written) that its measured value is 0.00115965218085(76). The 76 (between 
brackets) is the (un)certainty: it is equal to 0.00000000000076, i.e. 76 parts per trillion (ppt) and it is 
measured as a standard deviation.3 However, the experiments do not directly measure ae. What is 
actually being measured in the  Penning traps that are used in these experiments are two slightly 
different frequencies – an orbital frequency and a precession frequency, to be precise – and ae is then 
calculated as the fractional difference between the two: 

                                                           
1 Needless to say, the tesla is the SI unit for the magnitude of a magnetic field. We can also write it as [B] = 
N/(m∙A), using the SI unit for current, i.e. the ampere (A). Now, 1 C = 1 A∙s and, hence, 1 N/(m∙A) = 1 (N/C)/(m/s). 
Hence, the physical dimension of the magnetic field is the physical dimension of the electric field (N/C) divided by 
m/s. We like the [E] = [B]∙m/s expression because it reflects the geometry of the electric and magnetic field 
vectors. 
2 See: Physics Today, 1 August 2006, p. 15 (https://physicstoday.scitation.org/doi/10.1063/1.2349714). The article 
also explains the methodology of the experiment in terms of the frequency measurements, which we explain 
above.  
3 See: G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, New Determination of the Fine Structure 
Constant from the Electron g Value and QED, Phys. Rev. Lett. 97, 030802 (2006). More recent theory and 
experiments may have come up with an even more precise number. 
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𝑎௘ =
𝑓௣ − 𝑓௖

𝑓௖
 

Let us go through the motions here – literally. The orbital frequency fc is the cyclotron frequency: a 
charged particle in a Penning trap will move in a circular orbit whose frequency depends on the charge, 
its mass and the strength of the magnetic field only. We write: 

𝑓௖ =
1

2π
∙

q

m
∙ B 

The subscript c stands for cyclotron – or circular, if you want. We should not think of the speed of light 
here! In fact, the orbital velocity is a (relatively small) fraction of the speed of light and we can, 
therefore, use non-relativistic formulas. The derivation of the formula is quite straightforward – but we 
find it useful to recap it. It is based on a simple analysis of the Lorentz force, which is just the magnetic 
force here: 𝐅 =  q(𝒗 × 𝐁).4 Note that the frequency does not depend on the velocity or the radius of 
the circular motion. This is actually the whole idea of the trap: the electron can be inserted into the trap 
with a precise kinetic energy and will follow a circular trajectory if the frequency of the alternating 
voltage is kept constant. This is why we italicized only when writing that the orbital frequency depends 
on the charge, the mass and the strength of the magnetic field only. So what is the derivation? The 
Lorentz force is equal to the centripetal force here. We can therefore write: 

q ∙ 𝑣 ∙ B =
𝑚𝑣ଶ

𝑟
 

The v2/r factor is the centripetal acceleration. Hence, the F = m∙v2/r does effectively represent Newton’s 
force law. The equation above yields the following formula for v and the v/r ratio: 

𝑣 =
q ∙ 𝑟 ∙ B

m
⇒

𝑣

𝑟
=

q ∙ B

m
 

Now, the cyclotron frequency fc will respect the following equation: 

𝑣 = ω ∙ 𝑟 = 2π ∙ 𝑓௖ ∙ 𝑟 

Re-arranging and substituting v for q∙r∙b/m yields: 

𝑓௖ =
𝑣

2π ∙ 𝑟
=

q ∙ B

2π ∙ m
 

The associated current will be equal to: 

I = q ∙ 𝑓 = q
𝑣

2π ∙ 𝑟
=

qଶ ∙ B

2π ∙ m
 

Hence, the magnetic moment is equal to: 

μ = I ∙ π ∙ 𝑟ଶ = q
𝑣

2π ∙ 𝑟
∙ π ∙ 𝑟ଶ =

q ∙ 𝑣 ∙ 𝑟

2
 

                                                           
4 Our derivation is based on the following reference: https://www.didaktik.physik.uni-
muenchen.de/elektronenbahnen/en/b-feld/anwendung/zyklotron2.php. 
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The angular momentum – which we will denote by – is equal to5: 

J = 𝐼 ∙ ω = m𝑟ଶ ∙
𝑣

𝑟
= m ∙ 𝑟 ∙ 𝑣 

Hence, we can write the g-factor as: 

𝑔௖ =
2m

q

μ

J
=

2m

q
∙

q ∙ 𝑣 ∙ 𝑟

2m ∙ 𝑟 ∙ 𝑣
= 1 

It is what we would expect it to be: it is the gyromagnetic ratio for the orbital moment of the electron. It 
is one, not 2. Because gc is 1, we can write something very obvious: 

𝑓௖ = 𝑔௖

q ∙ B

2π ∙ m
 

We should also note another equality here: 

2m

q

μ

J
= 1 ⇔

μ

J
=

q

2m
 

Let us now look at the other frequency fs. It is the Larmor or precession frequency. It is (also) a classical 
thing: if we think of the electron as a tiny magnet with a magnetic moment that is proportional to its 
angular momentum, then it should, effectively, precess in a magnetic field. 

The analysis of precession is quite straightforward. The geometry of the situation is shown below and 
we may refer to (almost) any standard physics textbook for the derivation.6  

 

ω௣ =
μ

J
∙ B ⟺

μ

J
=

ω௣

B
 

It is tempting to use the equality above and write this as: 

                                                           
5 J is the symbol which Feynman uses. In many articles and textbooks, one will read L instead of J. Note that the 
symbols may be confusing: I is a current, but I is the moment of inertia. It is equal to m∙r2 for a rotating mass. 
6 We like the intuitive – but precise – explanation in Feynman’s Lectures (II-34-3), from which we also copied the 
illustration. 
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ω௣ =
q

2m
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However, we should not do this. The precession causes the electron to wobble: its plane of rotation – 
and, hence, the axis of the angular momentum (and the magnetic moment) – is no longer fixed. This 
wobbling motion changes the orbital and, therefore, we can no longer trust the values we have used in 
our formulas for the angular momentum and the magnetic moment. There is, therefore, nothing 
anomalous about the anomalous magnetic moment. In fact, we should not wonder why it is not zero, 
but – as we will argue – we should wonder why it is so nearly zero. 

Let us continue our analysis. It is, in fact, a bit weird to associate a gyromagnetic ratio with this motion, 
but that is what the physicists doing these experiments do. We will denote this g-factor by gp: 
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Hence, we can write the following tautology: 
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∙ B =

2m

q
∙

ω௣

B
∙

q
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You can verify that this is nothing but a tautology by writing it all out: 

ω௣ = 𝑔௣

q

2m
∙ B =

2m
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q

2m
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We can, of course, measure the frequency in cycles per second (as opposed to radians per second): 

𝑓௣ =
ω௣

2π
= 𝑔௣

q ∙ B

2π ∙ 2m
 

Hence, we get the following expression for the so-called anomalous magnetic moment of an electron ae: 

𝑎௘ =
𝑓௣ − 𝑓௖
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Hence, the so-called anomalous magnetic moment of an electron is nothing but the ratio of two 
mathematical factors – definitions, basically – which we can express in terms of actual frequencies: 

𝑔௖ = 𝑓௖

2π ∙ m

q ∙ B
 

𝑔௣ = 𝑓௣

2π ∙ 2m

q ∙ B
 

Our formula for ae now becomes: 
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Of course, if we use the μ/J = 2m/q equality, then the fp/fc ratio will be equal to ½, and ae will not be zero 
but 1/2.  

𝑓௣

𝑓௖
− 1 =

q ∙ B
2π ∙ 2m

q ∙ B
2π ∙ m

− 1 =
1

2
− 1 = −1/2 

However, as mentioned above, we should not do that. The precession causes the magnetic moment and 
the angular momentum to wobble. Hence, there is nothing anomalous about the anomalous magnetic 
moment. We should not wonder why its value is not zero. We should wonder why it is so nearly zero. 
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