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Abstract

Rationality problems of algebraic k — tori are closely related to ratio-
nality problems of the invariant field, also known as Noether’s Problem.
We describe how a function field of algebraic k — tori can be identified as
an invariant field under a group action and that a k — tori is rational if
and only if its function field is rational over k. We also introduce charac-

ter group of k — tori and numerical approach to determine rationality of

k — tori.
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1 Introduction

Let k be a field and K is a finitely generated field extension of k. K is called
rational over k or k-rational if K is isomorphic to k(x1, ..., ¢, ) where z; are tran-
scendental over k and algebraically independent. There are also relaxed notions
of rationality. K is called stably k-rational if K (yi, ..., Ym) is k—rational for some
transcendental and algebraically independent y;. K is called k — unirational if
k C K C k(x1,...,zy) for some pure transcendental extension k(x1, ..., z,)/k.
The Noether’s Problem is the question of rationality of the invariant field
under finite group action. For example, if K = Q(x1,23) and G = {1,0} = Cy
and G acts on K as permutation of variables 1, x5 (i.e. o fixes Q, o(x1) = 22

and o(x3) = 21), then the invariant field K¢ is Q — rational.

Example 1.1 K = Q(z,y) and G = Cy, acting on K as permutation of vari-
ables. Let g € K%, f,g are coprime. We have

f(z,y)
g(x,y)

= of

By observing that ged(f(z,y),9(z,y)) = ged(f(y,x),9(y,x)) = 1, we have
f(@,y) = f(y,z) and g(x,y) = g(y, v).

Therefore, K¢ = {%U,g are symmetric}, field of fractions (quotient field)
of S ={f € Qlz,y]|f(x,y) = fly,x)}. It is easy to see that 1y : S — Q[s,t] is

isomorphism, where
V(+y)=s, Y(xy) =t

Therefore, S = Q[z,y] and K€ = Q(x,y), Q — rational.
We can also consider case of G acting on both of coefficients and variables.

Example 1.2 K = C(z,y) and G = Gal(C/R) = {1,0} =2 C5. Suppose G acts
on K by permuting x,y and as complex conjugation on coefficients.
For example, o(iz+ (1 —i)xy+y?) = —iy+ (1 +i)yz+22. Then, K¢ = R(x,y),

is R — rational.



Proof. For % € KC, where f,g are coprime, o(f) and o(g) are also

coprime. From g = %, we have f = o(f) and g = o(g). Thus, K is quotient

field of S where S := {f(z,w) € Clz,w]|f = o(f)}.
Define a map ¢ : S — Rz, y] as

z=x+yi,w=1x—yi

and

w(f)(%y) = f(sz)

The coefficients of W(f) are real numbers. This is because, if we let f(z,w) =

n m
> nm @n,m 2 W™, we have that

G ) = fzw) = o(fzw) = o(3 nm"w™) = 3 G 2"

= 2 O (2 + )" (@ —iy)™ = (f)(z,y).
Therefore, ¥(f) = ¥(f), ¥(f) € Rlz,y]. It is easy to see that v is actually
isomorphism, S = Rlx,y], and K¢ = R(x,y).

Another perspective to view this change of variables is identifying the field
with rational function field of algebraic k — tori. (see Example 2.5 and Ex-

ample 2.6)

2 Algebraic k£ — tor:

Let k be a field. Then A} is n-dimension affine space over the field k, simply
k™ with usual vector space structure on it. A subset X of A} is an algebraic
k-variety (k-variety in short) if it is a set of zeros of a system of equations with
n variables x1, ...z, over k. The ideal of polynomials that vanish on every points
of X will be denoted by I(X). The coordinate ring of a variety X is defined to
be the quotient

A(X) == k[z1, ..., 2]/ I(X)



Projective varieties can be similarly defined as the set of zeros of a system of
homogeneous equations. Projective n—space [P}, is defined as set of lines passing
the origin in A}

If X,Y are varieties, a map f : X — Y is called regular if it can be presented
as fraction of polynomials p/q, where ¢ does not vanishes in X. A map f: X —
Y is called rational if it is regular on Zariski open dense set. (Formally, a regular
map is defined as an equivalence class of pairs < U, fy > where U is Zariski open
subset of U. See [1]) Let X be a variety, K(X) is the rational function field, or
function field in short, the set of rational maps f : X — Ag. For example, if
X is an affine variety over algebraically closed field k, K (X) is quotient field of
A(X).

Example 2.1 Let X = {(z,y) € Al|zy = 1} be a variety over C.
Then, A(X) = Clz,y]/(zy — 1) = C[z, 1] and K(X) = C(x).

Two varieties X,Y are isomorphic (resp. birationally isomorphic) if there is
a bijective regular map (resp. rational map) f : X — Y and its inverse is also
regular (resp. rational).

A variety X in A} is an algebraic group if it has a group structure on it,
where the group operation and inversions are regular maps. (i.e. *: X x X — X
and ! : X — X are regular)

Algebraic k —tori, or algebraic k — torus, is a special type of algebraic group
over k. We call an algebraic group as k — tori when it is isomorphic to some

power of multiplicative group over k, the algebraic closure of k.

Definition 2.1 (Multiplicative Group) Let k be a field, the multiplicative
group G, (k) is algebraic group in A, defined as {(z,y) € Ailxy = 1}, with
operation - : Gy (k) X Gy (k) = Gy () of (z, 1) (y, %) = (ay, %y)

Example 2.2 G,,(R) is the curve xy = 1 on the real affine plane. It is iso-

morphic to R* as a group. ((x,y) — x is group isomorphism.)

As field changes, same system of equations can define different varieties.

For instance, the equation xy = 1 in previous example defines G,,(C) in AZ,



which is different from G,,(R). If E is a field and F is its algebraic closure, an
irreducible variety V over F' entails the ring of equations, I. If I happens to
be in E[x] (ring of polynomials over E), we can define V(E), a variety over E
defined by equations in I. This can be viewed as restriction of scalar. Extension

of scalar can be defined similarly.

Definition 2.2 (Algebraic k-tori) Let k be a field with algebraic closure k.

If T is an algebraic group over k, it is k — torus if and only if

for some r. The r is called dimension of T.

Example 2.3 T = G,,(R) is one dimensional R—tori. This is because T(C) =
G (C).

From now, let £* = G,,,(k) be the one dimensional torus over k. There are
two one-dimensional R-tori, one can be recognized as R*, the other one can be

recognized as SO(2) as a group.

Example 2.4 The norm one torus N is a real algebraic group in A%, defined
by equation 23 + 23 =1 (i.e. N = {(z1,22) € Ak|2? + 23 = 1}), and operation

-+ N x N — N such that

(1, 22) - (y1,y2) = (X191 — T2Y2, T1Y2 + T2y1)

Indeed, N is isomorphic to SO(2) as a group.
Also, N(C) = {(z1,22) € Al|z? + 23 = 1} is isomorphic to C* as algebraic
group. The map 1 : N(C) — C*

P(x1, 22) = @1 + Qa9

1s isomorphism. Therefore, N is one dimensional real torus.

If Tis a k — torus, T is called split over K if it satisfies T(K) = (K*)* for

some extension K/k and some s. For instance, R* is split over R, N is not.



It is easy to find split torus such as (R*)? or (R*)3, being another torus. Also,
for any integer r, N” is r-dimensional R — tori. Meanwhile, there are also some

non-trivial(not a product of low-dimensional torus) torus.
Example 2.5 Let P be a real algebraic group in Ay, defined as
P = {(331,.’172, 373,56’4) € A%|l’1$3 — Toxg = 1, 2124 + X223 = 0}

Alternatively,
s 0
P={A¢€ My»(R)| AA' = ) s € R\{0}}
0 s

and operation - : P x P — P such that

(1,22, 3, 24) (Y1, Y2, Y3, Ya) = (T1Y1—T2Y2, T1Y2+T2Y1, T3Y3—LaYa, T3Ya+TaYs3)

Which is compatible with complex multiplication of

(w1 + 28, 23 + 247) - (Y1 + Y2i, y3 + Yai)

Moreover, P(C) is isomorphic to (C*)2, by sending

. . . . 1 1
(1,22, k3, 24) = (X1 + 21, w3 + 241), (X1 — 221, x5 — x41)) = ((2, ;)a (w, E))

Therefore, P is 2-dimensional R — tori.

By tracking the function fields of P(R) and P(C), we have the same trick of

change of variables as in Example 1.2.

Example 2.6 In the previous example, the coordinate ring of P(C) is

1
A(P(C)) = Cla, 22, 23, 24)/ (2123 — @224 — 1, 2104 + 2223) = Clz,

where z = x1 + 21 and w = x1 — x2i. The function field of P(C) is

K(P(C)) = C(z,w)

[=p}



Let G = Gal(C/R) acts on K(P(C)) as in Example 1.2. Observe that the
coordinate ring of P(R) is A(P(R)) = A(P(C))% and the function field of P(R)
is K(P(R)) = K(P(C))¢ = C(z,w)® (note that G actions on K(P(C)) and

C(z,w) are equivalent through the isomorphism). In short, we have that
K(P(R)) = C(z,w)"

Therefore, when G = Gal(C/R) action on C(z,w) is given, we can convert the
rationality problem to the rationality problem of K(P(R)), the function field of

P(R). In this sense, the following definition and theorem are natural.

Definition 2.3 (Rationality of k — variety) We say that a variety X over k

18 rational if, equivalently,

(1) X is birationally isomorphic to P} for some n.

(2) K(X) 2 k(z1,..,z,)

If K/k is Galois extension, a k — tori T is K — rational if it is rational as
a K-variety T(K). If k is algebraically closed, there is unique n-dimension tori
T, = (k™)™ Since the function field of T,, is k(z1, ..., ), thus T, is k-rational.

Theorem 2.1 The following two problems are equivalent.

(1) The rationality problem of n dimensional k — tori T
(2) The rationality problem of invariant field K¢

where G = Gal(k/k) and K = k(z1, ..., 2,).

There is a connection between the G action on K and k —tori T', connecting
the two rationality problems given in the previous theorem. To be specific, the

character group of T determines both the G action and T uniquely.



3 Character group of k£ — tor:

Definition 3.1 (Character group of k — tori) LetT be k—tori. Then X(T),
the character group of T is the set of algebraic group homomorphisms(a regular
map preserving the group structure) from T to EX, denoted by Hom(T,G,,) or
Hom(T, EX).

The character group X(7') of T has a group structure defined by component-
wise multiplication. Also, if T is split over L for finite Galois extension of base
field k, G = Gal(L/k) acts on X(T'). Moreover, it is known that X(7') is torsion-
free Z-module(i.e. isomorphic to Z™ for some n). Therefore, X(T') is a G—lattice

(a free Z — module with G-action).

Example 3.1 If T = C* is multiplicative group of C, then X(T) is set of
reqular functions f : C* — C* such that f(xy) = f(z)f(y) for z,y € C*.
Since f is a rational function, it is a meromorphic function over C. Also, we
have f(C*) C C*, which implies 0 is the only point where f can have zeros or
poles. Therefore, f(t) =t" for some n € Z. If we write a function t — t" as

t", we have

X(T)={t"Inecz}=7!

as a group. G = Gal(C/C) = {id} acts trivially on X(T).

In general, if k is algebraically closed, the character group of (k*)" = G}, is
X(Gh) = {fertn : Gl = Gl fr,.t (1, ) =TT 27 8 € 2}

= H?:l{ft (G — G| fe(zs) = xf,t €Ly =I"
Example 3.2 Let P be the 2-dimension R — tori in Example 2.5. Then, the
character group of P is

X(P) = {fthtz P — (CX |ft1,t2 (l‘l,a?g, 33‘3,.%‘4) = (.Tl + afgi)tl (.131 - .132i)t2}

Let z = o1 + @20, w = 21 — Tai, then we have the natural extension of X(P) to

X(P(©))



1 1
X(P(C) = {furt2 : P(C) = C*|fir 1x((2, ), (w, —)) = 2w} = 22
Observe that the complex conjugation o € G, exchanges z and w, thus acting

1
on Z? as 2 X 2 matrizc .
1 0

It is known that when a G = Gal(K/k) action (as Z-linear function) on Z"
is given, there exists unique n-dimensional k — tori which has the given G —
lattice as its character group. Furthermore, there are conditions of G — lattice

corresponding to the rationality conditions of k — tori and of invariant fields.

4 Flabby resolution and numerical approach

This section contains many results in [2]. Let G be a group and M be a
G — lattice (M = Z" as group and has G-linear action on it). M is called a
permutation G-lattice if M =, ,,, Z|G/H;| for some subgroups Hu, ..., Hy,
of G (equivalently, there exists a Z-basis of M such that G acts on M as permu-
tation of the basis). M is called stably permutation G-lattice if M @ P = Q for
some permutation G — lattices P and Q). M is called invertible if it is a direct
summand of a permutation G-lattice, i.e. P = M @ M’ for some permutation

G-lattice P and M'.

Definition 4.1 (1st Group Cohomology) Let G be a group and M be a G-
lattice. For g € G and m € M, let g.m = m¥ be g acting on m. The first group
cohomology H*(G, M) is a group defined as

HYG,M) = Z"(G,M)/B'(G, M)

where Z'(G,M) = {f + G — M|f(gh) = f(9)"f(h)} and BY(G,M) = {f :
G— M|f(g) = m?m;l for some my € M}



H' (G, M) = 0 simply implies that if f : G — M satisfies f(gh) = f(9)"f(h),
then there exists m € M such that f(g) = m9m~t. M is called coflabby if
HY(G, M) = 0.

Definition 4.2 (-1st Tate Cohomology) Let G be finite group of order n
and M be a G-lattice. The -1st group cohomology fI‘l(G, M) is a group defined

as

HYG,M)=2Z"YG,M)/B~Y(G, M)

where

Z NG, M) ={meM|> m=0}
geG

BTG, M) ={>_ mi "my € M}
9€G

Similarly, M is called flabby if H=1(G,M) = 0. It is clear that a k — tori
is rational if and only if X(T") is permutation G-lattice. Thus, the rationality
problems of k — tori and invariant fields can be reduced into problem of finding
permutation G-lattice(equivalent to find finite subgroup of GL(n,Z). However,
this problem is not solved yet, even though there are many results in weakened
problems.

Let C(G) be the category of all G-lattices and S(G) be the category of all
permutation G-lattices. Define equivalence relation on C(G) by My M, if and
only if there exist Py, P, € S(G) such that M; @ Py = My P>. Let [M] be

equivalence class containing M under this relation.

Theorem 4.1 (Endo and Miyata [3, Lemma 1.1], Colliot-Théléne and Sansuc
[4, Lemma 3]) For any G-lattice M, there is a short exact sequence of G-lattices

0— M — P — F — 0 where P is permutation and F is flabby.

In the previous theorem, [F] is called the flabby class of M, denoted by
[M]/L.

10



Theorem 4.2 (Akinari and Aiichi [2, 17pp]) If M is stably permutation, then
[M]/L. If M is invertible, [M]?! is invertible.

It is not difficult to see that
M is permutation = M is stably permutation
Furthermore, it is true that
M is stably permutation = M is invertible = M is flabby and coflabby

In [2], they gave the complete list of stably permutation lattices for dimension
4 and 5 by computing [M]/! for finite subgroup of GL(n,Z), which is equiva-
lent to classifying stably rational tori. Thus, the rationality problems for low
dimensional k — tori can be resolved by finding conditions which can determine

a stably permutation M is permutation or not.
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