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1 Abstract

A twin prime is de�ned as a pair of prime numbers (p1, p2) such that p1+2 =
p2. The Twin Prime Conjecture states that there are an in�nite number of
twin primes. The �rst mention of the Twin Prime Conjecture was in 1849,
when de Polignac made the more general conjecture that for every natural
number k, there are in�nitely many primes p such that p+ 2k is also prime.
The case where k = 1 is the Twin Prime Conjecture [1]. In this document,
I derive a function that corresponds to the number of twin primes less than
n for large values of n. Then by proof by induction, it is shown that as
n increases inde�nitely, the function also increases inde�nitely thus proving
the Twin Prime Conjecture. Using the same methodology, de Polignac's
conjecture is also shown to be true.

2 Functions

Before we get into the proof, let me de�ne a couple of functions that are
necessary.

Let the function l(x) represent the largest prime number less than x. For
example, l(10.5) = 7, l(20) = 19 and l(19) = 17.

Let the function g(x) represent the next higher prime number greater
than x. For example, g(10.5) = 11, g(20) = 23 and g(23) = 29.

Let capital P represent all pairs (x, y) such that x + 2 = y and x is an
odd number > 1 and y <= n. The values of x or y need not be prime.

1



3 Background

To prove the Twin Prime conjecture, I must �rst �nd a function that deter-
mines the number of twin primes less than n. Then by proof by mathematical
induction, prove that the number of primes increases with increasing n.

To �nd all the twin primes less than n, I �rst start with the set of pairs
of odd numbers less than or equal to odd integer n, and pair them (x, y)
such that each pair x + 2 = y. We eliminate the pairs (1, 3) since 1 is not
considered a prime number. For a given odd integer n, we see that there are
(n− 3)/2 pairs. This give us the following set:

{(3,5), (5,7), (7,9), (9,11), (11,13), (13,15), (15,17), (17,19), (19,21),
(21,23), (23,25), (25,27), (27,29) . . . (n-4,n-2),(n-2,n)}

Next we must eliminate the pairs where the x or y coordinate is evenly
divisible by 3 but not equal to 3. Then we eliminate pairs divisible by 5, 7,
11 etc until we reach l(

√
n). There are no prime numbers greater than l(

√
n)

that could evenly divide the x or y coordinate that is not already divisible
by a lower prime. The remaining pairs will be the twin primes.

We start by eliminating the pairs where the x or y coordinate is divisible
by 3, but x or y is not equal to 3. It is easy to see that every third pair
starting with (9,11) has an x coordinate that is divisible by 3 (yellow) and
that every third pair starting with (7,9) has a y coordinate that is divisible
by 3 (orange). There is no instance where both x and y are divisible by 3.

{(3,5), (5,7), (7, 9 ), ( 9 ,11), (11,13), (13, 15 ), ( 15 ,17), (17,19), (19, 21 ),
( 21 ,23),(23,25), (25, 27 ), ( 27 ,29) . . . (n-4,n-2),(n-2,n)}

There are b(P − 1)/3c pairs where the x coordinate is divisible by 3 and
x 6= 3. There are bP/3c pairs where the y coordinate is divisible by 3. There-
fore, in total, there are b(P − 1)/3c + bP/3c pairs where either the x or y
coordinates are divisible by 3 but not equal to 3. As P gets very large, the
value of P−1 approaches P and the number of pairs divisible by 3 approaches
(2/3)P .

The number of pairs divisible by 3 limn→∞ = (2/3)× P .

Next, we eliminate the pairs where the x or y coordinate is divisible by 5,
and x or y is not equal to 5. It is easy to see that every �fth pair starting with
(15,7) has an x coordinate that is divisible by 5 (yellow) and that every �fth
pair starting with (13,15) has a y coordinate that is divisible by 5 (orange).

{(3,5), (5,7), (7,9), (9,11), (11,13), (13, 15 ), ( 15 ,17), (17,19), (19,21),
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(21,23), (23, 25 ), ( 25 ,27), (27,29), (29,31), (31,33), (33, 35 ), ( 35 ,37) . . .
(n-4,n-2),(n-2,n)}

There are b(P−2)/5c pairs where x coordinate is divisible by 5 and x 6= 5.
There are b(P − 1)/5c pairs wher y is divisible by 5 and y 6= 5. So there
are b(P − 2)/5c + b(P − 1)/5c pairs where either the x or y coordinates are
divisible by 5 but not equal to 5. As P gets very large, the values of P − 2
and P − 1 approach P and the number of pairs divisible by 5 approaches
(2/5)P .

Notice however, that every third pair (green) where the x coordinate is
divisible by 5, the x cooridnate is also divisible by 3.

(5,7), ( 15 ,17),(25,27),(35,37),( 45 ,47),(55,57),(65,67),( 75 ,77),(85.87) . . .
Likewise, every third pair where the y coordinate is divisible by 5, is also

divisible by 3.
(3,5), (13, 15 ),(23,25),(33,35),(43, 45 ),(53,55,(63,65),(73, 75 ),(83.85) . . .
So to avoid double counting, the number of pairs divisible by 5 but not

by 3 approaches the following equation as n gets very large.

Number of pairs divisible by only 5 limn→∞ = (1/3)(2/5)× P .

Next, we eliminate the pairs where the x or y coordinate is divisible by 7,
and x or y is not equal to 7. For pairs where the x or y coordinate is divisible
by 7, it is easy to see that every seventh pair starting with (21,23) has an x
coordinate that is divisible by 7 (yellow)

(7,9), ( 21 ,23), ( 35 ,37), ( 49 ,51), ( 63 ,65), ( 77 ,79), ( 91 ,93), ( 105 ,107)
. . .

Likewise, every seventh pair starting with (19,21) has a y coordinate that
is divisible by 7 (orange).

(5,7), (19, 21 ), (33, 35 ), (47, 49 ), (61, 63 ), (75, 77 ), (89, 91 ), (103, 105 )
. . .

Note that every third pair is divisible by 3 and every �fth pair is divisible
by 5. So to avoid double counting, the number of pairs divisible by 7 and
not by 3 or 5, approaches the following equation as n gets very large.

Number of pairs divisible by only 7 limn→∞ = (1/3)(3/5)(2/7)× P .

The general formula for number of pairs divisible by prime number p is
as follows
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Number of pairs divisible by only p limn→∞ = (1/3)(3/5)(5/7)...(l(p)−
2)/l(p)(2/p)× P .

or
Number of pairs divisible by only p limn→∞ = P × (2/p)

∏l(p)
q=3((q −

2)/q).
where the product is over prime numbers only.
To �nd the total number of non-prime pairs, we must sum up all the pairs

evenly divisible by a prime number. The total number of non-prime pairs
less than or equal to n can be de�ned as follows

Total number of non-prime pairs limn→∞ = P×
∑l(

√
n)

p=3 (2/p)
∏l(p)

q=3((q−
2)/q)

where the sum and products are over prime numbers only.
Subtracting the number of non-prime pairs from the total number of pairs

gives the number of twin primes less than or equal to n. We will denote the
number of twin primes less than n as π2(n).

π2(n) limn→∞ = P − P ×
∑l(

√
n)

p=3 (2/p)
∏l(p)

q=3((q − 2)/q)
or

π2(n) limn→∞ = P [1−
∑l(

√
n)

p=3 (2/p)
∏l(p)

q=3((q − 2)/q)]

Let us de�ne the function W (x) equal the following:

W (x) = (1/3) +
(1/5)× (1/3) +
(1/7)× (1/3)× (3/5) +
(1/11)× (1/3)× (3/5)× (5/7) +
(1/13)× (1/3)× (3/5)× (5/7)× (9/11) +
...
(1/x)× (1/3)× (3/5)× (5/7)× (9/11)× . . . × (l(x)− 2)/l(x)

This can be expressed as the following equation:

W (x) =
∑x

p=3(1/p)
∏l(p)

q=3((q − 2)/q)

Using this function, the expression for number of pairs that contain a
non-prime number can be simpli�ed to

Number of non-twin-primes = 2P ×W (l(
√
n))

4



Figure 1: The actual number of twin primes (blue line) is underestimated
by the equation π2(n) = P (1 − 2W (

√
n) (red line) for values of n < 5,000.

But as n gets larger, the equation π2(n) = P (1 − 2W (
√
n) approaches the

actual number of twin primes.

Number of twin-primes = π2(n) = P − 2P ×W (l(
√
n))

Equation 1: π2(n) = P [1− 2W (l(
√
n))]

To verify that the derivation of equation 1 was correct and to determine at
what point the equation begins to accurately determine the number of twin
primes, I plotted the actual number of twin primes less than n (blue line) and
equation 1 (orange line) (Figure 1) for all values of n up to 50,000. As can
be seen in the graph, the actual number of twin primes is underestimated by
equation 1 for values of n < 5,000. This is not a problem since this errs on
the side of caution. But as n increases, equation 1 very closely estimates the
number of twin primes. For large values of n, the lines lie almost directly on
top of each other, indicating that the number of twin primes less than n can
be accurately predicted by equation 1.

4 The Proof of the Twin Prime Conjecture

I will use proof by mathematical induction to prove the Twin Prime Conjec-
ture is true. To do this we must �rst get (1− 2W (pi+1)) in terms of W (pi).
To do this, we must look at the actual values of 2W (pi).
2×W (3) = (2/3)
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2×W (5) = (2/3) + (2/5)× (1/3)
2×W (7) = (2/3) + (2/5)× (1/3) + (2/7)× (1/3)× (3/5)
2×W (11) = (2/3) + (2/5)× (1/3) + (2/7)× (1/3)× (3/5) + (2/11)× (1/3)×
(3/5)× (5/7)
Etc . . .

Therefore, the values of 1− 2W (pi) are as follows:

1− 2W (3) = 1 - (2/3) = 1/3

1− 2W (5) = [1 - (2/3)] - (2/5)(1/3) = (1/3) (3/5)

1− 2W (7) = [1 - (2/3) - (2/5)(1/3)] - (2/7)(1/3)(3/5) = (1/3)(3/5)(5/7)

1−2W (11) = [1 - (2/3) - (2/5)(1/3) - (2/7)(1/3)(3/5)] - (2/11)(1/3)(3/5)(5/7)

= (1/3)(3/5)(5/7)(9/11)

Notice the value of 1 − 2W (pi) (yellow) can be substituted into the green
part of 1− 2W (pi+1). Therefore, these equations can be simpli�ed to:

Equation 2: [1− 2×W (pi+1)] = [(pi+1 − 2)/pi+1]× [1− 2×W (pi)]

Another way to think about how we get to equation 2 is by cutting away
pieces from a pie.
The pie has a value of 1. We cut away 2/3rds from the pie leaving 1/3 .

Now from this piece , we cut 2/5ths away leaving 3/5ths of 1/3 .

Now from this piece , we cut 2/7ths away leaving 5/7ths of the last piece .

Now from this piece , we cut 2/11ths away leaving 9/11ths of the last piece .

For each iteration, we cut away 2/pths leaving (p−2)/p of the previous piece,
thus resulting in equation 2.

We must �rst prove that equation 1 is always greater than 0. Since we
know P is greater than 0, we must prove that (1−2W (pi)) > 0 for any prime
number pi.

The base case p0 = 3.
1− 2W (p0) = 1− 2W (3) = 1− 2/3 = 1/3 which is greater than 0.

Now assuming that Equation 1 is true 1 − 2W (pi) > 0, we must prove
that 1− 2W (pi+1)) > 0.
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Assumption: 1− 2W (pi) > 0
Prove: 1− 2W (pi+1) > 0

Substituting pi+1 into Equation 2 gives:

1− 2W (pi+1) = [(pi+1 − 2)/pi+1]× [1− 2W (pi)]

Since we assumed that [1−2W (pi)] is greater than 0, and [(pi+1−2)/pi+1]
is greater than 0, then the product of [pi+1− 2)/pi+1] and [1− 2W (pi)] must
be greater than 0. Therefore, equation 1 is greater than 0 for pi+1 and thus
greater than 0 for all pi.

Now we can prove the number of twin primes increases inde�nitely with
increasing values of n. Let's say we have P pairs of adjacent odd numbers
less than n. If we approximate P = n/2 for large n, we get the following
equation:

π2(n) = P [1− 2W (l(
√
n))] = (n/2)[1− 2W (l(

√
n))]

For prime number pi = l(
√
n)), for large n we can approximate n ≈ p2i .

Actually, n will be at least p2i , but approximating n ≈ p2i errs on the side of
caution.

Substituting pi for l(
√
n)) and p2i for n in the above equation we get:

π2(p
2
i ) = (p2i /2)[1− 2W (pi)]

The number of twin primes less than p2i+1 is
π2(p

2
i+1) = (p2i+1/2)[1− 2W (pi+1)] =

(pi+1)
2/2)[(pi+1)− 2)/pi+1][1− 2W (pi)] = Using equation 2

[pi+1(pi+1 − 2)/2][1− 2W (pi)]

Let ∆π2(pi) represent the di�erence between the number of twin primes
less than p2i and the number of twin primes less than p2i+1. Subtracting π2(p

2
i )

from π2(p
2
i+1) gives us the following expression:

∆π2(pi) = [pi+1(pi+1 − 2)/2][1− 2W (pi)]− (p2i /2)[1− 2W (pi)]

or

Equation 3: ∆π2(pi) = [1− 2W (pi)]/2× {[pi+1(pi+1 − 2)]− (p2i )}

Since we have proven that [1 − 2W (pi)] > 0, and pi+1 is greater than p,
the value of [pi+1(pi+1−2)]−(p2i ) is always greater than 0. Thus, the product
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is greater than 0.

Since the product is greater than 0, this proves that the number of twin
primes less than n = p2i+1 is greater than the number of twin primes less than
n = p2i . However, the term [1−2W (p)] approaches 0 as p gets very large and
it may be the case that ∆π2(pi) may approach 0. If this was the case, then
this does not show that the number of twin primes increases inde�nitely.

So the next question is, what is the lower bound on ∆π2(pi). The cases
where ∆π2(pi) is minimal is when pi+1 = pi+2. This is because the di�erence
between [pi+1(pi+1 − 2)] and (p2i ) increases dramatically as the di�erence
between pi+1 and pi increases. So substituting pi + 2 for pi+1 into the term
[pi+1(pi+1 − 2)]− (p2i ) will give us the equation for the lower bound.

pi+1(pi+1 − 2)− p2i = (pi + 2)(pii+ 2˘2)− p2i
= (pi + 2)pi − p2i
= p2i + 2pi − p2i
=2pi

Substituting 2pi for (pi+1(pi+1−2)−p2i ) into equation 3 for ∆π2(pi) gives
us a new equation for the lower bound on ∆π2(pi).

Equation 4: ∆π2(pi)∗ = pi(1− 2W (pi))

where ∆π2(pi)∗ represents the lower bound on ∆π2(pi).
To validate that no errors were made, I graphed ∆π2(pi) versus p (blue

line) and ∆π2(pi)∗ versus p (orange line) in Figure 2. Notice that the lower
bound ∆π2(pi)∗ coincides with ∆π2(pi) exactly at the points where pi+1 =
pi + 2.

If we show the lower bound ∆π2(pi)∗ is always greater than 1, then we
know that ∆π2(pi) will always be greater than 1. We will show this by math-
ematical induction.

Base case for ∆π2(p0)∗:
Using p0 = 3, we get the following
∆π2(p0)∗ = 3(1-2W(3)) = 3(1-2(1/3)) = 1

Next, we assume that ∆π2(pi)∗ >= 1, and prove that ∆π2(pi+1)∗ >= 1
∆π2(pi)∗ = pi(1− 2W (pi)) >= 1
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Figure 2: Graph of ∆π2(pi) and the lower bound ∆π2(pi)∗ versus p. Notice
that when pi+1 = pi + 2, ∆π2(pi) coincides with ∆π2(pi)∗.

Substituting pi+1 into the above equation gives:
∆π2(pi+1)∗ = pi+1(1− 2W (pi+1))
∆π2(pi+1)∗ = pi+1[(pi+1 − 2)/pi+1](1− 2W (pi)) Using equation 2
∆π2(pi+1)∗ = (pi+1 − 2)(1− 2W (pi))
Taking the ratio of ∆π2(pi+1) ∗ /∆π2(pi)∗ gives us the following:
∆π2(pi+1) ∗ /∆π2(pi)∗ = (pi+1 − 2)(1− 2W (pi))/(pi(1− 2W (pi))
∆π2(pi+1) ∗ /∆π2(pi)∗ = (pi+1 − 2)/pi
Since pi+1 is at least equal to pi + 2, the ratio ∆π2(pi+1) ∗ /∆π2(pi)∗ must
be greater than or equal to 1. Therefore, the number of twin primes always
increases by at least 1 with increasing pi, and since there are an in�nite num-
ber of prime numbers pi, there are an in�nite number of twin primes. QED

Note: This also provides evidence for the conjecture that for any pi there
is at least 1 twin prime pair between p2i and (pi + 2)2. In fact, it may be
the case that for any n, there is at least 1 twin prime pair between n2 and
(n+ 2)2.
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5 Proof of Polignac's Conjecture

The Twin Prime Conjecture is a special case for de Polignac's conjecture
where k = 1. To prove there are an in�nite number of quad primes, i.e.
k = 2, the odd pairs can be partitioned as follows:
(3,7), (5,9), (7,11), (9,13), (11,15), (13,17), . . . (n-8,n-4),(n-6,n-2),(n-4,n).
Notice that as n gets large, the number of pairs approaches n/2 just like for
the twin primes.

Eliminating the pairs where the x or y coordinates are divisible by a
prime number will yield the quad primes. As it turns out, the equation for
the number of quad primes is the exactly same as equation 1.

π4(n) = P [1− 2W (l(
√
n))]

where P is the number of pairs.

In fact, for all values of k = 2i, it can be shown that the number of primes
separted by 2i is the same as the nuumber of twin primes for very large values
of n. This is because for any pair (x, y), the x coordinate is relatively prime
to the y coordinate. Thus, by proving the Twin Prime conjecture, we have
also proven Polignac's Conjecture for all values of k = 2i where i is an integer
greater than or equal to 0.

For values of k 6= 2i, when partitioning out the odd pairs, when we
eliminate the non-prime pairs, there is overlap. For example, if we take the
case where k = 3, the set of sext primes, we get the following set:
(3, 9 ), (5,11), (7,13), ( 9 , 15 ), (11,17), (13,19),( 15 , 21 ) . . . (n-10,n-4),(n-
8,n-2),(n-6,n).
Now when we eliminate the pairs divisible by 3, we only eliminate only about
1/3rd of the pairs rather than 2/3rds since every pair where the x coordinate
is divisible by 3 (yellow), the y coordinate is also divisible by 3 (orange).
Thus, the �rst term of the W function changes from 2/3 to 1/3. This results
in a larger number of sext primes relative to number of twin primes. A
similar situtation holds true for dec primes (primes separated by 10). When
eliminating the pairs divisible by 5, we only eliminate about 1/5th of the
pairs rather than 2/5ths since every pair where the x coordinate is divisible
by 5, the y coordinate is also divisible by 5. Thus the second term of the W
function will change from (1/3)(2/5) to (1/3)(1/5). Since the number of sext
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Figure 3: The more factors there are between primes, the more prime pairs
exist. There are fewer twin primes (red line) than sext primes (green line),
dec primes (blue line) and 30-primes (brown line

primes, dec primes, 30-primes (primes pairs di�ering by 30) are larger than
the number of twin primes, then Polignac's Conjecture is true for all values
of k.

To illustrate this, I graphed the number of prime pairs less than n for
twin primes, sext primes, dec primes and 30-primes in Figure 3. Notice that
the curve for the twin primes has relatively the fewest number of prime pairs.

6 Summary

I have shown that the number of twin primes less than n approaches the
following equation as n gets large:

π2(n) = P [1− 2W (
√
n))]

where l(
√
n) is the largest prime number less than

√
n and W (x) is de�ned

as

W (x) =
∑x

(p=3)(1/p)
∏(l(p))

(q=3)((q − 2)/q)

I have shown by proof by induction, that the above equation for number
of twin primes increase inde�nitely as n increases the con�rming the Twin
Prime Conjecture.
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