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Abstract

In the present study, for the medical decision making problem, the proposed technique
related to the fuzzy soft set by Celik-Yamak through Sanchez’s method was used. The real
dataset which is called Cleveland heart disease dataset applied in this problem.

1. Introduction

Many terms that we use randomly in everyday life usually have a fuzzy structure. Verbal or numerical expressions we use, while describing
something, explaining an event, commanding and in many other cases include fuzziness. People use terms that do not express certainty when
explaining an event and deciding on a situation. According to the age of the person, old, middle, young, very old and very young are called.
Depending on the slope and ramp condition of the road, the car’s gas or brake pedal is press slightly slower or slightly faster. All these are
examples of how the human brain behaves in uncertain and vagueness situations, and how it evaluates, identifies, and commands events.

After the fuzzy set theory, which uses fuzzy logic rules was developed by Lotfi A. Zadeh and published in its original 1965 paper [9], the
examination of uncertainty systems has gained a new dimension. Fuzzy sets are characterized by membership functions. In fact, these
membership functions are nothing more than fuzzy numbers(FNs). Such a set can be characterized by a membership function that assigns
membership values to each of the elements from 0 to 1. Members that are not included in the set are assigned membership values of 0, and
those who are included in the set are assigned membership values of 1. The elements that are not included in the set are assigned values
between 0 and 1 according to the uncertainty situation.

The concept of soft set has been defined by Molodtsov. Molodtsov proposed the concept of the soft set(SS), a completely new approach to
modeling uncertainty. The soft set theory(SST) has a rich application potential in many ways. Some of these applications have been shown
by Molodtsov in his pioneering work. This theory was applied to many areas of uncertainty such as information systems, decision making
problems, optimization theory, algebraic structures and mathematical analysis. Maji and et al.[4] investigated the SST for decision making
problems. In [5], the authors defined operations ”AND”, ”OR”, union-intersection of two SSs and also gave some examples. The same
authors established a hybrid model known as fuzzy soft set(FSS), which is a combination of SS and FS [3]. Actually, the concept of FSS is
an extension of crisp SS.

In this study, we will consider the approach of Çelik-Yamak [1], obtained from the Sanchez’s model [8] and we will use real dataset, which
is called Cleveland heart disease dataset [10], for the problem of medical decision-making.

2. Decision Making for Imprecision

The problems we face in our lives are often not clear and precise. So we use various decision-making mechanisms to solve our problems.
With these mechanisms we use, we try to make the most right decision by reducing uncertainties. Therefore, improved mathematical tools
for uncertainty and imprecision are needed. FS theory has been used quite extensively to deal with such imprecisions. In this section, we will
give some definitions of the theories of SSs and FSSs.
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Figure 2.1: A trapezoidal FN

The FS has emerged as a generalization of the classical set concept. If we choose a non-empty set X , then a function fA(x) : X → [0,1] is
called FS on X and represented by

A = {(xi, fA(xi)) : fA(xi) ∈ [0,1];∀xi ∈ X} .

FS A on X can be expressed by, set of ordered pair as follows:

A = {(x, fA(x)) : x ∈ X} .

The fuzzy subset of X is a non-empty subset {(x, f (x)) : x ∈ X} for some function f : X → [0,1] [2]. Consider the function f : R→ [0,1] as
a subset of a non-empty base space R. Suppose that the function f satisfies the following properties:

i. f is a normal, that is, there exist xi ∈ R such that f (xi) = 1,

ii. f is a fuzzy convex, that is, f [kx+(1− k)y]≥min{ f (x), f (y)}, where x,y ∈ R and k ∈ [0,1],
iii. f is upper semi-continuous,
iv. The closure of the set C is compact, where the set C = {x ∈ R : f (x)≥ 0}.

Therefore, the function f is called a fuzzy number [2].

A triangular FN m̂ is represented by a triplet (m1,m2,m3) and its the membership function is

f (x) =


0 , x < m1

x−m1
m2−m1

, m1 ≤ x≤ m2
x−m3
n2−n3

, n2 ≤ x≤ n3
0 , x > n3

A trapezoidal FN n̂ is a piecewise function, parameterized by a quadruplet (n1,n2,n3,n4) (Figure 2.1). The membership function of a
trapezoidal FN is given by

f (x) =


0 , x < n1

x−n1
n2−n1

, n1 ≤ x≤ n2
1 , n2 ≤ x≤ n3

x−n4
n3−n4

, n3 ≤ x≤ n4
0 , x > n4

SS theory developed by Molodtsov [6] is a suitable tool for solving uncertainties in non parametric situations and is a natural generalization
of FS theory. Since SS Theory is a natural generalization of FS theory, it has been applied in a wide range of fields ranging up to from
mathematics to engineering from economics to optimization. To deal with a collection of approximate description of objects, a generalized
parametric gizmo is used known as SS.

In approximate description, there are two value sets which are called predicate and approximate. Initially, the object description has an
approximate by nature and so there is no require to present the concept of exact solution. The SS theory is very convenient and simply
effective in performance due to the nonentity of any limitations on the approximate descriptions. With the aid of words and sentences, real
sentences, real number, function, mapping and so on; any parameter can be operate that we desire.

Now, we will give definitions of Soft Set and Soft Subset.

Definition 2.1. Consider X, E as initial universe and parameters sets. Take P(X) as a power set of X. Let R ⊂ E. Give the mapping
F : R→P(X). Then, the pair (F ,R) is called a soft set(SS) on X.
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This definition can be also expressed as:

A SS on X is a parameterized family of subsets of the universe X . F (α) may be considered as the set of α−aprroximate elements of the SS
(F ,R), for α ∈ R.

Definition 2.2. Let (F ,R) and (G ,S) be two SSs on X. If the following conditions are hold, then it is said that (F ,R) is a soft subset(SSS)
of (G ,S):

i. R⊂ S,
ii. F (α) and G (α) are identical approximations, for all α ∈ R.

We will denote the SSS by (F ,R)⊂̂(G ,S).

The AND and OR operator of SSs are defined as:

Definition 2.3. Let (F ,R) and (G ,S) be two SSs. Define H (λ ,µ) =F (λ )∩G (µ), ((λ ,µ) ∈ R×S). Then, (F ,R)∧ (G ,S) = (H ,R×S)
is called (F ,R) AND (G ,S).

Define K (λ ,µ) = F (λ )∪G (µ), ((λ ,µ) ∈ R×S). Then, (F ,R)∨ (G ,S) = (K ,R×S) is called (F ,R) OR (G ,S).

Choose set of k objects and set of parameters as X = {a1,a2, . . .an} and {R1,R2, . . . ,Ri}, respectively. Let E ⊇ {R1∪R2∪·· · ,Ri} and each
parameter set Ri represent the ith class of parameters and the elements of Ri represents a specific property set. Assumed that the property sets
can be shown as FSs.

Definition 2.4. Let P(X) denotes the set of all FSs of X and Ri ⊂ E. Give Fi : Ri→P(X) be a mapping. Then, (Fi,Ri) is called a fuzzy
soft set(FSS) over X.

Definition 2.5. Let (F ,R) and (G ,S) be two FSSs on X. If the following conditions are hold, then it is said that (F ,R) is a fuzzy soft
subset(FSSS) of (G ,S):

i. R⊂ S,
ii. F (α) is a FSS of G (α), for all α ∈ R.

We write (F ,R)⊂̂(G ,S).

3. Method

3.1. FSS Method

In this study, we will use a technique developed with FSS theory [1]. We build a patient-attributes(m×n) matrix PA using the FSS. The
entries of this matrix are FNs ŝ parameterized by a triplet (s−1,s,s+1). Later on, the attributes-disease degrees(n× k) matrix AD which is
also called weighted matrix is built. In this matrix, each entry represents the weight of the attributes for a disease degree. Generally, these
matrices are given as below:

PA =


û11 û12 û13 · · · û1n
û21 û22 û23 · · · û2n

...
...

...
...

...
ûm1 ûm2 ûm3 · · · ûmn

 and AD =


v̂11 v̂12 v̂13 · · · v̂1k
v̂21 v̂22 v̂23 · · · v̂2k

...
...

...
...

...
v̂n1 v̂n2 v̂n3 · · · v̂nk.


The patient-disease degrees matrix(m× k) PD can be obtained from transformation operation PA⊗AD. The general form of the matrix PD as
follows:

PD =


ŵ11 ŵ12 ŵ13 · · · ŵ1k
ŵ21 ŵ22 ŵ23 · · · ŵ2k

...
...

...
...

...
ŵm1 ŵm2 ŵm3 · · · ŵmk


where wi j = (A,B,C) such that A = ∑

n
k=1(aik−1)(bk j−1), B = ∑

n
k=1 aikbk j and C = ∑

n
k=1(aik +1)(bk j +1).

We can calculate the defuzzification of t of triangular FN (m1,m2,m3) as

t =
m1 +m2 +m2 +m3

4
(3.1)

[1]. Therefore, each fuzzifying value of the above matrix will be defuzzify. Thus, we will obtain crisp diagnosis matrix DF . The matrix DF
as below:
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Table 1: Attributes of Cleveland dataset

Attributes Fullname
a1 age in years
a2 chest pain type
a3 resting blood pressure (in mm Hg)
a4 serum cholestoral in mg/dl
a5 fasting blood sugar ¿120 mg/dl
a6 resting electrocardiographic results
a7 maximum heart rate achieved
a8 ST depression induced by exercise relative to rest
a9 the slope of the peak exercise ST segment
a10 number of major vessels (0-3) colored by flourosopy
a11 3:normal; 6:fixed defect; 7:reversable defect

DF =


z11 z12 z13 · · · z1k
z21 z22 z23 · · · z2k
...

...
...

...
...

zm1 zm2 zm3 · · · zmk


It will be decided according to the crisp values of the matrix DF . If maxzi j = zik (0 ≤ j ≤ k), then the disease degree of patient pi is k
k = 1,2,3,4 or 0(absence).

3.2. Dataset

Input variables are taken from Cleveland dataset [10]. This data set contains 303 patients, 11 attributes and 5 outcomes.

This database contains 76 attributes. However, it is understood that 14 of these attributes can be used because of the analysis. The outcomes
are given as degree of disease. It is integer valued from 0 (no presence) to 4. tests with the Cleveland database have intensively on simply
attempting to distinguish presence (values 1,2,3,4) from absence (value 0).

Let’s choose patient sets U = {p1, p2, p24, p25, p75, p303} from the Cleveland dateset.

The attributes of Cleveland dataset is given in Table 1. The outcomes are disease degrees as 1,2,3,4 and 0(absence).

According to the membership function, the age attribute is taken into account as follows: 0−20(0.0−0.2), 21−40(0.3−0.5), 41−60(0.6−
0.8); 61+(0.9−1.0). In this data set, the attributes trestbps, chol, thalach, oldpeak are measured as lowest 94.0 highest 200.0; lowest 126.0
highest 564.0; lowest 71 highest 195; lowest 0.0 highest 5.6, respectively. We will give values between 0.0 and 1.0 to these measurements.

3.3. Algorithm

i. Input the SS (F ,R) to get the patient-attribute matrix,
ii. Input the SS (G ,S) to get the attribute-disease degree matrix,

iii. Compute the transformation operation PA⊗AD to make the patient-disease degree matrix,
iv. Defuzzify all the elements of the patient-disease degree matrix by Equation 3.1 and to obtain the defuzzify matrix,
v. Find k for which zik = maxzi j.

4. Application

In this section, using the Celik-Yamak approach obtained by Sanchez’s method, we give an application of FSS theory[7] for medical decision
making. For this application, it will be used the Cleveland Dataset. This data set contains 303 patients.

Now, we construct the matrices for medical decision making by algorithm in previous section:

The patient-attributes matrix PA is given by

PA =



9̂ 2̂ 5̂ 3̂ 7̂ 8̂ 6̂ 2̂ 9̂ 1̂ 5̂
9̂ 7̂ 5̂ 3̂ 1̂ 8̂ 4̂ 3̂ 5̂ 8̂ 1̂
7̂ 6̂ 4̂ 3̂ 1̂ 9̂ 5̂ 6̂ 1̂ 6̂ 8̂
8̂ 7̂ 4̂ 4̂ 2̂ 9̂ 4̂ 5̂ 5̂ 6̂ 9̂
5̂ 8̂ 3̂ 4̂ 2̂ 5̂ 8̂ 1̂ 7̂ 3̂ 2̂
4̂ 6̂ 4̂ 3̂ 1̂ 2̂ 7̂ 1̂ 2̂ 5̂ 3̂


.
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In this matrix, rows are shown in patients {p1, p2, p24, p25, p75, p303} and columns are shown attributes {a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11}.
For example, F (p1) = {a1/9̂,a2/2̂,a3/5̂,a4/3̂,a5/7̂,a6/8̂,a7/6̂,a8/2̂,a9/9̂,a10/1̂,a11/5̂}.

The attributes-disease degrees matrix AD consist of the rows and columns which are attributes {a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11} and
disease degrees 1 = d1,2 = d2,3 = d3,4 = d4,0 = d0, respectively. For example, G (a1) = {d1/4̂,d2/3̂,d3/1̂,d4/2̂,d5/9̂}.

AD =



4̂ 3̂ 1̂ 2̂ 9̂
8̂ 9̂ 7̂ 5̂ 1̂
7̂ 8̂ 9̂ 8̂ 1̂
3̂ 5̂ 8̂ 9̂ 2̂
9̂ 8̂ 4̂ 2̂ 5̂
3̂ 2̂ 2̂ 1̂ 9̂
3̂ 1̂ 4̂ 9̂ 2̂
9̂ 7̂ 8̂ 1̂ 5̂
8̂ 9̂ 7̂ 1̂ 8̂
5̂ 8̂ 3̂ 2̂ 9̂
8̂ 4̂ 9̂ 5̂ 2̂


The patients-disease degrees matrix PD is obtained from the matrices PA and AD. Therefore, the rows and columns of the matrix PD are
shown in patients and disease degrees, respectively.

PD =



3̂36 3̂01 2̂87 2̂17 3̂14
2̂96 3̂07 2̂55 2̂31 3̂13
3̂20 2̂84 2̂96 2̂18 2̂83
3̂72 3̂41 3̂41 2̂35 3̂27
2̂70 2̂67 2̂54 2̂15 2̂27
2̂11 2̂09 2̂06 1̂92 1̂61


where

3̂36 = (223,336,454), 3̂01 = (191,301,433), 2̂87 = (179,287,417), 2̂17 = (122,217,322), 3̂14 = (215,314,432),

2̂96 = (186,296,428), 3̂07 = (200,307,436), 2̂55 = (150,255,382), 2̂31 = (107,231,305), 3̂13 = (267,313,431),

3̂20 = (208,320,454), 2̂84 = (175,284,415), 2̂96 = (196,296,425), 2̂18 = (128,218,330), 2̂83 = (185,283,403),

3̂72 = (253,372,513), 3̂41 = (225,341,479), 3̂41 = (228,341,477), 2̂35 = (138,235,354), 3̂27 = (222,327,454),

2̂70 = (166,270,396), 2̂67 = (232,267,390), 2̂54 = (164,254,375), 2̂15 = (133,215,319), 2̂27 = (137,227,339),

2̂11 = (124,211,318), 2̂09 = (121,209,317), 2̂06 = (125,206,307), 1̂92 = (124,192,280), 1̂61 = (82,161,256).

The defuzzifying matrix DF constructed from equation (1):

DF =


674,5 306,5 292,5 219,5 318,75
301,5 312,5 260,5 218,5 331
325,5 289,5 323,25 223,5 288,5
377,5 346,5 316,75 220,5 332,5
275,5 289 261,75 240,5 232,5
216 214 211 197 165


Decision: It seen that in the matrix DF , heart disease degree of the patient p1 is 1. That is, the maximum score is measured in the first person.
Additionally, when the available data are calculated with the FSS, the highest patient with 2 disease degrees is p2, the highest patient with 3
disease degrees is p24, the highest patient with 4 disease degrees is p75 and the highest measured person with no heart disease is p25.

5. Conclusion

In this paper, an application of FSS theory developed by Sanchez and implemented by Celik-Yaman by fuzzy arithmetic operations has been
studied. In this application, the real dataset which called Cleveland dataset is used.

The relation matrix and weighted matrix is formed according to the given algorithm and the patient diagnostic matrix was obtained by
transformation operation. The fuzz,fying values of the patient diagnostic matrix were defuzzifying and obtained the crisp diagnosis matrix.
This study shows the contribution of FSSs in decision making problems and especially in medical diagnosis.
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