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1 Abstract

A twin prime is de�ned as a pair of prime numbers (p1, p2) such that p1+2 =
p2. The Twin Prime Conjecture states that there are an in�nite number of
twin primes. A more general conjecture by de Polignac states that for every
natural number k, there are in�nitely many primes p such that p + 2k is
also prime. The case where k = 1 is the Twin Prime Conjecture. In this
document, a function is derived that corresponds to the number of twin
primes less than n for large values of n. Then by proof by induction, it is
shown that as n increases inde�nitely, the function also increases inde�nitely
thus proving the Twin Prime Conjecture. Using this same methodology, the
de Polignac Conjecture is also shown to be true.

2 Functions

Before we get into the proof, let us de�ne the following functions:
Let the function l(x) represent the largest prime number less than x. For

example, l(10.5) = 7, l(20) = 19 and l(19) = 17.
Let the function λ(x) represent the largest prime number less than or

equal to x. For example, λ(10.5) = 7, λ(20) = 19 and λ(19) = 19.
Let capital P represent all pairs (x, y) such that x + 2 = y and x is an

odd number > 1 and y <= n. The values of x or y need not be prime.
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3 Background

The �rst mention of the Twin Prime Conjecture was in 1849, when de
Polignac made the more general conjecture that for every natural number
k, there are in�nitely many primes p such that p+ 2k is also prime [1]. The
case where k = 1 is the Twin Prime Conjecture. Since its proposition, the de
Polignac Conjecture has remained largely unproven until a breakthrough by
Chinese mathematician Yitang Zhang in April 2013. Zhang proved that there
exists a value N less than 70 million such that there are an in�nite number
of paired primes separated by N [2]. A year later in 2015, James Maynard
[3] has subsequently re�ned the GPY sieve method [4] to show there is an N
less than or equal to 600 such that there are in�nitly many primes separated
by N.

In this paper, a more straighforward method is used to prove the Twin
Prime Conjecture. By pairing odd numbers that di�er by 2, then eliminat-
ing the pairs that contain a composite number, a function is derived that
determines the number of twin primes less than n for large values of n. Then
by proof by mathematical induction, it is proven that this function increases
inde�nitely with increasing n thus proving there are an in�nite number of
twin primes.

To �nd all the twin primes less than or equal to odd integer n, let us �rst
start with the set of pairs of odd integers and pair them (x, y) such that for
each pair x+ 2 = y and y ≤ n. The pair (1, 3) will not be included since 1 is
not considered a prime number. For a given odd integer n, we see that there
are P = (n− 3)/2 pairs. This give us the following set:

{(3,5), (5,7), (7,9), (9,11), (11,13), (13,15), (15,17), (17,19), (19,21),
(21,23), (23,25), (25,27), (27,29) . . . (n-4,n-2),(n-2,n)}

Next let us eliminate the pairs where the x or y coordinate is evenly
divisible by 3 but not equal to 3. Then we eliminate pairs divisible by 5,
7, 11 etc until we reach λ(

√
n), the largest prime less than or equal to

√
n.

There are no prime numbers greater than λ(
√
n) that could evenly divide

the x or y coordinate that is not already divisible by a lower prime. The
remaining pairs will be the twin primes.

We start by eliminating the pairs where the x or y coordinate is divisible
by 3, but x or y is not equal to 3. It is easy to see that every third pair
starting with (9,11) has an x coordinate that is divisible by 3 (yellow) and
that every third pair starting with (7,9) has a y coordinate that is divisible
by 3 (orange). Note that there are no pairs that have both the x and y
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coordinate divisible by 3.
{(3,5), (5,7), (7, 9 ), ( 9 ,11), (11,13), (13, 15 ), ( 15 ,17), (17,19), (19, 21 ),

( 21 ,23),(23,25), (25, 27 ), ( 27 ,29), (29,31), (31, 33 ), ( 33 ,35), (35,37) . . .
(n-4,n-2),(n-2,n)}

There are b(P − 1)/3c pairs where the x coordinate is divisible by 3 and
x 6= 3. There are bP/3c pairs where the y coordinate is divisible by 3. There-
fore, in total, there are b(P − 1)/3c + bP/3c pairs where either the x or y
coordinates are divisible by 3 but not equal to 3. As P gets very large, the
value of P−1 approaches P and the number of pairs divisible by 3 approaches
(2/3)P .

The number of pairs divisible by 3 limn→∞ = (2/3)× P .

Next, we eliminate the pairs where the x or y coordinate is evenly divisible
by 5, and x or y is not equal to 5. It is easy to see that every �fth pair
starting with (15,7) has an x coordinate that is divisible by 5 (yellow) and
that every �fth pair starting with (13,15) has a y coordinate that is divisible
by 5 (orange).

{(3,5), (5,7), (7,9), (9,11), (11,13), (13, 15 ), ( 15 ,17), (17,19), (19,21),
(21,23), (23, 25 ), ( 25 ,27), (27,29), (29,31), (31,33), (33, 35 ), ( 35 ,37) . . .
(n-4,n-2),(n-2,n)}

There are b(P−2)/5c pairs where x coordinate is divisible by 5 and x 6= 5.
There are b(P − 1)/5c pairs where y is divisible by 5 and y 6= 5. So there
are b(P − 2)/5c + b(P − 1)/5c pairs where either the x or y coordinates are
divisible by 5 but not equal to 5. As P gets very large, the values of P − 2
and P − 1 approach P and the number of pairs divisible by 5 approaches
(2/5)P .

Notice however, that every third pair (green) where the x coordinate is
divisible by 5, the x cooridnate is also divisible by 3.

(5,7), ( 15 ,17),(25,27),(35,37),( 45 ,47),(55,57),(65,67),( 75 ,77),(85.87) . . .
Likewise, every third pair where the y coordinate is divisible by 5, the y

coordinate is also divisible by 3.
(3,5), (13, 15 ),(23,25),(33,35),(43, 45 ),(53,55,(63,65),(73, 75 ),(83.85) . . .
So to avoid double counting, the number of pairs divisible by 5 but not

by 3 approaches the following equation as n gets very large.

Number of pairs divisible by only 5 limn→∞ = (1/3)(2/5)× P .
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Next, we eliminate the pairs where the x or y coordinate is divisible by 7,
and x or y is not equal to 7. For pairs where the x or y coordinate is divisible
by 7, it is easy to see that every seventh pair starting with (21,23) has an x
coordinate that is divisible by 7 (yellow)

(7,9), ( 21 ,23), ( 35 ,37), ( 49 ,51), ( 63 ,65), ( 77 ,79), ( 91 ,93), ( 105 ,107)
. . .

Likewise, every seventh pair starting with (19,21) has a y coordinate that
is divisible by 7 (orange).

(5,7), (19, 21 ), (33, 35 ), (47, 49 ), (61, 63 ), (75, 77 ), (89, 91 ), (103, 105 )
. . .

Note that every third pair is divisible by 3 and every �fth pair is divisible
by 5. So to avoid double counting, the number of pairs divisible by 7 and
not by 3 or 5, approaches the following equation as n gets very large.

Number of pairs divisible by only 7 limn→∞ = (1/3)(3/5)(2/7)× P .

The general formula for number of pairs divisible by prime number p is
as follows

Number of pairs divisible by only p limn→∞ = (1/3)(3/5)(5/7)...(l(p)−
2)/l(p)(2/p)× P .

or
Number of pairs divisible by only p limn→∞ = P × (2/p)

∏l(p)
q=3((q −

2)/q).
where the product is over prime numbers only.
To �nd the total number of non-prime pairs, we must sum up all the pairs

evenly divisible by a prime number. The total number of non-prime pairs
less than or equal to n can be de�ned as follows

Total number of non-prime pairs limn→∞ = P×
∑λ(

√
n)

p=3 (2/p)
∏l(p)

q=3((q−
2)/q)

where the sum and products are over prime numbers only.
Subtracting the number of non-prime pairs from the total number of pairs

gives the number of twin primes less than or equal to n. We will denote the
number of twin primes less than n as π2(n).

π2(n) limn→∞ = P − P ×
∑λ(

√
n)

p=3 (2/p)
∏l(p)

q=3((q − 2)/q)
or

π2(n) limn→∞ = P [1−
∑λ(

√
n)

p=3 (2/p)
∏l(p)

q=3((q − 2)/q)]
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Let us de�ne the function W (x), where x is a prime number, equal to the
following:

W (x) = (1/3) +
(1/5)× (1/3) +
(1/7)× (1/3)× (3/5) +
(1/11)× (1/3)× (3/5)× (5/7) +
(1/13)× (1/3)× (3/5)× (5/7)× (9/11) +
...
(1/x)× (1/3)× (3/5)× (5/7)× (9/11)× . . . × (l(x)− 2)/l(x)

This can be expressed as the following equation:

W (x) =
∑x

p=3(1/p)
∏l(p)

q=3((q − 2)/q)

Using this function, the expression for number of pairs that contain a
non-prime number can be simpli�ed to

Number of non-twin-primes = 2P ×W (λ(
√
n))

Number of twin-primes = π2(n) = P − 2P ×W (λ(
√
n))

π2(n) = P [1− 2W (λ(
√
n))]

Substituting (n − 3)/2 for P gives the following equation in terms of n:
π2(n) = ((n− 3)/2)[1− 2W (λ(

√
n))]

For large values of n, (n−3)/2 limn→∞ = n/2. This gives us the following
equation:

Equation 1: π2(n) = (n/2)[1− 2W (λ(
√
n))]

To verify that the derivation of equation 1 was correct and to determine at
what point the equation begins to accurately determine the number of twin
primes, I plotted the actual number of twin primes less than n (blue line) and
equation 1 (orange line) (Figure 1) for all values of n up to 50,000. As can
be seen in the graph, the actual number of twin primes is underestimated by
equation 1 for values of n < 5,000. This is not a problem since this errs on
the side of caution. But as n increases, equation 1 very closely estimates the
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Figure 1: The actual number of twin primes (blue line) is underestimated
by the equation π2(n) = P (1−2W (λ(

√
n)) (red line) for values of n < 5,000.

But as n gets larger, the equation π2(n) = P (1−2W (λ(
√
n)) approaches the

actual number of twin primes.

number of twin primes. For large values of n, the lines lie almost directly on
top of each other, indicating that the number of twin primes less than n can
be accurately predicted by equation 1.

4 The Proof of the Twin Prime Conjecture

To prove the Twin Prime conjecture, it must be shown that the number of
twin primes de�ned by equation 1 goes to in�nity as n goes to in�nity. To
prove this by mathematical induction, it must be shown that π2(n0) ≥ 0,
then it must be shown that for any odd integer n, the value of π2(n) is less
than π2(n+ 2). However, the function W (p) is a function on prime numbers
and λ(

√
n) may be the same as λ(

√
n+ 2). To get around this, I will only

look at cases where n = p2i . I will show that π2(p
2
0) ≥ 0 and that for any pi,

I will show that π2(p
2
i+1) is at least π2(p

2
i ) + 1. Since there are an in�nite

number of prime numbers, then π2(p
2
i ) will increase inde�nitely, thus proving

there are an in�nte number of twin primes.

In order to use proof by induction, we must �rst get (1 − 2W (pi+1)) in
terms of W (pi). To do this, we must look at the actual values of 2W (pi).
2W (3) = (2/3)
2W (5) = (2/3) + (2/5)× (1/3)
2W (7) = (2/3) + (2/5)× (1/3) + (2/7)× (1/3)× (3/5)
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2W (11) = (2/3) + (2/5)× (1/3) + (2/7)× (1/3)× (3/5) + (2/11)× (1/3)×
(3/5)× (5/7)
Etc . . .

Therefore, the values of 1− 2W (pi) are as follows:

1− 2W (3) = 1 - (2/3) = 1/3

1− 2W (5) = [1 - (2/3)] - (2/5)(1/3) = (1/3) (3/5)

1− 2W (7) = [1 - (2/3) - (2/5)(1/3)] - (2/7)(1/3)(3/5) = (1/3)(3/5)(5/7)

1−2W (11) = [1 - (2/3) - (2/5)(1/3) - (2/7)(1/3)(3/5)] - (2/11)(1/3)(3/5)(5/7)

= (1/3)(3/5)(5/7)(9/11)

Notice the value of 1 − 2W (pi) (yellow) can be substituted into the green
part of 1− 2W (pi+1). Therefore, these equations can be simpli�ed to:

Equation 2: [1− 2W (pi+1)] = [(pi+1 − 2)/pi+1]× [1− 2W (pi)]

Another way to think about how we get to equation 2 is by cutting away
pieces from a pie.
The pie has a value of 1. We cut away 2/3rds from the pie leaving 1/3 .

Now from this piece , we cut 2/5ths away leaving 3/5ths of 1/3 .

Now from this piece , we cut 2/7ths away leaving 5/7ths of the last piece .

Now from this piece , we cut 2/11ths away leaving 9/11ths of the last piece .

For each iteration, we cut away 2/pths leaving (p−2)/p of the previous piece,
thus resulting in equation 2.

First, we must show that π2(p
2
0) ≥ 0. The base case p0 = 3.

π2(p
2
0) = (p20/2)[1 − 2W (p0)] = (32/2)[1 − 2W (3)] = (9/2)(1/3) = 1.5 which

is greater than 0.

Next, let us calculate the number of twin primes less than n = p2i and
n = p2i+1.

The number of twin primes less than p2i is
π2(p

2
i ) = (p2i /2)[1− 2W (pi)]

The number of twin primes less than p2i+1 is
π2(p

2
i+1) = (p2i+1/2)[1− 2W (pi+1)]

= (p2i+1/2)[(pi+1 − 2)/pi+1][1− 2W (pi)] Using equation 2

7



= [pi+1(pi+1 − 2)/2][1− 2W (pi)]

Let ∆π2(pi) represent the di�erence between the number of twin primes
less than p2i and the number of twin primes less than p2i+1. Subtracting π2(p

2
i )

from π2(p
2
i+1) gives us the following expression:

∆π2(pi) = [pi+1(pi+1 − 2)/2][1− 2W (pi)]− (p2i /2)[1− 2W (pi)]

or

Equation 3: ∆π2(pi) = [1− 2W (pi)]/2× {[pi+1(pi+1 − 2)]− (p2i )}

It can be shown that [1−2W (pi)] is greater than 0 and {[pi+1(pi+1−2)]−
(p2i )} is greater than 0 so the product must be greater than 0. However, the
term [1− 2W (pi)] approaches 0 as pi gets very large and though [pi+1(pi+1−
2)] − (p2i ) is greater than 0, it may be the case that product of [1 − 2W (p)]
and {[pi+1(pi+1 − 2)]− (p2i )} may approach 0. If this was the case, then this
does not show that the number of twin primes increases inde�nitely. We
must show that ∆π2(pi) ≥ 1 for all pi.

So the next question is, what is the lower bound on ∆π2(pi). The cases
where ∆π2(pi) is minimal is when pi+1 = pi+2. This is because the di�erence
between [pi+1(pi+1 − 2)] and (p2i ) increases dramatically as the di�erence
between pi+1 and pi increases. So substituting pi + 2 for pi+1 into the term
[pi+1(pi+1 − 2)]− (p2i ) will give us the following:

pi+1(pi+1 − 2)− p2i = (pi + 2)(pi + 2− 2)− p2i
= (pi + 2)pi − p2i
= p2i + 2pi − p2i
=2pi

Substituting 2pi for (pi+1(pi+1− 2)− p2i ) into equation 3 gives us the new
equation for the lower bound for ∆π2(pi).

Equation 4: ∆π∗2(pi) = pi(1− 2W (pi))

where ∆π∗2(pi) represents the lower bound on ∆π2(pi).
To prove that ∆π∗2(pi) is always less than or equal to ∆π2(pi), I must

prove that the ratio of ∆π2(pi)/∆π
∗
2(pi) is always greater than or equal to 1.

The ratio is as follows:
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∆π2(pi)/∆π
∗
2(pi) = [1−2W (pi)]/2×{[pi+1(pi+1−2)]−(p2i )}/pi(1−2W (pi))

={[pi+1(pi+1 − 2)]− (p2i )}/2pi
={p2i+1 − 2pi+1 − p2i }/2pi

Let pi+1 = pi + x, where x represents the di�erence between pi and pi+1.
∆π2(pi)/∆π

∗
2(pi) = {(pi + x)2 − 2(pi + x)− p2i }/2pi

={p2i + 2pix+ x2 − 2pi − 2x− p2i }/2pi
={2pix+ x2 − 2pi − 2x}/2pi

To prove that {2pix+x2− 2pi− 2x}/2pi is greater than or equal to 1, we
will use mathematical induction. For the base case, we substitute x = 2.
{2pix+ x2 − 2pi − 2x}/2pi = {4pi + 4− 2pi − 4}/2pi
= 2pi/2pi
= 1

Now we assume that {2pix + x2 − 2pi − 2x}/2pi ≥ 1 for any x, and
prove that it is greater than 1 for x + 2. Substituting x + 2 for x into
{2pix+ x2 − 2pi − 2x}/2pi gives the following:
{2pi(x+ 2) + (x+ 2)2 − 2pi − 2(x+ 2)}/2pi
={(2pix+ 4pi) + (x2 + 4x+ 4)− 2pi − 2x− 4)}/2pi
={2pix+ x2 + 2pi + 2x}/2pi
={(2pix+ x2 − 2pi − 2x) + (4pi + 4x)}/2pi
={2pix+ x2 − 2pi − 2x}/2pi + 2(pi + x)/pi
Since we assumed that {2pix + x2 − 2pi − 2x}/2pi ≥ 1, the addition of
2(pi + x)/pi will also be greater than 1. Thus, we have proven that the ratio
of ∆π2(pi)/∆π

∗
2(pi) is always greater than or equal to 1 and therefore ∆π∗2(pi)

is always less than or equal to ∆π2(pi).
As additional veri�cation, I graphed ∆π2(pi) versus p (blue line) and

∆π∗2(pi) versus p (orange line) in Figure 2. Notice that the lower bound
∆π∗2(pi) is always less than or equal to ∆π2(pi) as previously proven and
that ∆π∗2(pi) coincides with ∆π2(pi) only at the points where pi+1 = pi + 2.

Now that we know that ∆π∗2(pi) is always less than or equal to ∆π2(pi), if
we show that ∆π∗2(pi) is always greater than or equal to 1, then we know that
∆π2(pi) will always be greater than 1. We can prove this by mathematical
induction.

Base case for ∆π∗2(p0):
Using p0 = 3, we get the following

9



Figure 2: Graph of ∆π2(pi) and the lower bound ∆π∗2(pi) versus p. ∆π∗2(pi)
is always less than or equal to ∆π2(pi) and they coincide only at the points
where pi+1 = pi + 2.

∆π∗2(p0) = 3(1-2W(3)) = 3(1-2(1/3)) = 1

Next, we assume that ∆π∗2(pi) >= 1, and prove that ∆π∗2(pi+1) >= 1
Substituting pi+1 into ∆π∗2(pi) = pi(1− 2W (pi)) >= 1 gives:
∆π∗2(pi+1) = pi+1(1− 2W (pi+1))
∆π∗2(pi+1) = pi+1[(pi+1 − 2)/pi+1](1− 2W (pi)) Using equation 2
∆π∗2(pi+1) = (pi+1 − 2)(1− 2W (pi))
Taking the ratio of ∆π∗2(pi+1)/∆π

∗
2(pi) gives us the following:

∆π∗2(pi+1)/∆π
∗
2(pi) = (pi+1 − 2)(1− 2W (pi))/(pi(1− 2W (pi))

∆π∗2(pi+1)/∆π
∗
2(pi) = (pi+1 − 2)/pi

Since pi+1 is at least equal to pi + 2, the ratio ∆π∗2(pi+1)/∆π
∗
2(pi) must be

greater than or equal to 1. Therefore, the number of twin primes always in-
creases by at least 1 with increasing pi, and since there are an in�nite number
of prime numbers pi, there are an in�nite number of twin primes. QED

Note: This also provides evidence for the conjecture that for any pi there
is at least 1 twin prime pair between p2i and (pi + 2)2. In fact, it may be the
case that for any odd integer n, there is at least 1 twin prime pair between
n2 and (n+ 2)2.
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5 Proof of de Polignac's Conjecture

The Twin Prime Conjecture is a special case for de Polignac's conjecture
where k = 1. To prove there are an in�nite number of quad primes, i.e.
k = 2, the odd pairs can be partitioned as follows:
(3,7), (5,9), (7,11), (9,13), (11,15), (13,17), . . . (n-8,n-4),(n-6,n-2),(n-4,n).
Notice that as n gets large, the number of pairs approaches n/2 just like for
the twin primes.

Eliminating the pairs where the x or y coordinates are divisible by a
prime number will yield the quad primes. As it turns out, the equation for
the number of quad primes is the exactly same as equation 1.

π4(n) = (n/2)[1− 2W (λ(
√
n))]

where π4(n) is the number of quad primes less than n.

In fact, for all values of k = 2i, it can be shown that the number of primes
separted by 2i is the same as the nuumber of twin primes for very large values
of n. This is because for any pair (x, y), the x coordinate is relatively prime
to the y coordinate. Thus, by proving the Twin Prime conjecture, we have
also proven Polignac's Conjecture for all values of k = 2i where i is an integer
greater than or equal to 0.

For values of k 6= 2i, when partitioning out the odd pairs, when we
eliminate the non-prime pairs, there is overlap. For example, if we take the
case where k = 3, the set of sext primes, we get the following set:
(3, 9 ), (5,11), (7,13), ( 9 , 15 ), (11,17), (13,19),( 15 , 21 ) . . . (n-10,n-4),(n-
8,n-2),(n-6,n).
Now when we eliminate the pairs divisible by 3, we only eliminate only about
1/3rd of the pairs rather than 2/3rds since every pair where the x coordinate
is divisible by 3 (yellow), the y coordinate is also divisible by 3 (orange).
Thus, the �rst term of the W function changes from 2/3 to 1/3. This results
in a larger number of sext primes relative to number of twin primes. A
similar situtation holds true for dec primes (primes separated by 10). When
eliminating the pairs divisible by 5, we only eliminate about 1/5th of the
pairs rather than 2/5ths since every pair where the x coordinate is divisible
by 5, the y coordinate is also divisible by 5. Thus the second term of the W
function will change from (1/3)(2/5) to (1/3)(1/5). Since the number of sext
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Figure 3: The more factors there are between primes, the more prime pairs
exist. There are fewer twin primes (red line) than sext primes (green line),
dec primes (blue line) and 30-primes (brown line).

primes, dec primes, 30-primes (primes pairs di�ering by 30) are larger than
the number of twin primes, then Polignac's Conjecture is true for all values
of k.

To illustrate this, I graphed the number of prime pairs less than n for
twin primes, sext primes, dec primes and 30-primes in Figure 3. Notice that
the curve for the twin primes has relatively the fewest number of prime pairs.

6 Summary

I have shown that the number of twin primes less than n approaches the
following equation as n gets large:

π2(n) = (n/2)[1− 2W (λ(
√
n))]

where λ(
√
n) is the largest prime number less than or equal to

√
n and W (x)

is de�ned as

W (x) =
∑x

(p=3)(1/p)
∏(l(p))

(q=3)((q − 2)/q)

where the sum and product are over prime numbers.
I have shown by proof by induction, that the above equation for number of
twin primes increase inde�nitely as n increases the proving the Twin Prime
Conjecture.
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7 Future Directions

Future work will involve applying this technique of pairing numbers to prove
the Goldbach Conjecture [5]. The Goldbach Conjecture states that every
even integer greater than 2 can be expressed as the sum of two primes. To
prove the Goldbach Conjecture, we �rst pair odd numbers (x, y) such that
x+y = n. For example, (3,n-3),(5,n-5),(7,n-7),(9,n-9)...,(n-5,5),(n-3,3). Then
by eliminating pairs that are divisible by 3, 5, 7, 11 etc, the remaining pairs
are the prime pairs that sum up to n.
I will show that for the subset of even integers n = 2p where p is a prime
number, the number of prime pairs that sum to n will approach the following
equation as n gets large:

π(n) = P (1− 2W (λ(
√
n)))

where π(n) is the number of prime pairs that add up to n.

This equation is identical to Equation 1. What this means is, that for
large values of n = 2p, the number of prime pairs that sum to n will approach
the number ot twin primes less than n. Thus, the proof of the Goldbach's
Conjecture for n = 2p is reduced to the proof of the Twin Prime Conjecture.
For other cases of the Goldbach Conjecture for n = 6p, n = 10p or n = 30p
will reduce to case of Polignac's Conjecture for primes separated by 6, 10 or
30.

Applying this technique to other prime number conjectures will lead to
further proofs.
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