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Abstract

In this paper, not only did we disprove the Riemann Hypothesis (RH) but also we showed
that zeros of the Riemann zeta function ((s) can be found arbitrary close to the line #(s) = 1.
Our method to reach this conclusion is based on analyzing the fine behavior of the partial sum
of the Dirichlet series with the Mobius function M(s) = >, u(n)/n® defined over p, rough
numbers (i.e. numbers that have only prime factors greater than or equal to p,). Two methods
to analyze the partial sum fine behavior are presented and compared. The first one is based
on establishing a connection between the Dirichlet series with the Mobius function M (s)
and a functional representation of the zeta function ((s) in terms of its partial Euler product.
Complex analysis methods (specifically, Fourier and Laplace transforms) were then used to
analyze the fine behavior of partial sum of the Dirichlet series. The second method to estimate
the fine behavior of partial sum was based on integration methods to add the different co-
prime partial sum terms with prime numbers greater than or equal to p,. Comparing the
results of these two methods leads to a contradiction when we assume that ((s) has no zeros
for R(s) > cand ¢ < 1.
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1 Introduction and Paper Outline
The Riemann zeta function ((s) satisfies the following functional equation over the complex

plain [2]
C(1 —s) = 2(2m)? cos(0.5sm)T(s)((s), (1)

where, s = o + it is a complex variable and s # 1.

For o > 1 (or R(s) > 1), ((s) can be expressed by the following series

()= — (2)

1 © 1
EOREY () ©



where, p1 = 2, [[;2,(1 — 1/p;®) is the Euler product and [];_;(1 — 1/p;®) is the partial Euler
product. The above series and product representations of ((s) are absolutely convergent for
o>1.

The region of the convergence for the sum in Equation (2) can be extended to R(s) > 0 by
using the alternating series 7(s) where

n(s) = i

n=1

(-1

ns

(4)

and
1

((s) = mﬁ(s)- ®)

One may notice that the term 1 — 217 is zero at s = 1. This zero cancels the simple pole that
((s) has at s = 1 enabling the extension (or analog continuation) of the zeta function series
representation over the critical strip where 0 < R(s) < 1.

It is well known that all of the non-trivial zeros of ((s) are located in the critical strip. Rie-
mann stated that all non-trivial zeros were very probably located on the critical line (s) = 0.5
[14]. There are many equivalent statements for the Riemann Hypothesis (RH) and one of them
involves the Dirichlet series with the Mobius function.

The Mobius function y(n) is defined as follows
u(n)=1,ifn = 1.

p(n) = (=1)F,if n = [I%_, p;, pi’s are distinct primes.
u(n) = 0, if p?|n for some prime number p.

The Dirichlet series M (s) with the Mobius function is defined as

M(s) = f: “(Z). 6)
n=1

n

This series is absolutely convergent to 1/((s) for R(s) > 1 and conditionally convergent to
1/¢(s) for N(s) = 1. The Riemann hypothesis is equivalent to the statement that M(s) is
conditionally convergent to 1/{(s) for R(s) > 0.5. It should be pointed out that our definition
of M (s) is different from Mertens function (defined in the literature as M () = Y"1 ,,<, p#(n)).
If we denote M (s; 1, N) as partial sum of the series M (s) o

M(s;1,N) = i n) 7)
s Ly — ns 5

then the Mertens function is given by M (0; 1, N'). On RH, we then have [18]
M(0;1,N) = O(N'/?*),
where € is an arbitrary small number. By partial summation, on RH, we also have

M(1;1,N) = O(N~Y2+e),



The irregular behavior of the Mobius function p(n) has so far hindered the attempts to esti-
mate the asymptotic behavior of any of the above two sums as IV approaches infinity.

The Riemann hypothesis is also equivalent to another statement that involves the prime
number function 7(z) (defined by the the number of primes less than z). The prime counting
function can be computed using Riemann Explicit Formula

|log z/log 2] 1/n -
@) i) - L) [ —
m(z) + T; = Li(x) ;h(az ) —log(2) + W@ Dest
and on RH,
c(1)2
m(x) = Li(x) — Ll(a; ) _ Z Li(z”) + Lesser terms

p

where Li(z) is the Logarithmic Integral of z and the sum 3°, Li(2) is performed over the
nontrivial zeros p; = o; + 77; . This sum is conditionally convergent and it should be per-
formed over the nontrivial zeros with |y;|< T" as T' approaches infinity.

The prime counting function 7(x) has a jump discontinuity at each prime number. In the
literature, this function is a right continuous function given by m,.(x) = > opi<a L where the
suffix rc was added to indicate that the function is right continuous. Since the analysis of this
paper employs integration methods (and specifically Lebesgue-Stieltjes integration), there-
fore it is more appropriate to assign the left-right average to the function value at discontinu-
ities. In the literature, this function is referred to as mo(x) = limy,_o(7m(x + h) + 7w(z — h))/2.
In this paper, we define 7(z) as mo(z). In fact, for the above equation, w(x) does converge to
the right-left average when z is a prime number (or at the discontinuities of the function 7(z)).

The distribution of the prime numbers can be also analyzed by defining the function 1 (z)
as

P(x) = po(x) = % ( > logpi+ Y logpz‘) ;
pim<x pim <z

and using Von Mangoldt formula given by

w(x)—:r—zp:a;)—g((g))—;log(l—x_z).

It is well known that as x approaches infinity, the prime counting function is asymptotic to
the function Li(x). Therefore, if we consider that 7(z) is comprised of two components, the
regulator component given by Li(z) and the irregular component J(z) given by

J(x) = m(x) — Li(z),

then on RH, we have .
J(z) < S—ﬁlog:v for = > 2657.
0

On RH, the irregular component .J(z) is also given by [16] (refer to lemmas 5 and 6)

J(a:):w(x>_’”+o<ﬁ>

log log




or

@)= - — ‘”""Eo(“‘";) ®)

_logﬂc > P log x

Our method to examine the validity of the Riemann Hypothesis (and in general, to ex-
amine the region within the critical strip where ((s) is void of non-trivial zeros) is based on
representing variants of the Dirichlet series M (o) (defined by Equation (6)) in terms of vari-
ants of the integral [ dJ(z)/x. However, the partial sum of the series M (o) exhibits irregular
behavior due to the irregular behavior of the Mobius function /(n). Therefore, we need to in-
troduce a method to smooth out the partial sum of the series M (o) by introducing a method
to represent the series M(s) in terms of the partial Euler product. This task is achieved in
section 2 by first eliminating the numbers that have the prime factor 2 to generate the series
M(s,3) (i.e, the series M (s, 3) is void of any number with prime factors less than 3). For the
series M (s, 3), we then eliminate the numbers with the prime factor 3 to generate the series
M (s, 5), and so on, up to the prime number p,. In other words, we have applied sieving meth-
ods to modify the series M (s) to include only the numbers with prime factors greater than or
equal to p,. In the literature [10], numbers with prime factors less than y are called y-smooth
while numbers with prime factors greater than y are called y-rough. In essence, our approach
is to compute the Dirichlet series over p,-rough numbers. In section 3, we have shown that
the series M (s) and the new series M (s, p,) have the same region of convergence (Theorem 1).

After defining the series M (s, p,) and its partial sum, we note that both the series and its
partial sum has two components. The two components corresponds to the two components
of the prime function 7(z). These two components are Li(z) an J(z). For > 1, the function
Li(z) is differentiable and its contribution to M (s, p,) and its partial sum is well behaved and
can be computed using both complex analysis and integration methods. Therefore, we call
the component of the series M (s, p;) (or its partial sum) due to Li(x) as the regular component
of series M (s, p,) (or the regular component of its partial sum). We then call the remaining
component of the series M (s, p,) (and the remaining component of its partial sum) as the ir-
regular component of the series M (s, p,) (and the irregular component of its partial sum).

We will then present two methods to represent the irregular component of the series
M(s,p,) and the irregular component of its partial sum in terms of the integral [ d.J(z)/z.
The first method is based on complex analysis (sections 4 and 6). With this method, we have
provided a functional equation for ((s) using its partial Euler product. The second method is
described in section 5 and it is based on integration methods.

It is worth noting the research done by Gonek, Hughes and Keating [5] into establishing a
relationship between ((s) and its partial Euler product for #(s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation”. In section 4, we will present a functional equation for ¢(s) using its
partial Euler product. The method is based on writing the Euler product formula as follows
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The above equation is valid for (s) > 1. To be able to represent ((s) in term of its partial
Euler product for R(s) < 1, we need to replace the term [[;° (1 — 1/pf) with an equivalent
one that allows the analytic continuation for the representation of ¢(s) for R(s) < 1. Thus, the
new term (that we need to introduce to replace [[.° (1 — 1/pj)) must have a zero that corre-
sponds to the pole ((s) has at s = 1. In section 4, we will use the complex analysis to compute
this new term and then represent ((s) in terms of its partial Euler product. This functional
representation is given by Theorem 2. We will then use this theorem to represent the series
M(s,p;) in terms of the integral [* d.J(z)/z (Theorem 3).

Our effort will then be centered at computing the partial sum of the series M (1, p,). Two
methods will be presented to compute the irregular component of the partial sum for the se-
ries M (1, p,) (in the abstract, we referred to it as the partial sum fine behavior). In section 5,
we have achieved this task using integration methods (Theorem 4). In section 6, we have used
Theorem 3 and the complex analysis (Fourier and Laplace transforms) to derive a second rep-
resentation for irregular component of series M (1, p,) partial sum. The two representations
of the irregular component of the partial sum of the series M(1,p,) are then compared. We
will then show that this comparative analysis leads to a contradiction when we assume that
¢(s) has no zeros for R(s) > ¢ where ¢ < 1. This leads to the conclusion that the Riemann
Hypothesis is invalid and non-trivial zeros can be found arbitrary close to the line R(s) = 1.

To some extent, our analysis has similarities with linear time-invariant system analysis.
Linear time invariant systems can be represented either in frequency domain by its transfer
function (in our case, the transfer function is represent by a functional representation of Rie-
mann zeta function in terms of its partial Euler product) or in time domain by its impulse
response (in our case, the effect of each prime number is to flip the sign of the Mobius func-
tion for any number that is divisible by this prime number). The input for the linear invariant
system can be represented either in frequency domain by its frequency spectrum (in our case,
the absence of the non-trivial zeros for sections of the complex plane) or in time domain as
a function of time (in our case, the exact location of the prime number). The system output
function is then determined in frequency domain by multiplying the input signal spectrum
by the system transfer function and then taking the inverse Fourier or Laplace transform.
The system output function can be also determined in time domain by convolving the input
signal with the system impulse response. Both methods should provide the same results.

2 Notation and Preliminaries.
The Dirichlet series M (s) with the Mobius function is defined as

M) =3,

n=1

where 1(n) is the Mobius function. Thus,

1 1 0 1 1
Next, we introduce the series M (s, 3) by eliminating all the numbers that have a prime
factor 2 (or keeping only the numbers with prime factors greater than or equal to 3). Thus,
M (s, 3) can be written as



1 1 1 o0 1 1 1
M(s.3)=1—— — — S A
(5,3) 35 5 7s Tos  11s 13° | 150

Our analysis to test the conditional convergence of these series (M (s) and M(s,3) for
o < 1) is based on comparing correspondent terms of these two series. Therefore, rearrange-
ment and permutation of the terms may have a significant impact on analyzing the region of
convergence of both series. Thus, it essential to have the same index for both series M (s) and
M (s, 3) refer to the same term. Hence, we will represent M (s, 3) as follows

or

M(s,3) = 3 HO3) ©)

where
p(n,3) = p(n), if n is an odd number,
wu(n,3) =0, if n is an even number.

The above series M (s, 3) can be further modified by eliminating all the numbers that have
a prime factor 3 (or keeping only the numbers with prime factors greater than or equal to 5)
to get the series M (s, 5) where

or more conveniently

M(S’5):1+§_§+473_§+§_%_§”“’

and so on.

Let I(p,) represent, in ascending order, the integers with distinct prime factors that belong
to the set {p; : p; > p,}. Let {1,1(p,)} be the set of 1 and I(p,) (for example, {1,1(3)} is the
set of square-free odd numbers), then we define the series M (s, p,) as

nS

M(s,py) = N(”=PT)7 (10)
n=1

where

p(n,pr) = p(n), if n € {1, 1(pr)},
otherwise, u(n, p,) = 0.

It can be easily shown that, for every prime number p,, the series M(s,p,) converges
absolutely for R(s) > 1. Furthermore, it can be shown that, for R(s) > 1, M (s, p,) satisfies
the following equation

r—1
M(s) = M(s,p,) [] (1 - 1) . (11)

=1



Since

1 = 1
M(S):m:ﬁq(l_ﬁ)’

therefore we conclude that, for R®(s) > 1, M (s, p,) approaches 1 as p, approaches infinity. It
should be pointed out here that with this definition of M (s, p,), M (s, 2) is equal to M (s).

The first ingredient of our analysis is the Dirichlet series M (s, p,) partial sum defined as

K>
n?
M(s,pr; K1, K3) = Y Lspr), (12)
n=K; n
where K1 > 1 and Ky > p,. If we set K; to one and replace the integer Ko with the real
number z (Where x > p,) and define

M(S)p'r‘; 1)37) - M(‘S?pr; 17 LJ"J%
then M (s, p,; 1, ) is a function of z.

The partial sums of the series M (s, p,—1) and the series M (s, p,) are related by the follow-
ing lemma,

Lemma 1. .
M(Saprfl; L, Nprfl) = M(S,pr; 1, Nprfl) - TM(Sapr; 1, N) (13)

r—1

Proof. The proof of this lemma follows directly from the definition of the partial sum for the
series M (s,p,—1) and M (s, p,). Alternatively, one can show that each term on the right side
of Equation (13) is a term on the left side of the equation and vise versa. Furthermore, there is
no duplicity for each term on both side of the equation. Each term on the left side of Equation
(13) corresponds to a number in the interval [1, Np,_;] that has distinct prime factors greater
than or equal to p,_;. Each term on the first term of the right side of Equation (13) corresponds
to a number in the interval [1, Np,_] that has distinct prime factors greater than or equal to
pr. Each term on the second term of the right side of Equation (13) corresponds to a number
in the interval [1, Np,_;] that has distinct prime factors greater than or equal to p,_; with p,_;
being one of its prime factors. O

Note that regardless of the value of p,, the partial sum M (s, p,;p,, p? — 1) comprised of
terms that correspond to only prime numbers. Similarly, the partial sum M (s, p.; p2,p? — 1)
comprised of terms that correspond to only prime numbers or products of two prime num-
bers, and so on. Therefore, one might expect that regardless of the value of p,, the partial
sum M (s, pr; 1,p%) exhibits certain characteristics with respect to the variable a that can be
exploited. These characteristics will be discussed in details in section 5.

The second ingredient of our analysis is the partial Euler product defined as []}2,, (1 — :z%) .
Our analysis for this product will be restricted to the region (s) > 0.5. Taking the logarithz
of the partial Euler product, we then have for o > 0.5

T2 1 T2 1 ‘
log [ 1-5 = > log L= 5 ) +2mil,

i=rl ? i=rl v



where N is zero, positive or negative integer to account for the ambiguity in the phase of the
logarithm of complex numbers. Since 1/|pj|< 1, hence,

r2 1 r2 1 1 1 .
i=rl i i=rl ’ ! !

We split the sum on the right side of Equation (14) into two sums. The first sum comprises of
the terms of the form 1/p; while the second sum comprises of the rest of the sum. This leads
us to introduce the terms 6(s; p,1, pr2) and d(s; pr1)

Definition 1. Let d(s; py1, pro, s) be defined as the sum

o >—§j(—1—1—1—) (15)
DPri, Pr2 = 2p7j2s 3p135 4])7;45 [EER )

and let 0(s; py1) be defined as

. - 1 1 1
O(sipr1) = lim_d(s;pp1,pra) = ) (—2p_28 m ) : (16)
i=rl v ? g

Using Definition 1, we can write Equation (14) as

r2 1 r2 1
log [ <1s> =— > — +d(sipr1,pra) + 2miN. 17)
i=rl p; i=r1 ?
r2

In the following, we will analyze both sums (i.e >>i=.; 1/p;® and 0(s; pr1, pr2)).

Lemma 2. For o > 0.5,
O(py*%)

5(s; -
’ (87p7”17p7”2)| 20__1

Proof. For o > 0.5, we have

_ = 1 1 1
5(57p7‘17pr2) = Z _2 i2s - 3pi38 - As +.,

i=rl p Api
hence
2 1 1 1
5(s: < U I
’ (87p7‘17pr2)‘ >~ Z; (‘2]71'25 + ‘3]?1‘35 + ‘4])7;45 + )
or
2 1 1 1
5(s:pr1, < e,
| (S Pr1 pT2)| = i;:l (2]91'20 + 3pi30 + 4pi40 + >
or

r2 1 1 ]_ 1
6(8; P15 Pr2)| < Z; P20 (2 3pi®  Api*°

8



However,

i<1+1+1+><§<1+1+1+><1+1+/001
S \20 3p  Apr ) &4 \2 3p 3pi*e ) 2 3p i apl
For p; > 2 and o > 0.5, we then have
i(l—i- L, 1y )<4
22 T p Tapze T
or
r2 4
|5(5;pr1apr2)| < Z 20"
i=r1 P
Since )
2] > 1 O
> < X %_;pil)
i=r1 Pi n=pn "' g
or -
Op;1 ™)
S(s: _ rl
’ (Svprl7p’r‘2)| 20 — 1

O]

Note that for any o > 0.5, |6(s; pr1, pr2)| is uniformly convergent (regardless of the value
of the imaginary part ¢, where s = o + it). We also note that the term d(s; py1,pr2) has no
impact on which part (of the critical strip) is void of non-trivial zeros.

Next, we turn our attention to the term 72 ; 1/p;%. This term has a direct impact on
which part (of the critical strip) is void of non-trivial zeros. We will first analyze this sum on
the real axis (i.e. s = o). We will then extend this analysis to complex plain (i.e. s = o + it).
Before, we do so, we have the following definitions.

Definition 2. We define the prime counting function m(x) as
m(x) = lim(mpe(z + h) + 7re(x — h))/2
h—0

where

Tre(T) = Z 1

pisz

In other words; we define w(x) as the right-left average of the conventional prime counting function.

As mentioned in the previous section, as « approaches infinity, the prime counting func-
tion 7 (x) is asymptotic to the function Li(z). Therefore, we can split 7(z) into two compo-
nents, the regulator component given by Li(z) and the irregular component J(z).

Definition 3. The irreqular component J(x) of the prime counting function w(x) is defined as

J(x) = m(x) — Li(x) (18)



Definition 4. Let £(s;pr1, pr2) be defined as the integral

Pr2

e(s;pr1,pr2) = / dJ(x)/x®, (19)

Dri
and let €(s; pr1) be defined as
(sipn) = [ dI@)a” (20)
p

1

With these definitions, we can compute the sum Y72, 1/p; using the following lemma

Lemma 3. For o > 0.5, the sum Y72, # is unconditionally given by
T2 1
> o Ei((0 —1)logpr1) — Er((o — 1) log pr2) + €(0; pr1, pr2) (21)
i=rl £

where, e(0;pr1,pr2) = [272 dJ(x) /27 and J(z) = m(z) — Li(),

Proof. Using Lebesgue-Stieltjes integral [8], we can write the sum Y72 ; pj%, as the following
integral '
i - / Pr2 dm(x)
i=rl pg Pr1 'CEU
or
i 1 /m dLi(z) | /m dJ(z)
i=rl pg Pr1 xO’ Pr1 xO’ .
Hence
"2 P21
> 2/ T1og 5 0% T E(0:pr1, pr2).
i=rl pz Pr1 x- logx

Dr2 1
pr1 29 logx

For o > 1, the integral dx can be computed directly from the definition of the

Exponential Integral Ey(r) = [*° ©~du (where r > 0) to obtain

r

Pr2 1
=K —1)logpr1) — E —1)logp,
|7 ezt = Fal(e = Dlogpn) = Ba((o —1)log )

It should be pointed out that although the functions E((c — 1) logp,1) and E;((o — 1) log py2)
have a singularity at o = 1, the difference has a removable singularity at ¢ = 1. This follows
from the fact that as o approaches 1, the difference can be written as

Ey((0 —1)logpr1) — E1((0 — 1) logpr2) = —log ((1 — o) log p1) — v +log ((1 — o) log pr2) + v

or,

Pr2 1
Lim /prl loga T lim{E1((o—1)logpr1) = Er((0 —1)log pro)} = —loglog pr1 +loglog py2

10



Pr2

ooy T° logmdx for 0 < 1, we first use the substantiation y = logx

To compute the integral
to obtain

Pr2 1 log pr2 e(l U)y log pr2 6(1 o) logpr1 o(1—0)y
pr1 T log T log pr1 e y

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and zo = y/log py2 , we then obtain

Pr2 1 1 6(1—0)(10gpr2)22 1 e(l_g)(logprl)zl
| o = - [
1 T7logx ¢/log pra 22 ¢/log pr1 <1

With the variable substantiations w; = (1 — o)(log p,1)2z1 and wy = (1 — o)(log py2)21 and by
adding and subtracting the terms — f(( U))glogp "z | Ja- a- a) logpr1 41, we then have

Dr2 1 -0 IOg Ppr2 er — ]_ (1_0) 10g Pri ewl _ 1
/ = / dwy — / dwi+
P (

1 X7 IOgCC 1-0)e w2 1—0)e wy

1—0)e w2

/(10) log pra2 dw2 /(IU) log pr1 dwl
( (1—o0)e w1

Using the following identity [1] (refer to page 230)

a 75_1
/e —dt = ~Fy(~a)  log(a) -
0

where a > 0, we then obtain for o < 1,

Pr2 1
de =F —1)logpr) — F — 1) logp,
[ gt = Ballo = o) ~ Ei((e —1)loxpya)

Hence, for o > 0.5, we have

r2
1
> — =FEi((c — 1)logpr1) — Er((0 — 1)log pra) + (05 pr1, pr2)

i=r1 Pi
O
The results of Lemma 3 can be extended to compute the sum Y12, -1 i
using the following lemma
Lemma 4. For R(s) > 0.5, the sum Y72 "y
Z — (s — 1) logpy1) — Ex((s — 1) log pr2) +e(si pri, pr2) (22)

i=rl pi®
where, £(s;pr1,pro) = [}7> dJ(x)/2® and J(x) = () — Li(x),

Proof. The proof of this lemma is given in Appendix 1. Note that the Exponential Integral
with the complex variable z is given by E;(z) = [;° eftz dt (where R(z) > 0) O

To compute the integrals [7"2 dJ(z)/x” and [}"2 d.J(x)/2®, we need to write J(z) in terms
of the function v (z)

11



Definition 5. We define the function 1)(x) as

b(x) :% ( > logpi+ Y 1ngi>

pi"<m piMm<z

The function () can be expressed using Von Mangoldt formula given by

Von Mangoldt formula [2].

where the sum 3~ , x” / p is performed over the nontrivial zeros p; = cv;+ivy; . This sum is conditionally
convergent and it should be performed over the nontrivial zeros with |v;|< T as T approaches infinity.

The function J(z) can be written in term of the function ¢ (x) using Lemma 6 of [16]

Lemma 5 ([16]). The function J(x) defined by w(x) — Li(x)) is given by

[log z/log 2| W(xl/n) W(z) —

J(z) = — ;::2 n o Tloge T P(z),

where, @
Ty(u) —u
P(z) = ———d — Li(2
(@) 2 wulog?u log 2 i(2),

Lemma 6. On RH, J(x) is given by

_Y@) —z Tapu) —u 1/3

) = log z * 2 ulog?u du = Li@@"") +0 <x ) ’

and
J(x) =

1 xP m 1 uf . 1/2 3
10g$;p+/2 < zp:)du—L1(xl/)+O(x1/).

ulog?u p
Proof. The first equation of the lemma can be driven from Lemma 5 where we have
[log z/log 2] W(:Ul/") [log z/log 2] W(l‘l/n)

> —— =Li@! )+ @)+ Y

n=2 n=3

n

Since yoLogw/los 2] @) O(n(x'/3)) and on RH J(z/?) = O(z'/*), thus

n

[log z/log 2] ﬂ_(xl/n)

>

n=2

= Li(z'/?)+ 0 (xl/g) :

12



Referring to Lemma 5, we then have

_Y(@) — Cp(u) —u CTa(1/2 1/3
@) = log x * 2 ulog2udu Li(z )—i—O(x )’

and by the virtue of Von Mangoldt formula, we then have

I = o > =+ [ <u101gQ 3 f) du — Li(a'/?) + O (/7).
O
The following lemma deals with the size of J(z)
Lemma 7 (Size of J(x)). The size of J(x) is given by
i Unconditionally,
J(x)=0 <xea\/@> , (23)

where a > 0.

i If the not-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where ¢ > 1/2), then
J(x) = O(zlog x).
iii On RH
J(z) = O(z"?log z).
Proof. For i, refer to page 43 of [17].

For ii, refer to Theorem 5.8 of [13] which states that If the not-trivial zeros of ((s) are
restricted to the strip 1 — ¢ < R(s) < ¢, then

p(x) —

= ‘1 .
log 2 O(x°log )

We then substitute O(z“logx) for % in the expression for J(z) in Lemma 5 to get the
desired result.

For iii, we refer to [15], where on RH, J(x) is given by
1
J(x) < ;ﬁlogw for x > 2657
T

O]

Lemma 8. If the not-trivial zeros of ((s) are restricted to the strip 1 —c < R(s) < ¢ (where ¢ > 1/2),
then J(x) is given by

va) =z, 7w~

J =
(z) log 2 wulog?u

du — Li(xl/Q) +0 (xmax(1/3,c/2)> ’

and

ulo ?

1 xf z 1 uf
— dl i 1/2 max(1/3,¢/2) ]
J(x) logmzp: ; +/z ( gguzp: )du i(w )+O(ac )

13



Proof. The first equation of the lemma can be driven from Lemma 5 where we have

|log z/log 2] W(ajl/n) [log z/log 2] W(Il/n)

> —— =Li@ )+ @)+ Y

n=2 n=3

n

Since Z,L}igf/log 2 m@t/n) O(m(2'/3)) and by the virtue of Lemma 7 J(z'/2) = O(2%/?) and,

thus !
|log z/log 2] W(l’l/n)

D

n=2

— 1 1/2 max(1/3,¢/2) )
- i(x )+O(aj )

Referring to Lemma 5, we then have

_ Y(x) —x Tp(u) —u ra1/2 max(1/3,c/2)
J(z) = log 7 + ) ulog®u du — Li(z )—i—O(m ),

and by the virtue of Von Mangoldt formula, we then have

J(:z:) _ 1 Z xﬁ:? N /255 ( 1 Z Up) du — L1($1/2) +0 (xmax(1/3,c/2)) )
p p

log z ulog? u P

O
We now use Lemma 7 to estimate the size of £(c; p;1, pr2) (or size of integral [ d.J (z)/x7)

Lemma 9 (Size of [ d.J(x)/z°).
(o3 pr1, pr2) is given by

i If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where 1/2 < ¢ < 1),
then for o > c we have
. prlc_g Ingrl
e(ospr1,pr2) = O ((0—0)2>

ii On RH, we have for ¢ > 0.5

0.5—0
Drl log pr1
e(o;pr1,pr2) = O (r & Dr )

(0 —0.5)2
Proof.
Pr2
rippn) = [ —dI@)
Pri1 T

Using integration by part, we then have

Pr2 1 J r J - Pr2 ]_
/ 7d¢]($) — (p 20? . (p 12 _/ J(l’)d <U>
pr1 L (pra) (pr1) Pr1 x
The function 277 is a monotone decreasing function where its derivative is strictly negative.
Thus, for i and referring to Lemma 5 to substitute O (z¢log x) for J(z), we then have

P2 ] c] °] pr 1
/ "L ) = O (pr2°logpra) O (pr©logpr) [P O (zlog ) d (gca)

Pri1 xO’ p’I’QU prla Pri1

14



Since z > 0, thus

Pr c c Dr
/ ’ idJ(:v) _ Opologpr)  Opnlogpn) (/ 2$Clogxd(x10>>
P

Pr1 x? pT2G p'l’lo r1

With the substitution of variables y = log x, we then obtain

Dr2 1 log pro
/ z°logx d (U) = —/ oyel = dy.
Pr1 x Ingrl
1
/xe‘”dm = (a: — 2) e,
a a
therefore

Pr2 1 1 1 1 1
/ r¢logxd () =—0 ( o8 Pra _ 2) P +o ( oep 2) P 7.
Pr1 x° c—o (c—o) c—o (c—o0)

Hence, for o > ¢, we have

Since

pr2 ] pr1¢77 log pr1
yPr1,Pr2) = d = 24
e(o; pri, pr2) /pr1 — J(x) O( e (24)
For i, we set ¢ = 0.5 in the above equation to obtain
pr2 ] pr1%577 log pr1
yPr1,Pr2) = dJ =0 25
5((7’]) bP 2) /prl x? (x) ( (U - 0'5)2 ( )
O

The following lemma deal with the size of £(s; p,1,pr2) (or size of integral [7'* dJ(z)/x®)
when s is a complex variable.

Lemma 10 (Size of [ d.J(x)/z").
e(s;pr1, pra) Where s = o + it is given by

i If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where 1/2 < ¢ < 1),
then for o > c we have

“%lo
e (4P 2).

ii On RH, we have for o > 0.5

0.5—0
Pr1 log pr1
le(s; pr1,pr2)|= O (\s\ _ )

(0 —0.5)2

15



Proof.

Pr2
E(S;prlvpr2):/ —dJ(x)
pr1 L
Using integration by part, we then have
Pr2 ] Pr 1
pri T° (pr2)? (pr1)® pri1 x®
or,
pr2 1 J(pr2) J(prl) Pr2 1
dJﬂU‘S‘ +‘ + J:cd()‘
oo 55 < Gy * G| 1, 704 (5

Thus, for ¢ and referring to Lemma 5 to substitute O (z¢log x) for J(z), we then have

‘J(pr2) _ O (pr2°logpro)
(pr2)s pr20
‘J(pn) O (pr1°logp,1)
(prl)s prlo
and
Dr2 ]_ Dr2 1
[ @ ()| =o (| [ e eea()])
Pri1 ‘TS Pr1 ‘TS
or
Pr2 1 Pr2
/ J(x)d ()‘ =0 ( / zlogx sz~ dx >
Pri xS Pri1
Hence
DPr2 1 r Cl r r Cl r Pr2 —g—
/ SdJ(x)’:O(p2 (ng2)+0(pl 2_gp1>+0(’8’ xclogx\x S 1|d$>
Pri1 € pT2 pTl Pri

Hence, for o > ¢, we have
Pr2 ] pr1< 7 log pr1
: = —dJ =0 —_— 27
5(07%17297«2) /p7-1 20 (23‘) <|S| (O’ — 6)2 ( )

For ii, we follow the same steps with O (2% log ) is substituted for J(z) to obtain on RH
and for o0 > 0.5

pr2 1 pr1%°77 log pr1
3 Drl, Pr2) = —dJ =0 _— 28
8(0—7p 1 p 2) /p,,,l xo— (x) (8‘ (0_ _ 05)2 ( )

O]

Lemmas 9 and 10 provide strict upper boards for the integrals [ dJ(z)/z° and [ dJ(x)/x®.
The following lemma provides a more relaxed upper bound for the integral [|d.J(z)/x|. This
lemma will be useful in our analysis in later sections.

Lemma 11. Unconditionally and for any prime number p,, the integral [\ (|dJ(pF)| /p}) is given by

HAT@R] 91000y + 01108 )
1 Dy
or |dJ (pi)]
“1IPOl _ 5000(a
/1 — o = Ollog(a)

16



Proof. We first note that

dJ(py) = dn(p.*) — dLi(p,"),

or
i) _dnlp”) 1 dp”
dx dx logp,* dx -~
Hence
Z 5 - p’L p?“ 9
T
or
|dJ(pr p
- S(pr”® — pi). 29
o +Z pi) (29)
Hence
/ |d,](pr / dx / Z 5}% _pz)d
1 p¥ - “
or

[
1

Pr pr<pi<ps P

By the virtue of Mertens’ theorem [12] which states -, . 1/p; = loglogx + b+ O(1/logx)
where b is a constant, hence

1 r

or

“dT )] _
=B = Oftog(a)

jzd
O

For the remaining of this section, we will present some of the well-known results in num-
ber theory and complex analysis that we will use in our analysis.

Weiestrass theorem [4]. If the function sequence fy, is analytic over the region ) and f,, is uniformly
convergent to a function f, then f is also analytic on Q and f,, converges uniformly to f on Q

Cramer ’s theorem on the gap between primes [3]. On RH, the gap between the prime numbers
pr—1 and p;. is less than k./p, log p, for some constant k

Average difference between consecutive prime numbers. There are infinitely many primes p,
such that p, — pr_1 is less than or equal to log p, (this results follows directly from the Prime Number
Theorem).

17



3 The region of convergence for the series M (s) and M (s, p,.).

In this section, we will deal with the question of the relationship between the conditional
convergence of the two series M (s, p,) and M (s) over the strip 0.5 < £(s) < 1. Theorem 1
establishes this relationship.

Theorem 1. For s = o + it, where 0.5 < o < 1 and for every prime number p,, the series M (s)
converges conditionally if and only if the series M (s, p,) converges conditionally. Furthermore, within
the region of convergence, M (s) and M (s, p,) are related as follows

M(s) = Ms.p0) [ ] (1 - 1) . (30)

S
i=1 p;

The proof of this theorem can be achieved either by applying the Cauchy convergence
criteria or more conveniently by applying the complex analysis where we take advantage of
the fact that both functions ¢(s) and ¢(s) [T/—] (1 — 1/p$) have the same zeros (and a simple
pole at s = 1) to the right of the line R(s) = 0.

In the following, we will use the complex analysis to prove Theorem 1 by using a method
similar to the one outlined by Littlewood theorem that shows that the Riemann Hypothesis
is valid if and only if the sum Y ;> ; u(n)/n® is convergent to 1/{(s) for every s with o > 0.5.
The proof of this theorem can be found in [18] (refer to Theorem 14.12) and it depends mainly
on Lemma 3.12 of the same reference [18]. This Lemma states: Let f(s) = > 2, a,/n®, where
o > 1, a, = O(y(n)) being non-decreasing and Y ;> |a,|/n” = O(1/(c — 1)*) as 0 — 1.
Then, if ¢ > 0, 0 + ¢ > 1, x is not an integer and N is the integer nearest to x, we have

an 1 et v x¢ Y(2z)zt =7 log P(N)xt=°
=g Ly St 0 (T(U - 1)a>+0 ( T >+O < Tl — N| )

n<x

To prove the first part of Theorem 1 (i.e. for s = o + it and 0.5 < ¢ < 1, the series M (s, p;)
converges conditionally if M (s) converges conditionally), we note that for o > 1,

) 1
M(S)—nz::l ns _C(S)’
and = #( )
M 8, r) — M n’pr e 1 ’
(s,pr) nz::l ns C(s) T} (1 - %)

If we assume that M (s) is convergent for ¢ > h > 0.5, then ((s) has no zeros in the
complex plane to the right of the line (s) = h [18] (refer to Theorem 14.12). Consequently, the
function ¢(s) [T/ (1 — 1/p$) has no zeros in the complex plane to the right of the line R(s) =

h. Thus, we may apply Lemma 3.12 [18] with a,, = p(n,p;), f(s) = 1/<C(8) - 1/pf)),
¢ = 2 and z half an odd integer to obtain [18] (refer to Theorem 14.12)

Z :u(n7pr) _ i /2+iT 1 ﬂdw + O <l‘2>
A e ) (R

k3

18



However, by the calculus of residues we have

1 /2+iT 1 xw o 1 +
. . _1
21t Jo—iT C(s +w) ;:—11 <1 _ ps1+w> w C(s)ITisy ( o %)

1 h—o+~vy—iT h—o+~vy+iT 2+iT 1 W
+ +
2

—iT h—o+~vy—iT h—a—&-w-‘,—iT) 1 _ w
C(S + ?U) H < pe-&-w)

211

where, 0 < v < o — h. Since, along the line of integration and for an arbitrary small €, we
have 1/{(c+iT) = O(T*) [18], therefore the first and third integrals on right side of the above
equation are given by O(T~!*¢x2) while the second integral is given by O(2"~7T7T*¢). Hence

Z p(n pr _ 7;11 1 + O(T71+ex2) + O(Tetha+'y)
n<w ¢(s) i=1 (1 - ;Tf)

Taking T' = 23, the O—terms tend to zero as x approaches infinity. Consequently, the partial

sum y_, . p(n, p,)/n® is convergent as x approaches infinity and it is given by
> u(n p 1
T
(s,pr) Z
r—1 1
" IS (1 )
or

M(s) spTH<1—>

Similarly, we can prove the second part of Theorem 1 (i.e. for s = o +itand 0.5 < 0 <1,
the series M (s) converges conditionally if M (s, p,) converges conditionally). Alternatively,
the second part of the theorem can be also proved by refereeing to Lemma 1 where

M(s,pr—1;1, Npr—1) = M(s,pr; 1, Npy—1) —

— M (s,pr;1,N).
r—1
Since the series M (s, p,) is conditionally convergent, then the partial sums M (s, p,; 1, Np,)
and M(s,py; 1, N) are both convergent to M(s,p,) as N approaches infinity. Furthermore,
the partial sum M (s,pr; Npr—1, Npr—1 + k) (for any integer k in the range 1 < k£ < p,_;)
approaches zero as N approaches infinity. Hence, as N approaches infinity, we obtain

. 1
M(Sapr—l) :mll)rgoM(&pT—l;l?x) :M(Sapr) ( ps ) :
r—1

By repeating this process r — 1 times, we then obtain

r—1 1
M(s) = M(s,pr) H <1— S) .

i=1 p;
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4  Functional representation of ((s) using its partial Euler product.

In this section, we will use the prime counting function to derive a functional representation
for ((s) using its partial Euler product. We will then it to find a functional representation for
the Dirichlet series M (s, p;).

We will start this task by first writing ((s) in terms of its Euler product for o > 1 as follows

1/((5):ﬁ<1—18>:T1_[1<1—15>ﬁ<1—1§>. (31)

i=1 p; i=1 T
Taking the logarithm of both side,

r—1 e’}
1 1
—log((z)zZlog(l—pﬁ)—F log(1—$>+2wiN,

i—=1 3 3

where N is zero, positive or negative integer to account for the ambiguity in the phase of the
logarithm of complex numbers. Referring to Lemmas 2 and 4, we then have

r—1
“log¢(z) = 3 log (1 - pl) — Ei((s — 1)logp,) — e(s:pr) + 8(s: pr) + 2miNN.
i=1 g

Rearranging the terms of the above equation and then taking the exponential of both sides,

we then have foro > 1

r—1
) 11 (1 3 ) exp (—Ey((s — 1) logp,) = 7)), )
=1

i

Our task in this section is to show that Equation 32 is also valid not only for o > 1 but
also it is valid for the region of convergent of the Dirichlet series M (s, p,). This task will be
achieved by first proving that, for the region of convergent of the Dirichlet series M (s, p,), we
have

r—1
Jim {C(S) II (1 - p13> exp (—E1((s — 1) logpr))} =1 (33)

=1 ?

Toward this task, we first define the functions G(s, p,) and G(s) as follows

Definition 6. For any prime number p,, let the function G(s, p,) be defined as

r—1

G(s,pr) = C(s) I] (1 - p18> exp (—E1((s — 1) logp,)) (34)

i=1 i
also for any integer n, let G(s,n), be defined as
G(s,n) = G(s,pr)

where, p, is the largest prime number that is less than or equal to n. Furthermore, let the function
G(s) be defined as
G(s) = lim G(s,p,) (35)

r—00
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Note that, for every p,, the function exp (—E1((s — 1)logp,)) is an entire function with
a zero at s = 1, the function ((s) is analytic everywhere except at s = 1 and the function
[TI/=1(1 — 1/pg) is analytic for R(s) > 0. Thus, for any ¢ > 1, the function G(s,p,) can be
considered as a sequence of analytic functions. We will show that this sequence of analytic
functions is convergent to the analytic function one. Furthermore, we will show that G (s, p,)
has a removable singularity at s = 1 and for the region of convergent of the Dirichlet series
M (s, pr), the sequence of analytic functions G(s, p,) is convergent to the analytic function one
(i.e G(s) =1).

Lemma 12. Foro > 1, G(s) =1

Proof. For o > 1, we have (refer to Equation 32)

r—1
() 11 (1 - pls> exp (—E1((s — 1) logp,)) = eSspr)=0(sipr)

i=1 i
For o > 1, by the virtue of Lemma 2, we have
: . 1 1—20y\ __
lim [6(s; pp)[= lim O(p,~*7) =0

r

Furthermore, referring to Equation ( 26) of Lemma 10, we then have for £(s) > 1
] J(z) [T e 1
i) = [t = 22— [T aa ()
* pr UPT *

x
where J(z) is unconditionally given by (refer to Lemma 23)

J(x) =0 (xea\/@> .

r

Hence

O (pre=®Viogpr 00
= ( e ) +0 <|s|/ ze @VIios® \a:51|dx>
Pr Pr

le(s;pr)|=

/ - %dj(x)

r

Thus, for o > 1, we then have
lim |e(s; pr)|= 0.
r—00

Therefore for R(s) > 1, we then have

r—1
G(s) = Jim {<<s> 11 (1 - 1) exp (~Bi((s — 1) logpm} =1
i=1

r—00 p’L

Our next task is to extend the results of Lemma 12 to the line s = 1 + it.

Lemma 13. For line s =1 +it, G(s) =1
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Proof. We will first show that although both ((s) and E;((s — 1) log p,) have a singularity at
s = 1, the product G(s,p,) has a removable singularity at s = 1 for every p,. This can be
shown by first expanding ((s) as a Laurent series about its singularity at s = 1

12 3
(s 2!1) 73(83!1)+..., (36)

1
() = ——= +7 = (s — 1)+
where 7 is the Euler-Mascheroni constant and +;’s are the Stieltjes constants. For s = 1 + ¢,
where € = € + i€g, €1 and e are arbitrary small numbers, the above equation can be written

as
€ e

1
G(s) =+ —metnng — Yag + (37)

Furthermore, using the definition of the Exponential Integral, we may write E (s) as

2 83 84

S
El(s)——’y—logs+s—ﬁ+ﬁ—m+.... (38)

Thus, for s = 1 + ¢, we have

(elogpr)?  (elogp,)?
2o ] (39)

exp (—E1((s — 1) logp,)) = €€ log pr exp (—flogpr + -

By taking the product ((s)exp (—E;((s — 1)logp,)) and allowing |e| to approach zero, we
then have

lim {C(s) exp (~Ea((s — 1) logp,)} = ¢ logp,. (40)
However, it is well known that the partial Euler product at s = 1 can be written as [11]
o 1 e 1
(=) = e 0 () “

Multiplying Equations (40) and (41), we then conclude that at s = 1, G(s, p,) approaches 1 as
pr approaches infinity.

Furthermore, for s = 1 + it and ¢ # 0, the value of exp(—E;(itlog p,)) approaches 1 as p,

approaches infinity and since
r—1 1
lim ] (1 — ) =1,
r—00 {C( )1:1_{ pis }

therefore, for s = 1 + it, we have the following

r—1
G(s) = lim {g(s) 11 (1 - pl> exp (— B (5 — 1)10gp7«))} _.

r—00 -
=1 ?

O]

So far, we have shown that the function G(s, p,) is uniformly convergent to 1 when R(s) >
149 > 1 (where ¢ is an arbitrary small number). We have also shown that G(s, p,) is conver-
gent to 1 for R(s) = 1. In the following theorem, we will show that, assuming the validity of
the Riemann Hypothesis, the function G(s, p,) is uniformly convergent to 1 for every value
of s with R(s) > 0.5 + ¢, where ¢ is an arbitrary small number.
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Theorem 2. On RH and for o > 0.5, we have

r—1
G(s) = lim {C(S) 11 (1 - p13> exp (—E1((s — 1)10ng))} =1 (42)
i=1 ?
Aim {M(s,p,) exp (E1((s — 1)logp,))} = 1. (43)

Proof. We first write the expression for G(s,p,1) and G(s, py2) where r2 is an arbitrary large
number greater than r1

rl—1

G(S,Prl) = C(S) exp (_El((s - 1) logprl)) H (1 - pls> ) (44)
i=1 v
r2—1 1

G(s,pr2) = ((s)exp (—E1((s — 1) logpy2)) ] (1 - p5> : (45)
i=1 v

Since the function G(s, p;) is analytic and it not equal to 0 for & > 0.5, hence we can divide
Equation (45) by Equation (44) and then take the logarithm to obtain

r2—1 1
11 (1 — )) + 2im N

log (CJ(SW) = E1 ((s = 1)logpr1) — E1 ((s — 1) log py2) + log (
i=rl bi (46)

G(S7 prl)
where NV is zero, positive or negative integer.

Referring to Equation (14), we then have

G(87 pr?)

1
8 G (s, pr)

= —&(8;pr1, Pra—1)+9(s; Pr1, Pra—1)+E1((s—1) log pra—1)—E1((s—1) log pro)+2im Ny.

Taking the exponential of both sides, we then have

G(s,pr
GEst% = exp (—&(s;pr1,pr2—1) + 0(s;pr1, Pra—1) + E1((s — 1) log pra—1) — E1((s — 1) logpr2)) -
or

G(S,prg) — G(S,pﬂ) 6_5(3§pr17pr2—1)+5(5;pr17;Dr2—1) eEl((S—].)10gpr2—1)_E1((5_1)logprg). (47)

However on RH, the absolute value of difference E;((s — 1)log pra—1) — E1((s — 1) log py2) is
bounded and it approaches zero as p,2 approaches infinity. This can be proved by recalling
Cramer’s theorem on the gap between consecutive primes [3]. By the virtue of Cramer’s

p7 p7 1 p'l 1 9
\/7 p'l—l

1
log(p,) = log (pm +pr—10 ( 5 1)) .
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Hence

log(py) = log(pr—1) + log (1 +0 (\/1@)) :

Since log(1 + z) = 1+ O(z) for x << 1, thus

1
IOg(pr) = IOg(prfl) +0 <\/p7> :

Furthermore, since the function E(z) is analytic, therefore

E
Ei(z+ Az) — Ey(2) = ddlz(z)Az = Ey(2)Az  as |Az|—0

Hence

1
El((s — 1) logprg_l) — El((s — 1) Ingr2) = E()((S — 1) logprg_l) (S — 1) 0] <m> R

where Ey(z) = e7%/z. Thus,

67(871) log pra—1

E — 11 1) —F — 1)1 <
|E1((s — 1) logpra—1) 1((s = 1) log pp2)|< (s — 1) log pra—1

1
]3—1|0<\/m>.

[E1((s —1)log pra—1) — E1((s — 1) log py2)|= O <log1pr2) '

Consequently on RH and for R(s) > 0.5, |E1((s—1) logpra—1) — E1((s—1) log pr2)| is bounded.
Moreover, as p,2 approaches infinity, |E1((s — 1) logpra—1) — E1((s — 1) log py2)| approaches
zero and the term |eZ1((s=1)logpra—1)=Fr((s—1)logr2)| approaches 1.

Hence

For a fixed p,1 and arbitrary p,2(> py1), the term G(s,p,1) is fixed and bounded. Fur-
thermore, on RH and by the virtue of Lemma 10, the term e e(sipr1pra—1)+8(sipr1,pr2-1) ig also
bounded for R(s) > 0.5 (note that the term J(s; py1, pro—1) is unconditionally convergent for
R(s) > 0.5 by the virtue of Lemma 2). Hence, by the virtue of Equation (47), G(s, py2) is also
bound for R(s) > 0.5.

In the following, using Cauchy convergence criteria, we will show that G(s, p,) conver-
gences as p, approaches infinity. First we recall that on RH and for o > 0.5 + ¢, the term
le(s; pr1)|+]6(s; pr1)| can be made arbitrary small by choosing p,; sufficiently large (refer to
Lemmas 2 and 10). Let p,1, and p,1, be any two prime numbers greater than p,;. Choose
Pr2 > Prig and py2 > pr1p. Thus

G(5,pr1a) = G(s, pra) e(e(siPpr1a,pr2—1)=0(sipria,pr2—1)+A(sipr2))
G(s,pr1p) = G(s,pr2) e(e(s:Pr1b:Pr2—1)=6(8;pr16,Pr2—1)+A(spr2))

where,
A(s;pra) = —E1((s — 1) logpra—1) + E1((s — 1) log py2).

Thus,

|G(3, pria) —G(s, prip) |= |G(s,pr2)HeA(S;p’°2)\ ‘6(5(5§p71a7pr2—1)*5(5§pr1a7pr2—1)) _ o(e(s5pria,pra—1)=08(siPria,pra—1))
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Since for |z|< 1, ¥ = 1+0(z) and for sufficiently large p,, |€(S; Pria; Pra—1)l [0(S; Pria, Pra—1)|, |€(8; Driv, Pra—1)|
and |0(s; pr1p, Pro—1)| are less than 1, therefore

‘e(E(Smma7107-271)*5(84%1@,%271)) _ e(s(smrla:pr271)*5(5§pr1a7p7'271))

O (le(s; pria> pra—1)|) + O (16(8; Pria, Pra—1)]) + O (le(s; Pr1v, Pr2—1)]) + O (16(8: Priv, Pra—1)]) -
Since priq, Pr1v > pr1, hence on RH and for R(s) > 0.5 (refer to lemma 10 )

0.5—0c
Pri1 10gpr1
=0 (’S’ (0 —0.5)2 )

eE(sipriapra—1)=0(sipria:pr2—1)) _ o((8ipria,Pra—1)=0(sipria;pra—1))

Moreover, since |G(s, py2)| is bounded and |e®(*r2)| approaches 1 as p, approaches infinity,
hence |G(s, pria) — G(s, pr1p)| can be made arbitrarily small by selecting p,1 sufficiently large.
Consequently by the virtue of Cauchy convergence criteria, G(s, p,) (or G(s, n)) is convergent,

G(s) = lim G(s,p,) (48)

It should be noted that, while the function sequence G(s, p,) (or G(s,n)) is not uniformly
convergent when the region of convergence is extended all the way to the line ¢ = 0.5, it is
however uniformly convergent for any rectangle extending from —i7" to iT (for any arbitrary
large T') and with o > 0.5+€ (for any arbitrary small €). This follows from Lemma 10 where on
RH, |e(s; py)| is convergent and bounded (uniformly convergent) for any rectangle extending
from —iT to iT (for any arbitrary large 7') and with o > 0.5 + € (for any arbitrary small ).
Since G/(s, py) is analytic for (s) > 0 and it is uniformly convergent for R(s) > 0.5 + ¢, thus
G(s) is analytic for the half right complex plain with R(s) > 0.5 + ¢ (Weiestrass theorem [4]).
Since we have shown that G(s) = 1 for R(s) > 1, therefore on RH and for R(s) > 0.5, we then
have the desired result, i.e

G(s) =1.

Note that for a fixed p,1 and as p,» approaches infinity, Equation (47) can be then written

as
G(s,pr1) = eE(sipr1)+6(sipr1)

In Theorem 3, we will extend the above equation to the region where the series M (s, p,) con-
verges.

O
Corollary 1. For the region of convergence of the series M (s, p,), we have
r—1 1
Gls) = lim, {<<s> 11 (1 - p) exp (~En((s = 1) logpm} =1 (49)
i=1 i
Tim {M(s,p,) exp (E1((s — 1) logp,)} = 1. (50)

Proof. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < ¢ < 1), then our task is to show that Equation (49) holds for R(s) > c. This task can be
achieved by following the same steps to prove Theorem 2 and writing the ratio G(s, py2)/G(s, pr1)
as

G(S>p7’2)

) = exp (—&(s;pr1, Pro—1) + 0(8;0r1, Pr2—1) + E1((s — 1) logpro—1) — E1((s — 1) log pr2)) .
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where p,1 < pro. In the proof of Theorem 2, we let p,2 approaches infinity to show that
G(s, pr2) is bounded for every p,2. This was achieved using Cramer’s Theorem to compute
A(s; pro) for every po. We then showed that |A(s; p,2)| approached zero as p,o approached
infinity. In fact, since the selection of p,» is independent of the selection of p,, therefore,
we only need to compute A(s; p,2) for infinitely many p,2’s (and not necessarily for every
pr2) and then show that |A(s; py2)| for the selected infinitely many p,2’s approaches zero as
pr2 approaches infinity. For the proof of this corollary, we only select p,2’s that satisfy the
following

Pr2 — pra—1 < logppa

The prime number theorem asserts the presence of infinity many primes that satisfy the above
inequality. With this selection of p,2, we then have

log p,-
log(pﬂ) = 10g(pr2—1) +0 (gpQ) .
Pr2
or
log p;-
Er((s — 1) logpra—1) — E1((s — 1) log pra) = Eo((s — 1) logpra—1) (s = 1) O ( ii 2) ’

Hence

log p,-
|E1((s — 1) logpra—1) — E1((s — 1) log pro)|= O ( g112> .
r2
Thus, |A(s; pr2)| approaches zero as p,2 approaches infinity. Consequently, |G(s, pr2)|isbounded
for infinitely many p,o’s.

The next step (as it was the case with the proof of Theorem?2), we select p,1, and p,1; any
two prime numbers greater than p,; and choose p,2 > priq, Priy (Where pro — pro—1 < log py2).

Thus
G(Saprla) _ G(S,pm) 6(5(5;pr1u7pr271)_6(5§pr1a7pr271)+A(5§pr2))

G(s,pr1p) = G(s,r2) e(e(s:Pr1b:Pr2—1)=6(8;pr16,Pr2—1)+A(spr2))
Hence,

‘6(8(3§pr1a7pr2—1)—5(8§pr1a7pr2—1)) _ e(a(s;prla7pr2—1)_6(5§prla7pr2—1)) _

O (’5(5§Pr1a7pr271)|) +0 (‘5(5;pr1aapr271)|> + O (|5(5;p7‘1bapr271)|) + O (|6(5;prlbapr2fl)|) .

or,

’e(a(s;prla7137"271)_6(5;17710471%271)) _ 6(5(5;pr1a7pr271)—5(S;pr1a,pr2f1))

pr1¢” 7 log pr1
- ('S' <—>>

Since |G(s,pr2)| is bounded and |e2(5Pr2)| approaches 1 as p,2 approaches infinity, hence
|G (8, pr1a) — G(8, pr1p)| can be made arbitrarily small by selecting p,; sufficiently large. Con-
sequently by the virtue of Cauchy convergence criteria, G(s, p,) (or G(s,n)) is convergent,

G(s) = lim G(s.pr) 6

As it was the case with Theorem 2, the function sequence G(s, p,) (or G(s, n)) is uniformly
convergent for any rectangle extending from —i7" to iT" (for any arbitrary large 7') and with
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o > c+ ¢ (for any arbitrary small €). This follows from Lemma 10 where |£(s; p;)| is uniformly
convergent for any rectangle extending from —i7" to i1’ (for any arbitrary large 7) and with
o > ¢+ € (for any arbitrary small €). Since G(s, p,) is analytic for £(s) > 0 and it is uniformly
convergent for R(s) > ¢+ ¢, thus G(s) is analytic for the half right complex plain with R(s) >
¢ + € (Weiestrass theorem [4]). Since we have shown that G(s) = 1 for R(s) > 1, therefore we
have the desired outcome for (s) > ¢, i.e

G(s) =1.

O

In the following, we use Theorem 2 and Corollary 1 to compute M (s, p,) for any prime
number p,

Theorem 3. For the region of convergence of the series M (s, p,) = >_7° pu(n, pr)/n®, we have

M (s, py) = e~ Frlls=1)logpr)=e(sipr)+o(sipr) (52)

wheree(s;py) = [5° dJ () /2%, J(@) = m(x)~Li(z) and (s p,) = 3222, (— 5o — b — e )-

Proof. Equation (49) of Corollary 1 can be written as follows

’L

r2—1
log (s) + log H <1—> —E1((s—1)logpr2) +2miNy =0 asre — 00

where N; is zero, positive or negative integer. Notice that the equality of both sides of the
above equation is attained as 73 (or p,2) approaches infinity (or more appropriately, the right
side can be made arbitrary close to zero by choosing p,» sufficiently large). For r < 72, the
above equation can be then written as

1 r2—1 1
log((s) = E1 ((s — 1)logpre) — Zlog (1 — ) Z log <1 — p) + 2wiNg as ro — o

i=r T

where N3 is zero, positive or negative integer and

Di®

r2—1 1 r2—1 1
- Z log (1 - p5> Z — — 0(8;pryPra—1) + 2miNy
=7 (

where N, is zero, positive or negative integer. For the region of convergence of the series
M (s, p,), we also have (refer to lemma 4)

r2—1
Z — (s —1)logp,;) — E1 ((s — 1)logpra—1) + &(s; pr, pro—1)

Therefore, ((s) can be written as

r—1 -1
‘= <1 h ) lim eEr((s—1)logpr)+E1((s—1)log pra)—E1((s—1) log pro—1)+e(sipr.pr2)—d(sipr.pr2)
Pr2—00
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As it is the case with Corollary 1, if we strict our selection for p,2 to the prime numbers such
that p,o—pro_1 is less than or equal to than log p,o, then |E ((s — 1) log pr2)—E1 ((s — 1) log pra—1) |
approaches zero as p,o approaches infinity. Thus, for every p,, we have

r—1 -1
C(s) = H <1 _ 1) lim eE1((s=1)logpr)+e(sipr,pr2)=0(siprpre)

iy o Pra—00

or
M(s,py) = e Brl(s=D)logpr)=<(sipr) +(sipr)

O]

So far, we have used the complex analysis to compute M (s, p,). For the remaining of the
paper, our efforts will be dedicated toward the computation of the partial sum M (1, p,; 1, p%)
(i.e. the partial sum of the series M (s,p,) at s = 1). In the following two section, we
will use integration methods and complex analysis methods to compute the partial sum
M(1,pr;1,p%). In section 7, we will compare the results of these methods and then show
that this comparative analysis will lead to a contradiction every time we assume that ((s) has
no trivial zeros for R(s) > ¢ where ¢ < 1.

5 The series M (s,p,) ats = 1.

In this section, we will compute the partial sum M(1, p,; 1, p,*) using integration methods.
Before we present the details of our method, it is important to mention that the partial sum
M(1,pr;1,p,*) can be also generated using y-smooth numbers. The y-smooth numbers are
the numbers that have only prime factors less than or equal to y. These numbers have been
extensively analyzed in the literature [6] [9]. In [6], a method was presented to generate the
partial sum M (1, p,; 1, p,*). With this method and using the inclusion-exclusion principle [6]
(refer to page 284), one can then provide an estimate for the partial sum M (1,p,;1,p,*). In
this section, we will provide a more general approach to compute M(1, p,; 1, p,*). The main
advantage of our approach is the ability to extend it to compute the partial sum for values of
s other than 1. We will present our method in the following four steps.

e In the first step of our approach, we will show that, for every a and as p, approaches
infinity, the partial sum M (1, p,; 1, p,*) approaches a function that is dependent on only
a (independent of p,). We will then show that this function is the Dickman function
p(a). It should be noted that the results of this step are well known in the literature. In
this step, we are only rephrasing these results in terms of the integral [ d.J(p¥)/p¥.

Toward this end, we define the function f(a, p,) as

pr¢

f(aapr) = M(l,pr; 1,pra) — Z H(n;lpr)
n=1

We will then show that, for every a and as p, approaches infinity, the function f(a, p,)
approaches a deterministic function p(a). In other words; if we plot M(1,p,;1, N) (where
N = p,*) as a function of a = log N/logp,, then for each value of ¢ and as p, approaches
infinity, f(a, pr) approaches a unique value p(a). This is equivalent to the statement

o . o . X a
,0((1) - prhi}loof(a’pr) - p}li)noo M(lapra 1ap7' )

28



Lemma14. For1 <a < 2

M(1,pp;1,p:%) =1 — Mi(1,pr;1,0.%), (53)
where .
Mi(1,pr; L,p,") = Y, — =log(a) + g1(pr, a),
pr<pi<pre Pt
“ e dJ(pY
gl(pMa) = 6(1;p7‘7pr) = / #7 (54)
1 Dr
and

lim M(1,p.;1,p,%) =1 —loga.

Pr—+00

Proof. This result can be achieved by first noting that the partial sum M(1, p,; 1, p,*) for 1 <
a < 2is given by

1
M(1,psl,p%)=1— > —.
pr<pi<pre Pi
Since )
Ml(]-apT;]-upTa) = Z }77
a i

pr<pi<pr

therefore, using Stieltjes integral, we obtain

M(Lpr; 17p7“a) =1- Ml(lapr; lapra) =1 _/
T=pr X

Dr® dﬂ(x) . _/a dﬂ(pry).
y=1 pry

Since
dﬂ'(pry) = dLi(pry) + dJ(pgf),

therefore

Yy
dp,Y + dJ(p,Y) = Pody + dJ(p,¥),

dr(p¥) = ———
(pr") log(p,¥) Yy

Hence, for 1 < a < 2, we have

] ady (o dJ(pY
M(LPHLPT’ ):1_ 7y_‘/1 le_log(a)_gl(pT)a%

1Y prY
where
Ml(l,ph Lpra) = log(a) + gl(pra a),
and 0T ()
“aJ(p
91(pr, a) :f:(l;pr,pi‘f):/ —=—.
1 Dr

Referring to Lemma 9, on RH or if the {(c) has no zeros for %(s) < ¢ < 1, then as p, approaches
infinity, g1(pr,a) approaches zero. In fact, we can show the same results unconditionally

using PNT where J(z) = O(ze~*V1°8%) and b > 0. For this case

a1(pra) = /pff dO (l'e*b loga:)

X

r
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Using integration by parts, we then have

O (:ce_b\/@)

x

jo
gl(pT’ CL) =

+ /fg 0] <xeb\/@) d <i) .

Since the function 1/z is a monotone decreasing function, thus

=0 (=) o [TV ()

T

p& 6_b logx
91(pr,a) =0 (eb long) +0 / —dzx
pr T

Substituting y for log x, we then have

log pi?
g1(pr,a) = O (eb\/@> L0 < / - ﬂdy>
log pr

Substituting z for /y, we finally have

+/logpi:
g1(pr,a) =0 (eb logpr) +0 </ zebzdz>

\/1og pr

pr

or

or

g1(pr,a) = O <\/10gpr etV logp*> (55)

Let the function g(p,) defined as

9(pr) = Vlogp, e~ PVIoerr

then
gl(pm a) = O(g(pr)) (56)

Note that g(p,) is a function of p, only. As p, approaches infinity, g;(p,, a) approaches zero.
Consequently, Equation (53) can be written as

lim M(1,p.;1,p,%) =1—loga.

Pr—00
[
In the following Lemma, we will extend the same results for 1 < a < 3
Lemma 15. For 1 < a < 3, we have
M(1,pp;1,pp") =1 = Mi(1,pr; 1, p*) + Ma(1, py; 1, ")
where
My(1, pr; 1, ) = log(a) + g1(pr, a),
TR S Sy O]
pr<pir<pis<piapin<prs P12 21 Y pr
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1 (1 gi(prya—y) 1 ot dJ(p,Y) 1 ot dJ(pr )
ra) = - SRR, 2 +f/ log(a— +—/ v Q- .
papra) =5 [ By [ osa )= [ aa- 0™y

(57)
and

1 re—-1] _
lim M(1,py;1,p") =1 —loga+ 5/ Mdy_
1

Pr—00 y

Proof. The terms of the partial sum M (1,p,;1,p,®) for a in the range 1 < a < 3 are either a
reciprocal of a prime or a reciprocal of the product of two primes. Therefore, for 1 < a < 3,
we have

1
M(1,p;lp") =1- > —+ >

pr<p;<pr® pi Pr<pi1<pi2<pPi1Pi2 <Pr

1
o Pi1Pi2 ’

where p;; and p;s are two distinct primes that are greater than or equal to p,.

Since Ms(1, p,; 1, p,*) is given by
1
o Di1Di2’

My(1,pr; 1,pp?) = >

Pr<pi1<pi2<Pi1Pi2<Pr
therefore M (1, p,; 1, p,.*) can be written as
1

1
M(1,pr; 1,p%) = - —Mi(1,pr; 1,07 /i) + 72
2 .
pr<p;<pr¢~!

Note that for thesum >_, -, ), o 1 -M; (1, pr; 1, p%/pi), we added the factor of half since each
term of the form 1/(p;1p;2) is generated twice. Furthermore, this sum includes non square-
free terms (notice that, there is no repetition in any of the non square-free terms). The term
ro was added to offset the contribution by these non square-free terms. We will show later
in Lemma 18 that ry is given by O(log a/p,) and hence it approaches zero as p, approaches
infinity. Using Stieltjes integral, we then have

1 roldn(p,y
Mg ) = 5 [ T loga = y) + r s — ) +

Hence, for1 <a < 3

1 fo-1llog(a —
M(1,pr;1,p.%) =1 —log(a) — g1(pr,a) + 5/1 g(yy)dy + g2(pr, a) + 1o,

where

].
a= p'r, _ dJ(pry)
ry, @ d 10 a 7‘7 .

T s

Since the function 1/y is a positive monotone decreasing function, thus the first integral on
the right side of Equation (57) is given unconditionally by (refer to Equation (56))

/ g(pr, ’/ O(g(p) dy
1
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or
/“1 g1(pr,a—y)
1 y

dy\ — log(a — 1)0(g(py)) (58)

By integration by parts, we can write the second integral on the right side of Equation (57)
as

0] =

_ _ a—1 a— a—
/1 1 log(a—y) dj(pry) J(pg) IOg(CL y) _/1 ! log(a—y)J(pry)d (1y> _/1 ! J(p;’y) dlog(a—y)

Dr pg 1 Dr T
where, )
y _ N
pr 1 Dr
and

s T

a—1 1 a—1 J(pyY
/1 log(a —y)J (p¥)d (py) = Ingr/l log(a —y) (py )dy

Since log(a — y)/p¥ is a positive monotone decreasing function, hence

/1a_1 log(a — y).J (p,*)d (ply> ‘ — (a—2)log(a — 1) logp, O (J;pr)> _

T T

Furthermore, since log(a — y) is a monotone decreasing function, thus

[ L doga — )| = tosta — o (122)

Since, unconditionally and by the virtue of PNT we have

O(J(pr)/pr) = O(pye Vo2 /p,.

or

_ Olg(pr))
O (pr)/pr) = o=
hence - 1o
[ osta— )8 = (- 2)10ga - 1y logler) Olo(s.) 9

The third integral 1 on the right side of Equation (57) has two discontinuous functions, the
function J(p¥) (that has discontinuities at values of y where p¥ is a prime) and the function
91(pr,a —y)/pY (this function may have discontinuities when p,*~¥ is an integer). Therefore,
we will use Lebesgue-Stieltjes integral to compute this integral !. The absolute value of this
integral can then be written as

dJ(p,Y) ‘ / 14T (pY)]
ry 4 — < ry A — )
/1 o(pra =)= -1

The integral || 1a71 g1(pr,a—y) % is a valid Riemann-Stieltjes integral if we restrict the value of a to rational

numbers. For rational values of a, if we assume that J(p¥) and J(p,*¥) have common discontinuity, then p¥ is
a prime given by P and p,™(~%) is an integer given by p,”/P™. This result contradicts the definition of prime
numbers. Hence, J(p¥) and J(p,*~¥) don’t have common discontinuity when a is a rational number.
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or,
dJ(p,")

a—1
= Y)
/1 g1 (pv y) py

r

< Olgutpra)) [ B

]
pr
Since O(g1(pr,a)) = O(g(pr)) and by the virtue of Lemma 11, we then have
a—1 dJ(p,Y
[ - < 2t0g(a - 1) 0G40 (60)

r

Combining Equations (58), (59) and (60), we can write Equation (57) as

‘92(pr7 a)|: 2((1 - 2) log(a - 1) V'1og pr O(g(pr))' (61)

As p, approaches infinity, g2 (p;, a) approaches zero (recall that g(p,) = v/Tog p, e ?V1ePr),
Thus, for 1 < a < 3, we have

1 afll _
lim M(1,pr3 1, p,%) :1—loga+§/ log(a —y) ;.
1

Pr—00 y

Therefore, as p, approaches infinity, M (1, p,; 1,p,*) approaches a function that is dependent
on only a.
O

Repeating the previous process |a| times (where |z] is the integer value of z) and by
using the induction method, we can show that, as p, approaches infinity, the partial sum
M (1,p,; 1, p,*) approaches a function that is dependent on only a. Specifically, we first write
the partial sum M (1, p,; 1, p,*) as follows

M(1,pr1,p:%) =1 = Mi(1,pr;1,0,%) + Ma(1,pr5 1, pr) — oo + (=17 M;(1, prs 1, p,%) + oot

(DM (1 pe 1, pe%) + (D) M (1, 1, %), (62)
where

1

M;(1,pr1,p,") = > Pipiz-pi;

Pr<p;i1<pi2<..<pij <Pi1Pi2--Pij <Pr

and p;1, pi2, ..., pij are j distinct prime numbers greater than or equal to p,. Therefore, M;_1(1, pr; 1, p,%)
can be written as follows

1 1
M;(1,pr;1,p0%) = = Z —M;—1(1, pri pr, D7 /i) + 15,
pr<pi<pra—t Vi

where the factor of 1/j was added since each term of the form 1/(p;1pi2...pi;) is generated j
times. It should be also noted that the sum of the above equation includes non square-free
terms. The term r; was added to offset the contribution by these non square-free terms. We
will show in Lemma 18 that r; approaches zero as p, approaches infinity.
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Lemma 16. For 1 < j < a, M;(1,p,;1,p.%) can be written as follows
M;(1,pr; 1, pr%) = hj(a) + gj(pr, @) + 175,

where,

1 a—1 h:_1(a —
O

with hi(a) = log(a),

1 re=tgia(pra—y L et dJ (pr?
itpra) =+ [ OO gy LT ey P
J )1 Y JJ1 pr

1 ot dJ(prY)
- hi1(a— , 63
] /1 9 1(a y) pg ( )

with g1(pr,a) = 1adjz§r 9 and

1 ol dr(pY
T/j =7+ 7-/ T'/j—l (pr )
JJ1 prY

Proof. Referring to Lemmas 14, we have

Mi(1,pr;1,p.%) = hi(a) + g1(pr, a)

where
hi(a) = log(a)

0 (pm a) _ /la dJ(pry)

prY

and

Referring to Lemmas 15, we have
MQ(]-?p'I‘; 17p7‘a) - hQ(CL) + 92(p7‘7 CL) + T2

1 ro~1log(a —y)
ho(a) = f/ =Dy,
2(a) = 5 ”

a— 1 _ a—1 )
1(pr,a —y) / / dJ(p,Y)
r, @ 1 - r, @ )
2(p 2/ — dy+g og(a py +5 1(pr,a—y) .

T T

where

and rp represents the contnbutlon by these non square-free terms.

Therefore, If we have the following expression for M;_i(1,p; 1, p,%),
M; 1 (1, pr; 1, pr") = hj—1(a) + gj—1(pr,a) + 751

then using Stieltjes integral, we then have

1 el dn(p,y
M;(1,pr;1,p,%) = j/1 ;py ) (hj—1(a—y) +gj—1(pr.a—y) +r'j1) +715. (64)
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Hence
M;(1,pri 1,p,") = hj(a) + gj(pr,a) + 775,
where

1 o=l ph. (q—
o) = [ =g,

with hq(a) = log(a),

L oro=tg Pr,a — 1ot dJ(prY
gj(pr,a):f/l gjl(y)dzwj/l gj—1(pr,a—y) ( )+

J y ¥
S AIRUEE
with o 4T (p,?)
91(pr,a) = /1 7
and , I
rj:rj—l—j/l i1 oy

Lemma17. For2 < j <a,

1 a—1 hi_ _
i A5 (0t = - [ Oy )

Pr—00 y

Proof. For j > 2, M;(1,py;1,p,") is given by
M;(1,pr 1,p) = hy(a) + g;(pr,a) + 175,
Our task is to show by induction that lim;, . g;(pr, a) = 0 and lim;, o 7’5 = 0.

Toward this end, we will assume that g;—1(pr, a) and h;_;(a) satisfy the following equa-
tions for ¢ > 2

91 (pr. a)|= (a — 2)22(log(a — 1))2/log(p,) O(g(pr))- (65)

where g2(pr, a) (i.e. i = 3) is given by Equation (61)

192(pr» a)|= 2(a — 2)log(a — 1)y/log p, O(g(pr)).

Furthermore, for a > 1, h;—1(a) is a monotone increasing function that satisfies the following
inequality '
0 < hi—1(a) < (log(a — 1)) 1. (66)

where hg(a) = % 1“71 Wdy is a monotone increasing function of a that satisfies the fol-

lowing inequality (note that log(a — y) < log(a — 1))

0 < ha(a) < (log(a — 1))
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Using Equations (65) and (66), we will then show that

19i(pr, a)|= (a — 2)2"~" (log(a — 1))"""/log(py) O(g(pr))-
and for a > 1, hi(a) is a monotone increasing function satisfying the following inequality

0 < hi(a) < (log(a — 1))

Referring to Lemma 16, we have

1 ot gj—1\Pr, @ —Y) 1(p7”7 - dj(pry)
1 Ty a) = — d + / +
gora) = [ -9" g
1 /a_l dJ (pr¥)
- gj—-1\Pr, @ — Y ’
il 1 ) p?
Using Equations 65, the first integral on the right side of the above equation can be written
as
a—1 a—1
9j-1(Pr,a —y) ‘ 2 / Olg(pr))
= Zod a—2)29~ (log(a — 1)) log(p,
/1 Y, y| = (a—2) 8 ~\/log(p
or

/1“_1 gﬂ'l(pryﬂ—y)dy‘ = (a —2)272(log(a — 1))y /log(p,)O(g(p,))

By integration by parts, we can write the second integral as

[ a8 a8 [ (esta = wa (5) + LB a0 )

g Dr Dr T

a—1

1

where (refer to Equation 66 and note that 7;_;(1) = 0),

a—1
beslo- 0 B = niaa- )78~ gogla - D (e
T 1 (s T
" I a( < [ i il
[ aemhasa—nd ()| < [T eI -l ()]
or

/ Iy la -y (ply) ‘ = logp, O (J;p”) / by — )ldy.

r

Since we assumed that for > 1, hj_1(x) is a monotone increasing functionand 0 < h;_;(z) <
(log(x —1))7~!, hence 0 < hj_1(a —y) < hj_1(a) < (log(a — 1))’ and

[ et = (5)] = 10850 (222 oga - 1)y

T T

or

/1(1_1 J(pr¥)hj-1(a —y)d (é)‘ = (log(a — 1))’ 1ogp,n0\/(lgo(7§;)3 0
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Furthermore,

J (pry)
pr

Since hj_1(a — y) is a monotone decreasing function of y, thus

/1a_1 J(pgy)dhjfl(a - y)’ =0 <J(p§y)) /1a_1 dhj-1(a —y)

T Dr

a—1 J(pry) ‘ /a—l
dh;_1(a — <
/1 py 9 1( y) -/

T

]dhj_1<a )

or

7 O(g(pr))
Vlog pr

Combining Equations (67), (68) and (69) and noting that log(a — 1) < a — 2 for a > 2, we then

have . 0 ()
’/1 hj-1(a —y) ];T

T

(69)

a—1 J Ty
/1 (ﬁy )dhj—l(a - y)‘ = (log(a — 1))

r

= 2(a — 2)(log(a — 1))~/ log(pr) O(g(pr)

The third integral fffl gj—1(pr,a —y)dJ(p,Y)/p¥ is given by

a—1 dJ(pY) /“_1 ’ dJ(pY)

j— r, 4 — S | — ry, 4 — ——
‘/1 gj—1(p y) . . lg;—1(p )l .

o 1 dJ(pY) 1 dJ(pY)
a= Dr a= DPr
‘/1 gi—1(pr,a —y) | O(gj—1(pr, a))/1 .

and by the virtue of lemma 11, we then have

ot dJ (pr?
‘/1 gjfl(prva_y) (y )

T

= (a —2)2' " (log(a — 1)}~ /log(p;) O(g(pr)).

Consequently,

19;(pr, a)|= (a —2)2 " (log(a — 1))’ ~1y/log(pr) O(g(py))-

Thus for any value of a, g;(pr, a) approaches zero as p, approaches infinity.

Next, we need to prove that for a > 1, if h;_; (a) is a positive monotone increasing function
satisfying the inequality 0 < h;_1(a) < (log(a — 1))’~1, then h;(a) is also positive monotone
increasing function for a > 0 satisfying the inequality 0 < hj(a) < (log(a — 1))’. To achieve

this task we recall that . g
hj(a)Z*/ hia@y) g,
1 )

Since for a > 1, we assumed that h;_1(a) is positive, therefore by the virtue of the above
integral hj(a) is a monotone positive equation for a > 1. Also, since 0 < h;_1(a) < (log(a —
1))71, therefore,

a—1

hie) < (loga — )y [

1 Y

or
hj(a) < (log(a — 1))’
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Finally, we need to show that for a > 1, if hy(a) is a positive monotone increasing func-
tion satisfying the inequality 0 < ha(a) < (log(a — 1))? and |g2(pr,a)|= 2(a — 2)log(a —
1)y/log(pr) O(g(pr)). Referring to Lemma 15, we have

a—1 a —
o) = 5 [ 2EE =y, (70)

Since for 1 < y < a — 1, log(a — y) > 0, therefore hy(a) is a positive monotone increasing
function. Also, since 1 <y <a—1,0 <log(a —y) < log(a — 1), thus

ha(a) <log(a —1) /1a_1 GSJ = (log(a — 1))2

We have also shown in Lemma 15 that |g2(p, a)| has the desired value or

|92(pr, a)|= 2(a — 2)log(a — 1)y/logp, O(g(pr)).

In the next lemma, we will show that lim;, . 7’; = 0. Since we have shown that for any
value of a, g;(pr, a) approaches zero as p, approaches infinity, therefore

1 (o1 hiy(a—y)
lim M;(1,p.;1,p.% :f,/ 4 P dy=nhi(a
m M;(L,pri 1, ) i, ” y = hj(a)

where h(a) = log(a).

Hence, for every a and as p, approaches infinity, we have

lim M(1,pr;1,p.") = 1 — hy(a) + ha(a) — hs(a) + ... + (=1)!h, (a) = p(a). (71)

Pr—00

It should be pointed out that the above equation implies that the partial sums M(1,p,; 1, p,%)
and M (1,p¥;1,p,"Y) (where, p¥ is a prime number) have the same limit as p, approaches
infinity. Hence,

lim M(1,p.;1,p.%) = prli_r)nooM(l,pg; 1,p:%) = p(a). (72)

Pr—00

Equation (72) will be used in the second step of this section to estimate the asymptotic be-
havior of the function p(a) as a approaches infinity.

As mentioned earlier, the partial sum M (1, p,; 1, p,*) constructed by this process included
non square-free terms (i.e r;’s). In the following lemma, we will show that, for every a and as
pr approaches infinity, the sum of the absolute contributions by these non square-free terms
approaches zero as well.

Lemma 18.

la)
Prh—r>noo z;|rj|: O’
J:
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and

lim r'; =0,
Pr—>00

1 a—1 dr Y
’I“,j =r;+ f/ 7“,]'71 (pr )
JJ1 prY

where

Proof. Let Sy be the sum of the absolute value of all the non square-free terms (within all
the r;’s) that have the factor 1/p2. Therefore, Sy can be expressed as Ko/p?. Let S be the
sum of the remaining non square-free terms with the factor 1/ (pr+1)2. Therefore, S; can be
expressed as K1 /(pr+1)?. Let Sy be the sum of the remaining non square-free terms with the
factor 1/(p,+2)? where Sy can be expressed as K2/ (pr4+2)?, and so on. Let S be sum of all the
terms associated with non square-free terms. Thus, S is given by

1 1 1
S=-—SKo+—FKi+..+ 5Ky,
Pr Pr+1 Prir

where p, 1, is the largest prime that satisfies the condition p?, ; < p,®. Furthermore, since
there is no repetition in any of the non square-free terms and there are less than p¢ terms of
the form p(n)/n in the partial sum M (1, p,; 1, p,*), therefore

Ko, [Ki], oo [Ko|< 1+ % + é bt pia’
and
Kol |Ki], o [K|= O(alog pr).
Thus,

la] 1 1 1
D olril< s = <2+2+~--+ 5 >0(alogpr)-
= Dr DPr+1 Pryr

Hence, the contribution by the non square-free terms S is given by,

S = O(a logpr/pr)'

Consequently, for every a and as p, approaches infinity, S (or the contribution by the non
square-free terms) approaches zero.

To show that lim, . 7’; = 0 by induction, we first note that ; = 0 by the virtue of
Lemmas 14. We will assume that lim;, o, 7'j—1 = 0 for j > 1. Referring to the definition of
r’;, we then have

1 ot dr(p.Y)
r|< 7“'+f/ g | ——2.
i< st [l
Since we have shown that lim,, _,|rj|= 0 for j > 1, we have also assumed thatlim;, o ’j_1 =
0 for j > 1 and since [~ ' dn(p,¥)/p,¥ = loga + O(1/p,) (refer to Lemma 11), therefore

lim |7“,j|: 0
Pr—+00
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e In the second step, we will provide the first representation of the partial sum M (1, p,; 1, p,¢).
We will then show that the partial sum M (1,p,;1,p,*) can be written as the sum of
two components. The first one is the deterministic or regular component and it is
given by p(a) (= limp, oo M (1,p,;1,p,*)). The second one is the irregular component
R(1,pr;1,p,%) given by M(1,p,;1,p.*) — p(a). We will then show that the function p(a)
is the Dickman function that has been extensively used to analyze the properties of y-
smooth numbers.

In this step, we will present the first method to compute the partial sum M(1, p,; 1, p,%)
by summing the contributions of each prime number to the partial sum M(1, p,; 1, p,%)
(in system analysis, this corresponds to computing the system output using its impulse
response).

In the next step (step three) of this section, we will present the second method to com-
pute the partial sum M;(1,p,;1, p,*) using the results of the first step of this section.
With this method, we will compute the partial sum M (1, p,; 1, p,*) by adding the con-
tributions by the terms M; (1, p,; 1, p,*) (terms with one prime factor), M»(1, p,;1,p,%)
(terms with two prime factors) and so on (in system analysis, this corresponds to com-
puting the system output by adding its orthogonal components).

In the next section, we will present the third method to compute the partial sum M (1, p,; 1, p,%)
using complex analysis methods (in system analysis, this corresponds to computing the
system output using its frequency spectrum).

Comparing these three representations reveals that zeros of ((s) can be found arbitrary
close to the line R(s) = 1.

The following lemma is the key to our first method to compute the partial sum M (1, p,; 1, p,%).
With this lemma, we write the partial sum M (1, p,; 1, p,) in terms of the partial sums M (1, p;; 1, p,*/p;)
for p, <p; <pf.

Lemma 19.

1 1
M1,p;l,p %) =1— > =M(Lpy;Lp" ) — Y, —. (73)

T
Pr<p;<pe/? pr@/2<p;<pr®

Proof. To prove this lemma, we will show that every term of the sum M (1, p,; 1, p,*) is also a
term of the sum on right side of Equation (73) and vice versa. We also need to show that none
of the terms on the right side of Equation (73) is duplicated.

To show that non of the terms on the right side of Equation (73) is duplicated, we first note
that the middleterm -, _, ., o2 M (1, pi+1;1,p:%/pi)/piis void of 1 and any of the terms that

a/2 < p < p¢. Second, we will show that none

comprise the sum 3°, a2, <, o 1/pi, where p;
of the terms that comprise the middle sum }°, -, a/2 p%_M (1, pit1; 1, pr*/pi) is duplicated.
This can be verified by noting that there is no common terms between the terms that com-
prise the middle sum. More specifically, there is no common term between the partial sum
M(1, pry1;1,p,*/pr)/pr and the remaining terms of thesum 3, ), <) a2 M (1, pit1; 1,00 /pi) /i
(this follows from the fact that none of the remaining terms has a prime number p,. Fur-
thermore, none of the terms that comprise the sum M (1, p,41;1,p-*/pr)/pr is duplicated).

Similarly, there is no common term between the partial sum M (1, p,42; 1, pr*/pr41)/pr+1 and
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any of the remaining terms that comprise the sum D prsa<pi<prarz M (1, pit1; 1, p+%/pi) /pi (this
follows from the fact that none of the remaining terms has a prime number p,;). Further-
more, none of the terms that comprise the sum M (1, p,+2; 1, pr*/pr41)/pry1 is duplicated).
Following the same process for all the prime numbers p, 12 < p; < pT“/ 2 we then conclude
that none of the terms that terms that comprise the sum D pn<pi<prarz M (L, piv1; 1, 0:% /i) /Di
is duplicated.

To show that every term on the right side of Equation (73) is a term of the partial sum
M(1,pr;1,p,*), we note that 1 is a term of the the partial sum M(1, p,;1,p,*). Also, every
term within the sum >° a2, <}, 0 1 /pi is also a term of the partial sum M (1, p,; 1, p,*). Fur-
thermore, every term within the sum >, _ . a2 M (1, pit1; 1, p:%/pi)/p; can be written as

(=1)*/N, where p, < N < p,® and N has k distinct prime factors that ranges between p, and
a/2
2

To show that every term within the partial sum M (1, p,; 1,p,%) is also a term on the right
side of Equation (73), we note that terms of the form 1 and 1/p; where p, < p; < p,* are
also terms on the right side of Equation (73). Every term of the rest within the partial sum
M (1,pr; 1, p,*) can be written as 1/N where N is a product of two or more distinct primes in
the range p, and pff/ % Let pi be the lowest prime number, then N can be written as 1/(p;V;)
where p; < N; < p?/p;. Hence, 1/N; is a term within the partial sum M (1, p;11;1, p,%/p;) and
1/N is a term on the right side of Equation (73).

O

In the following lemma, we will use Stieltjes integral to represent the sums of Equation
(73) in Lemma 19.

Lemma 20.
a/2 dm(p,Y o dm(p,Y
M(lva;lvp'ra) = 1_/ (I;T )M<17p7"ya17pg/p1z{>_/ #_'_Q(pﬁa)v (74)
1 Dr a/2 Dr
where )
Qlpra)= > M1, pis1;1,p.%/pF).
Pr<pi<pr/2
and Q(pr, a) is unconditionally given by
1Q(pr,a)|= O(p; ).
Proof. By the virtue of Lemma 1, we have
1 a 1 a 1 a/, 2
> =MQpiys e = >, — (MQ,ps 1, pi) + =M1, pigis 1,0 /7)) -
pr<pi<pr/2 " pr<pi<pr/2 " pi
Since we defined Q(p;, a) as
1
Q(p'ma) - Z 72M(17pi+1;17p7‘a/p12)7
Pr<pi<pr/2
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thus

1 1
> =ML Lptp) = Y, —M(1pi;1p"/pi) + Qlpr,a).

pr<pi<pro/2 " pr<pi<pra/2 "
To show that Q(p;, a) is given by O(p, 1), we will first show that
|M(1>p2+17 17297"(1/]912”S 2.

The above inequality will follow if we prove the following inequality for any integer NV and
prime number p,

iv: M(n7p'f)

n

< 2.

n=1

This task can be achieved by first noting that that (refer to Theorem 6.5 on page 128 of [11])

Zd/n M(dvp’l“) =1, ifn = 1,
>d/n p(d, pr) = 1, if all the prime factors of n are less than p,,
>_d/n #(d, pr) = 0, if any of the prime factors of n is greater than p,.

Adding all the terms >_, /n wu(d, py) for 1 <n < N, we then obtain

0< 3 utnp) =

n=1

where |z | refers to the integer value of x (note there are | N/n| integers less that or equal to
N that are divisible by n). Define r,, as

[
™m = ——1—"1,
n n
where 0 < r,, < 1. Hence, we have
N N N N N
> wln o) < 3 plnpe) ||+ 3 o por < N+ 3 o pr
n=1 n=1 n=1 n=1

Since 0 < r, < 1, therefore

-N géu(n,pr) (Tn+ VZJ) < 2N.

Thus, for every p, we have

N
—N < Z w(n, pr)

n=1

< 2N,

3=

or
N

—1<Z”(Ti;p’”)<2~

n=1
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For N = p,%/p? and p, = p;, we then have

IM (1, pig1; 1,0 /p?)|< 2.

Thus
1 a /. 2 1 -1
|Q(p7'7a')|: Z 72M(17pi+1;17p7“ /pz> <2 Z ) :O(pr )
pr<pi<py/2 pr<pizpre/2 i
Using Stieltjes integral, we can write Equation (73) as follows
a a/2 dﬂ- p’f‘y a “ d7T pT‘y
M(1,pri 1, pr )=1—/ (y )M(Lpry;l,pr/p%)—/ (y )+ Qlpr.a)
1 br a/2  Pr
where dr(p,Y) = dLi(p,Y) + dJ (p,Y). O

It should pointed out that while Equations (73) and (74) of Lemmas 19 and 20 provide the
value of the partial sum M (s, p,;1,p¢) at s = 1, they can be easily modified to compute the
partial sum for any value of s to the right of the line R(s) = 1 (and on RH, to the right of the
line R(s) = 0.5).

In the following lemma, we will show that as p, approaches infinity, M(1,p,;1,p%) ap-
proaches p(a) where p(a) is the Dickman function.

Lemma 21.

lim M(1,pr;1,p:%) = p(a)

Pr—00
where, p(a) is the Dickman function.

Proof. By the virtue of Equation (72), for any fixed q, as p, approaches infinity we have

lim M(1,pY;1,p7"Y) = p (a - 1)

pr—>oo y
Since, for aq,as > 1, we have

lim " dr(p,¥) = lim " dy
L A i N

therefore, as p, approaches infinity, Equation (74) of Lemma 20 can be written as

In the following, we will show that p(a) satisfies a well known first order differential
equation and p(a) is the Dickman function. This task will be achieved by using Equation (75)
to compute the difference p(a + Aa) — p(a) (Where, Aa is an arbitrary small number) to obtain
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/(a+Aa)/2 p (% — 1) dy+/a/2 p (g — 1) 0y /(aJrAa) dy . @ dy
1 (

a+Aa)—pla) = — .
p( ) p( ) 1 Yy a+Aa)/2 Y a/2 Y

Since the third integral of the above equation is equal to the fourth integral, therefore

pla+ Aa) — p(a) = — /(G+Aa)/2 p(‘“ﬁy"—l)dy + /1a/2 p(‘;—l)dy'

1 Y
If we define z = y/(1 + Aa/a), then we have

((a+Aa)/2)/(1+Aaja) o (& — q a/2pl2—1
pla+ Aa) = pla) = —/ ACal) PR / (y)dy.
1/(14+Aa/a) z 1 Y
Thus,
! p(E-1
/(1+Aa/a) z

pla+2a) = p(a) = - |

Dividing both sides of the above equation by Aa and letting Aa approach zero, we then
obtain

da a

dp(a) _ pla—1) 76)

where p(a) = 1—log(a) for 1 < a < 2. Equation (76) is a first order delay differential equation
that has been extensively analyzed in the literature [6] [9]. The function p(a) is known as the
Dickman function. O

As a approaches infinity, p(a) can be given by the following estimate [6]

play = (12D 77)

aloga

For sufficiently large values of a, we have p(a) < a™.

Definition 7. The irreqular component R(1,p,;1,p.*) of the partial sum M (1,p,;1,p,%) is given

by
R(1,pr;1,p*) = M(1,pr;1,0,%) — p(a). (78)

Thus, R(1,p,;1,p,%) can be computed by subtracting Equation (75) from Equation (74)
to obtain the first key theorem. This theorem provides the first equation for the value of
R(1,pp;1,p%) in terms of dJ (p,Y) /p,Y with a > 1.

Theorem 4. The partial sum M (1,p,;1,p?) = Z}ff{ w(n, pp)/n can be expressed as
M(1,pr; 1, p7) = pla) + R(1, pr; 1, pr%) (79)
where p(a) is Dickman function. The reqular component of M (1, p,; 1,p¢) is given by

pla) = lim M(1,py;1,py). (80)

Pr—00
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and the the irregular component R(1,p,; 1, p,*) defined as M (1, p;; 1,p?) — p(a) is given by

. 2 di(pY)  [*dI(pY) (% o dn(pY
R(Lpe ) = = [* ptapy =1 0 [PHED [ a1, e TEE Q)
@

2
where Q(py, a) is unconditionally given by O(p; )

It should be emphasized here that Equation (81) is valid regardless where the zeros of
((s) are located within the critical strip.

e In the third step, we will use Lemmas 14, 15 and 17 to drive the second equation for
the the value of R(1, p,;1,p¢) as a function of d.J(p,)/p,¥ for 1 < a < 4. This equation
will be derived with the assumption that the non-trivial zeros of ((s) are restricted to
the strip 1 — ¢ < R(s) < ¢ (where1/2 < ¢ < 1).

For 1 < a < 2 and referring to Lemma 14, we have
@ dJ(pY
M(Lpes 1oy = 1~ logfa) — [ 4120
1 prY

Hence, we have the following lemma
Lemma 22. For1 < a < 2, R(1,p,; 1, p?) is given by

dJ(pY)
Py

a
R@mﬂmﬁ:—mmﬂw:fmmm%:—l

Before we proceed with the estimate of R(1, p,; 1, p¢) for a > 2, we will have the following
three lemmas relating to size estimate of some integrals with the term d.J(p,?) /p,Y.

Lemma 23. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < c (where
1/2 < ¢ < 1), then for a > 2, we have

a—1 dJ ry I .
/1 g1(pr,a—y) ](ff, )| = o(prati-arz+e).

T

Proof. To compute the size of the the integral ff“_l g1(pr,a — y)dJ(p,Y)/pY. or the integral
AV AT (pY) /pY)dT (p.Y) /pY, we first note that although the function J(x) is not a non-
decreasing function, J(z) is given by m(x)—Li(x) where both 7(x) and Li(x) are non-decreasing
functions. Therefore, we can use theorem 21.67 of [8] for the method of integration by parts
a—y dJ(p:¥)

for Lebesgue-Stieljtes integrals to obtain,
a—1 a—y dJ(p y)) dJ(p y) 1 T a—1 a—y dJ(p y) 1
T r = J ry pr 7/ J Ty (/ r )d(>
/1 (/1 pr p? ) LA AV pr p?

[ (=),
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By the virtue of Lemma 7 and 10 where both |J(p,*)/p| and | [ dJ(p,¥)/pY| are given by

pr1797¢ we then have
a—1
J(pry)/a_y dJ(p:¥) —2(1—
=0 (p,2079%),
pr N pr 1 (p )

and

a—1 a—y qd.J Ty 1 a—1 J ry (1—c)te

/ J(pry)(/ w ))d<y>‘§10gpr/ &) O (p; 1=+ ay,
1 1 Y %3 Pr 1 br

or

/la_l J(pr¥) (/la_y d‘]g:fy)> d (ply)‘ =0 (p;2<1—c)+e) .

For the third integral fla_l J@r?) g ( Y %), we have

pr
/a_l J(pry)d (/a_y dJ(pry)> _ /a_1 J(pry) dJ(pra_y)
1 P 1 Py 1 P pr Y

We split the integral over the period [1, a — 1] into two integrals. The first integral covers the
period [1, a/2] and The second integral covers the period (a/2,a — 1]

(82)

/a_l J(pry) dJ(pra_y) _ /a/2 J(pry) dJ(pra_y) + /a_l J(pry) d‘](pra_y)
1 P py Y 1 pr pr Y a/2 py pr Y

For the second integral on the right side of the Equation (82), we have

/ I (o) dI (") | / =L J(peY) | |dT (pr®7Y)
a2 Pt P | T Japp DY P’

and virtue of Lemma 7 and 10 where both |.J(p,*) /p¥| and | [{" d.J (p,¥) /pY| are given by p;(lfc)Jre,

we then have

/a_l J(pry) dJ(pra_y)
a/2  DF piY

-0 (p;a(l—c)/2+6> '

The first integral on the right side of the Equation (82) can be written as follows

/2 J(p¥) dJ(p,*"Y) 1 /@/2
= — J(pr¥)dJ (pr*7Y).
| = [ )

By integration by parts, we then have

a/2

pr pr Y Dy

/w (oY) dI(p,Y) _ T, T [ /w J(p.Y) dJ(p,)
1 1

pr Y pr

1
and virtue of Lemma 7 and 10

a/2
T(pe?) I (0, %) |

oy
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and

/2 J(p,*Y) dJ (ps¥)
r r -0 —a(l—c)/2+e€
/ (or )

pr Y pi

Consequently,

— O(p;a(lfc)/2+e)‘

)

a-l dJ(pry)
r, 4 —
/1 g1(p Y) .

T

or

— O(p;a(lfc)/QJrE).

Lemma 24. Fora > 2

a-1 dJ(pY) 1 f[o-1 dJ(p.Y)
ryA) = 1 - + - / 0 — .
g2 (p a) /1 Og(a y) p% 2/, g1 (p a y) p%

and If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where 1/2 < ¢ < 1),

then
dJ (pry)
7]

T

+ O(p;a(lfc)/QJre)'

92(pr,a) = /1(1_1 log(a —y)

Proof. For a > 2, by the virtue of Lemma 15, g2(p;, a) is given by

a— 1 _ Yy
p’f"? ) / / dJ(pr )
7'7 1 - 7’7 .
2(p 2/ —dy+g og(a p§! +5 1(prsa—y) .

(83)
We will first compute the first term of ga(p,,a) (i.e the integral [}’ g (prya—y)dy/y ).
Since dy/y = dlogy, thus

a—1 » _ a—1 a—y d ry
/ 91(pr; a y)dy:/ (/ J(p ))dlogy
1 Y 1 1 oY

By integration by parts, we then have

a—1
a—1 _ a—y Y a—1 a—y Y
1 Yy 1 Dr 1 1 1 Dr
where 1
a~y dJ(p,Y)\ |*
logy(/ (py )> =0,
1 Dbr 1
and
d ( / dJ(pry)) _ dJ(p,Y)
1 DY preY ‘
Hence

a—1 ey G — a—1 dJ ra*y
/ npra=y), _ _/ log y P ")
1 Yy 1 praY
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and by changing the variable y by a — y, we then have

a—1 T a—1 dJ Ty
1 Yy 1 Dr
Combining Equations (83) and (84), we obtain
ol dJ (pr¥) dJ (pr¥)
T = 1 - 'r, .
92(pr, a) /1 og(a 0 T3 / ipra—y)— g

and by the virtue of Lemmas 11 and 23, we then have

d'](pry)
Yy
Dr

a—1
92(pr,a) = / log(a — y) + O(p;a(l—c)/wre).
1

O

Lemma 25. If the non-trivial zeros of ((s) are restricted to the strip 1 — c¢ < R(s) < c (where
1/2 < ¢ < 1), then For a > 3, we have

[ e L ([ 02) 22

T z=1 w=1 P pf Dr

Proof. Referring to Lemma 24, we have

a—1 dJ(p.Y
/ 92(pr, a—y) (y ):
Yy

=1 Pr
a=1 / ra—y-1 dJ(p,?) 1 fo—y-1 dJ (p2)\ dJ(p,Y
/ (/ log(a —y — 2) (Z: )+f g1(pr,a—y — 2) (i )> (5 )
y=1 \Jz=1 j 2 /=1 J 2 Pr

Since J(py) is set to zero for < 1, therefore the limit of the inner integral z = a —y — 1 should
be also greater or equal to 1. Hence y should not exceed a — 2. Consequently

/a_11 92(pr,a—y) dJSZTy) _ /yll—Q (/za—y—l log(a — y - Z)dJ(Prz)> dJ(ZTy)JF

i -1 -1 D7 pr
1 pa-1 a—y—1 Y=z dJ(p,“)\ dJ(p,?)\ dJ(pY
7/ </ (/ (p )) (p )> (2; ) (85)
2 y=1 z=1 w=1 prw pi pr

To compute the first integral on the right side of Equation (85), we use the method of
integration by parts to obtain

/1a—2 (/:—y—1 osa g 2) dJ(pﬁ)) dJ(];Ty) _ J(pyry) (/Za—y—l log(a — y— ) dJ(;ZTZ)>

=1 D7 Dr Dr =1 2

a—2

y=1

/la—2 o) (/:_ly_l log(a—y Zﬂjﬁzz)) J (plg) _/la—Q J(;?;y)d </Za—1y—1 log(a —y Z)dJ]()Z;TZ)>

The first term on the right side of the above equation is given by

Myry) (/2“91 log(a —y — Z)dJ(ZZTZ)> - - - (/:2 log(a —1~ Z)dJ(ZZTZ)> (86)

pr =1 by ‘y:l Dr =1 T
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By the virtue of Lemma 7 and 10 where both |.J(p,*)/p¥| and | [i" dJ(p,Y)/p¥| are given by

pr_(l_c)Jre, we then have
a—2
J(pr¥) ( /“” dJ(W)) _o(1—
log(a —y — = = O (p7Ai-o)te
T\ gla—y—2) i /| (p )
Furthermore,

/la_2 J(pr?) (/:_ly_l log(a —y — 2) dJ;];rz)> d (pl%) =

a—2J ry a—y—1 dJ Tz
~togp [ (ﬂ,)(/‘ log(a — y — 2) 27 ))dy

Pr =1 by
and by the virtue of Lemma 7 and 10 we then have

/1a—2 J(pY) (/Z“—ly—l log(a —y — z)‘l‘](i’“z)) d (i)‘ —0 <p;2(lfc)+e) 87)

pr pT

For the integral [¢~2 (&%) ( o=y ogla —y — z)d‘];p - )) we need first to compute the

differential d ( Jemyt log( —y— z)%) with respect to y

Ay (/:_ly_l log(a —y — z)W) =

Dr
a—y—Ay—1 z a—y—1 z
[ ogta—y - ay = 9D [T gl -y - o2
z=1 2= z=1 D7
or
a—y—1 dJ(p,? a—y—1 dJ(p,?
Ay(/ log(a —y — 2) (1: )>:/ log(a —y — 2) (2 )—I—
z=1 pr z=a—y—Ay—1 pr
a—y—1 dJ(p,*
[7" tosta—y - g = 2) ~ ogla —y — =) T2
Thus,

d a—y—1 dJ(p.*) _ dj(praiyil) a=y=1 1 dJ(p-*)
— (/z:l log(a —y — z)) =log(l)————= — /Z (83)

dy ; pr vt -1 a-z—y Pi

and

a=2 J pry a—y—1 dJ prz a=2 J Ty a—y—1 1 dJ rz
/ <y>d(/ log(a — y — ) >>:_/ <py>(/ L >)dy
1 Pr z=1 by 1 pr z=1 a—z—Y Dr

Since 1 < a — z — y < 2 and and by the virtue of Lemma 7 and 10 we then have

/1(1—2 J(P;y)d (/za—y—1 log(a —y Z)dJ}()gf))' 0 (p;z(kc)ﬁ) (89)

br =1 (s

Combining equations (85), (86), (87) and (89), we then have

[ ([ ([ ) ) )

z=1 w=1 prw pi br

r

O]
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In the following two lemmas, we will use Lemmas 15, 24 and 25 to provide an estimate
for R(1,p,;1,p%) for2 <a < 3and 3 <a < 4.

Lemma 26. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < c (where
1/2 < ¢ < 1), then for 2 < a < 3, we have

d‘](pry>

—a(l—c)/2+e€
o T O(p, ).

ROLpe 1) =~ [ (1 loga )

or
4.7 (")

prY

a—1
RﬂmﬂLﬁ>:—Af pla—y) + O(p, (1792,

Proof. Referring to Lemma 15, we have for2 <a < 3

~!log(a —y)

“ 1 [o=1llog ke
M(17p1“;17p1“ ): 1_10g(a)+§‘/1 y dy_gl(p'r’)a)+g2(p1”7a’)+0(p7' o ))

where O(log(a)/pr) (that corresponds to the contribution by non square-free terms as deter-
mined by Lemma 18 ) is replaced by O(p, 17¢). Hence

91 pra - J(pry) 1 /a—l dJ(pry)
ry, @ d ry Q 5 1 - .
) =5 [ +2/ {(p R L Gk

r— llogx z)

Since for 2 < a < 3, p(z) = 1 —log:r—i— I
R(1,py;1,p?) is given by

dz, then referring to Equation (78),

R(lapT; 1ap7“a) = _gl(pr,a) + 92(107‘7 ) + O( 1+E)

Referring to Lemmas 23 and 24, we then have

a—1 dJ N J Y
R(1,ps;1,p:") = —/1 p +/ log(a —y ( )+O(p;“(1*c)/2+€).

Since for 2 < a < 3, we have
pla —y) =1—log(a —y),
therefore for 2 < a < 3
dJ(pY)
prY

a—1
R(1,pr;1,p7) = —/1 pla —y) + O(p;a(l—C)/2+6)_

Lemma 27. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < ¢ < 1), then for 3 < a < 4, we have

a—1 dJ ry
R(l,pr; 1,pff) = / p(a y) p(py )+
1 a—y—1 a—y—z {J Tw dJ TZ dJ ry —a(l—c €
L ([ ) 1) )
y= w=1 Dr pr br
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Proof. We first recall that for 3 < a < 4 (refer to [7], Equation (3.15)), we have

y— 1log —2)
ply) = 1 —log(y 2/

and

1 a—y—1], ) —
p(a—y)zl—log(a—y)+§/ Og(azyz)dz
1

Referring to Equation (62) and (64), we then have for 3 < a < 4

M(1,p,;1,p%) = p(a) — g1(pr, a) + g2(pr, a) — g3(pr, @) + O(p, 179,

where O(log(a)/py) (the contribution by non square-free terms as determined by Lemma 18)
is replaced by O(p, 17¢), g1(pr, a) and ga(p,, a) are given by (refer to Lemmas 22 and 24 )

91(pr,a) = /1 ")

r¥

a—1 dJ Ty —all—c .
92(197”@):/1 log(a — y) ](f; T

T

and referring to Equation (63), g3(py, a) is given by

L g2(pr,a — dJ(p:Y)
7‘7 d 7‘7
3(p 3/ Jr3/ 2(pria =) P +
dJ Y
3/ e
Pr

where for a > 2 (refer to Equation (70))
1 ro=1log(a —y)
h = —=2d
)= [y
and by the virtue of Lemmas 24 and 11

a— a— _ _ dJ(prz)
/ ! 92(p7"7 a— y) dy = / ! f 10g Z) p7 dy + O( —a(l— C)/2+e)
1 Y y=1 Y

while referring to Lemma 25

Dr =1 w=1 prt D7 pr

Thus,

J(pry) 1 /a_2 (/a_y_l dJ(prZ)> dy
s G + - logla —y —2))——— | —+
p 3 / p% 3 y=1 z=1 ( g( Y )) pTZ Yy

1 re—2 a—y—1 a—y=z d.J - dJ . dJ . —a(l—c €
L 0 7
y=1 z=1 w=1 Pr pr br

where J(pZ) = 0 for z < 1 and ha(x) = 0 for z < 2. Rearranging the second integral on the
right side of the above equation, we then have

L) tontamy @) ([T 8 g ) 2
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or

/;12 </Za:1yl(log(a—y—z))d > _2/ (a—2) Jz(gg;ﬁ)

R A e N A

—1 w=1 P j Dr

O(p;a(lfc)/2+e).

Consequently,

dJ(p,Y)
pr

1 ja—2 a—y—1 a=y=z d.J(p,")\ dJ(p,?)\ dJ(p,Y —a(l— ¢
L (4 ) 2o
y=1 z=1 w=1 DPr pr pr

Since for 3 < a < 4, we have

M(lp’Nl?pr - +/ 1+10ga— )_hQ(a_y)) +

pla—y)=1-log(a —y) — ha(a —y),

therefore for3 <a < 4

a—1 dJ Ty
Rpe i) == [ pla-) P8
DPr
/ </a y— 1( a—y—z dJ(p;w)> dJ(]ZTZ)) dj(gr ) +O( —a(l— c)/2+e)
2 w=1 pT pr p7"

O]

Combining Lemmas 22, 26 and 27, we then have the second key theorem. This theorem
provides the second equation for the value of R(1, p,; 1, p¢) in terms of dJ(p,¥)/p,¥ with 1 <
a < 4.

Theorem 5. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < ¢ < 1), then for 1 < a < 3, we have

a—1 dJ(p,Y o .
R(l,pr;l,pﬂ)z—/1 pla—y) p(py ) 4 opett-aztey. (90)
and for 3 < a < 4, we have
a—1 dJ Ty
Rt = [ pla—y) 0
1 Dr
1/(12 (/ayl </ayz dJ(prw)) dJ(pTZ)> dJ(pT ) +O( —a(l1- c)/2+e) (91)
2 y=1 z=1 w=1 prw p? p?
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Comparing Equation (91) of theorem 5 with Equation (81) of theorem 4, we note that
R(1,pr;1,p%) is represented in terms of [ p(a — y)dJ(p.¥)/p,Y in Equation (91) while it
is represented in terms of fl pla/y — 1)dJ(p.Y)/p¥Y in Equation (81). This difference in
R(1,p,; 1, p%) representation W111 be exploited in our analysis of the zeta function non-trivial
zeros. In section 6, we will present a third method for computing R(1, p,; 1,p¢) that is based
on complex analysis. With this method, we will drive a replica for Equation (91) with a tighter
bound on the estimation of the triple integral on the right side of Equation (91). In section
7, this equation (based on complex analysis and presented in section 6) will then be com-
pared with Equation (81) to show that non-trivial zeros can be found arbitrary close to the
line R(s) = 1. Before we do so, we need to expand our method to compute M(1,p,;1, N)
to right side of the line %(2) = 0.5 in the complex plane as described in the next step of this
section.

e In the fourth step, we will extend the concept of regular and irregular components of
M(1,pr; 1, N) to right side of the line R(z) = 0.5 in the complex plain where the series
M (s, py) is convergent.

Toward this task, we first that the partial sum M (s, p,; 1, N) is given by the sum z,fj:l w(n,py)/n’
and therefore it can be written as follows

N

M(S,pr;l,N)zl—l—/ —dM(l pr; 1, 2),
a=p, T
or .
M(s,pr;1,p) =1 +/ i —dM(1,pp; 1, pY).
1p'r
Consequently
a p a py
Mlsprspf) =14 [ Tedpto) + [ SicdR(1,prs 1), ©2)
pr y=1 Pr

Therefore, for any s, the partial sum M (s, p,; 1, pf) has two components. The first one is the

deterministic or regular component given by 1+ [ 15 ys dp( ). The second one is the irregular

component given by fy:1 If’qjg dR(1,pr; 1,ppY). Therefore, if we define « as

o = (s—1)logp,

and the regular component of M (s, p,; 1, p?) as F'(a, a), then

aa—1+/psmdp —1_|_/ 1s)ac/( )dz,

F(a,a) =1 +/ e o/ (z)dx
1

or,
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Definition 8. For the region of convergence of the series M(s,py), the regular component of the
partial sum M (s, pr; 1, p¢) is defined as

F(a,a) =1 +/ e (z)dx, (93)
1
while the irreqular component of the partial sum M (s, p,y; 1, p%) is defined as

R(s,pr; 1,p7) = M(s,pr; 1,py) — F(a,a). (94)

Notice that for s = 1, we have a = 0 and F(0,a) = p(a). We also notice that the regular
component exists for any value of s with R(s) > 0. This is expected since the regular com-
ponents of both the prime counting function and M (s, p,; 1,p%) are not determined by the
location of the non-trivial zeros within the critical strip.

We now define F'(«) as

a— o0

F(a) = lim F(a,a) =1+ /100 e~ (x)dx. (95)

Thus, for R(s) > 1, « is a complex variable in the complex plane to the right of the line
R(s) = 1. Hence, the integral [° e~*%p/(z)dx is the Laplace transform of the function p'(z)
and is given by F'(a) — 1 (where F'(«) is the regular component of the series M(s, p;), i.e.
M(s,py; 1,00)). Since the Laplace transform of p(x) multiplied by s is given by e=#1() [10]
(refer to page 569) [9] and the Laplace transform of p' (z) is given by s£(p(z)) — p(0), therefore

Fla)= e Br(e),

Definition 9. For the region of convergence of the series M (s, p,), the regular component of the series
M (s, py) is defined as
F(a) = e Br(e),

where oo = (s — 1) log p,. The irreqular component of the series M (s, p,) is defined as

R(s,py) = M(s,py) — F(a)

In Theorem 3, we have shown that
M(s,p,) = e~ E1(@)—e(pr.s)+d(pr.s) (96)

where e(s;p;) = [* dJ(z)/2* and J(z) = m(z) — Li(z). Using the above definition, we can
rephrase Theorem 3 as follows

Theorem 6. For the region of convergence of the series M (s, py), M (s, py) can be expressed as
M(s,py) = lim M(s,pr;1,p,") = F() + R(s, py) 97)
where a = (s — 1) log p, and F(«) is the regular component of M (s, p,) given by
F(a) = e (@), (98)
and R(s,p,) is the irreqular component of M (s, p,) and it is given by

R(s,p;) = lim R(s,pr;1,p,") = e F1(@) (emslpwolsim) 1), (99)
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It should be emphasized here that the regular component F'(«) is the value of M (s, p,) due
to Li(z) component of the prime counting function 7 (x). The irregular component R(s, p;)
is given by limg oo R(s,pr; 1, %) = limg_yoo M (s, pp; 1, %) — limg—y00 F'(av, pr®). It should be
also pointed out that for s = 1, the irregular component R(1,p,) = F(0)(e~=Lipr)+0ipr) 1) js
zero for every p, (note that R(1, p,; 1, p,*) may deviate from zero but it ultimately approaches
zero as a approaches oo). For s # 1, the irregular component R(s, p,) = F(a)(e=(siPr)+o(sipr)
1) may have values different from zero although it approaches zero as p, approaches infinity

In the following section, we will use Theorem 6 and the Fourier analysis to obtain an
alternative representation for R(1,p,;1,p?). This representation will then be compared with
Equation (81) of Theorem 4 to examine not only the validity of the Riemann Hypothesis but
also the location of the zeta function non-trivial zeros within the critical strip.

6 Computing the irregular component of M (1, p,; 1, p%) using com-
plex analysis.

In the second step of the previous section, we have used integration methods to compute
the irregular component of M (1, p,;1,p¢) for values of a > 1. Referring to Equation (81) of
Theorem 4, we have

R(1,pr; 1,p") = _/15 pla/y—1) dJ](jZTy) / gl pr / R(1,pY; 1, pf: )d ( )+Q(pr) a)

r

It should be noted here that R(1, p,; 1, p,¥) is zero for y < 1, hence for our analysis to compute
R(1,pr;1,pyY), J(pY) is set to 0 for y < 1. In the third step of the previous section, Theorem
5 provides a second representation of R(1,p,;1,p,*) in terms of ff_l pla — y)dJ(pY)/pY
instead of the term fffl pla/y—1)dJ(p,Y)/prY. InIn this section, we will use Equation (99) of
Theorem 6 and the complex analysis to find another representation of R(1, p,; 1, p,¥) in terms
of [17" p(a —y)dJ(pY)/p,Y. The complex analysis will allow us to find a tight bound for the
O term associated with the term fla_l pla — y)dJ(pY)/pY. Toward this end, we recall the
definition of R(s,p,) (or the irregular component of the series M (s, p,))

R(S’pr; 17 oo) = e_El(O‘) (6_5(5§Pr)+5(3§pr) _ 1)’
To compute R(s,p,;1,p¢), we recall Equation (92) that establishes the connection between
R(s,pr;1,py) and R(1,py; 1, pyt)
a py
R(s,pr;1,p:%) :/ —sdR(1,pr; 1,pY).
y=1 Dr

Recall that o = (s — 1) log p;, hence

a dR(1 r; ]_7 T?/
R(s,pr; 1, p:%) :/ e (1,pr;1,p )dy,
y=1 dy
) o dR(1,p,;:1,pY
R(3>pr) = lim R(57pr; 1,pg) :/ e~ ( yPri Ly Pr )dy (100)
a—00 =1 a0

Thus, R(s,p,) is the Laplace transform of the derivative of the partial sum R(1,p,;1,p,%).
Consequently, our complex analysis representation of the partial sum R(1,p,; 1, p,%) is given
by the following theorem
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Theorem 7. If ((s) is void of non-trivial zeros in the vicinity of the line R(s) = 1, then the partial

sum R(1,py; 1, p%) can be written as

R(LpiLp®) = [ €7 (Rlap)w)dy.

or

R(l,pr, 1ap7"a) — / E_l (e—El(a)(6—5(8;177')+5(8§pr) _ 1)) (y)dy7
1

where o = (s — 1) log p,.
Proof. Referring to Equation (100), R(s, p,) or R(c, p,) is given by

*  _dR(1,p;1,pY)
R(a, py :/ e
(v, pr) - a0y

Hence, if M (s, p,) is analytic at s = 1, then

dy.

dR(1,pr;1,pY)
dy

Hence (recall that R(1, p,; 1,p,%) = 0 for a < 1)

= L7 (R(e, pr))(y).

R(LpiLp®) = [ €7 (Rlap)w)dy.

or

R(l,pr7 11p7"a) — / E_l (e—El(a’)(6—5(3;p7')+5(8§p7') — 1)) (y)dy7
1

O]

For the remaining of this section, our efforts will be centered around computing the inte-
gral [ L71 (e Fr(@)(emelspr)+o(sipr) — 1))(y)dy (this task may be simplified by removing the
term §(s;p). This term corresponds to an absolutely convergent series for #(s) > 0.5 and
therefore it has no impact on the region of convergence of the series M (s, p,)). We will start
this task by the following definition and lemma for computing the terms £(s; p,.) and 6(s; p;).

Definition 10. We define the function f.(y) for y > 1 as follows

) = S0

where J(p¥) is set to 0 for y < 1 and f.(y) =0 fory < 1.

Lemma 28. If ((s) is void of non-trivial zeros in the vicinity of the line R(s) = 1, then

£ te(ain)(w) = TN gy,

We also have uncoditionally

= [(0(y—2) d(y—3) dy—4
R B e e ==

i=r

where, J(pY) is set to 0 for y < 1.
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Proof. Referring to Definition 4

or v 47(p)
oo
Pr Pr
(s, = — .
(s,pr) / p’ pt

Since o = (s — 1) log p, thus

dy,

> _ay 1 dJ(pY)
e(s,pr) = e(a, pr =/ e
(s,pr) = e(a,pr) - A dy

since ((s) is void of non-trivial zeros in the vicinity of the line (s) = 1, therefore

c(aspy) = £ (10 (104)

and

£ tefasp)y) = L f ),

Referring to Definition 4

o) o (] 1 1
(3,pr) - Z _2]%‘25 B 3pi35 B 4pi4s"' ’

i=r
ot 00 2 3 4
6(S'p):Z L pm 1 op” 1
T 2% 3pdpds Apitpte
However,
pin enlogpi

;s enslogp;

Since a = (s — 1) log p,,, thus

bim _  _na
pi"
Thus ) 5 A
oo e~ a e~ « e~ o
S(aipr) = —

Since L' = §(y + a), hence

£ sl = - ) (M2 S 20 )

i=r
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Lemma 29. If ((s) is void of non-trivial zeros in the vicinity of the line R(s) = 1, then

R(1,pp;1,p%) = —/1 (5_16_&(”‘) *ﬁ_la(a;pr)) dy+

/a <£_16—E1(a) w1 (i (—1)k€k(a,p )>> dy+
1 k! o

k=2

/f <(£16E1(a) « L7 (i Wlu‘sm(a;pr))) dy+

m=1 """

/a <£_1€_E1(a) « L1 <°° (_1)k€k(a,p )> x« L1 <§: L(Sm(a'p ))) dy (105)
1 k! o m! e

m=1 """

Proof. Since
R(1,pr;1,p,%) = /a r-1 (e—E1(a)e_s(cx;pr)—&-é(a;m) _ e—E1(a)) (y)dy,
1

and recalling that multiplication in the transform domain corresponds to convolution in the
function domain, therefore

R(1,py: 1, p,%) :/ (ﬁ_le_El(O‘) x L le—e(@pr) o p=10(aipr) _ E_le_El(a)) dy.
1

where
(—1)*e* (e pr),

hE

e—elapr) — 1 4 l‘
ki~

and
a;pr L 5 m
Oleipr) — L+ — ) 15 (o pp).
o

Since L(d(y)) = 1 and §(y) * f(y) = f(y), therefore

R(1,pr;1,p,%) = —/1 (Eile*El(a) * E(a;pr)> dy+

/a <E_16_E1(0‘) w« L1 (i 7(_1)k5k(a'p ))) dy+
1 k! o

k=2
a < 1
—1_—FEi(a) -1 5 (e d
(e et (£ ) ) ae
“ L le—Ei(@)  p—1 i (_1)k5k(a, ) w L1 i i(sm(a. ) d
) P ! s Pr P ml s Pr Y

O]

In the following lemmas we will compute the four integrals on the right side of Equation
(105). In the next section, we will show that for our present work, we only need to com-
pute Equation (105) for a < 4. This will simply our effort to compute the second integral of
Equation (105). For a < 4, we only need to compute the second integral for £ = 2 and 3.
For k > 4, the second integral is zero (this follows from the fact that for £ > 4, we have the
convolution( fe * fe x fe* fo)(y) where fc(y) = 0fory < 1and (fe* fex fex fe)(y) = 0 fory < 4).
The first lemma deals with the computation of the first integral on the right side of Equation
(105)
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Lemma 30.

/yal (;C*le*El(a) % ﬁilﬁ(a;pr)) () dy = /:—1 Sa—2) dJ(pr)

=1 pE

(106)

Proof. Since L™ e F1(@) = p/(y) + 5(y) and L™ e(; p,) = f. , therefore

(£7te @ s £ e(asp)) (v) = (0 +6) = £2) (v)

Since f-(y) and p/(y) are zero for y < 1, hence

y—1
(¢ +0) % ) (y) = / Py — o) f(2)dz + £-(y)

=1

Consequently,

[ o= [ ([ b on@a)a [* pwwa

=1 y=2 \Ja=1 =
note that p'(y — z) is zero for y — x < 1. Since the limit of integration for the second integral
on the right side of the above equation are fixed number, thus it can be written as

a a y—1 a
| @raemm= ] ([ dw-or@a)ays [ to@d. o)
The next step is to change the order of integration for the double integral. For the double
integral, the limit of the inner integral is given by 1 < 2 < y — 1 and the limit for the outer
integral is given by 2 < y < a. To change the order of integration of this double integral,
we need to cover the same region of integration. This can be achieved by setting limit of the
inner integral as x + 1 <y < a and setting to outer integral as 1 < = < a — 1. Therefore,

/:2 </:_11 Py — m)fs(ﬁ?)dﬁC) dy = /:_11 fe(x) (/yaa:—i—l o'y — :U)dy) dx,

a

or
Py — w)dy) da.

/y“ ((p 4 6) = fo) (y)dy = /a_1 fe(z) (1 +/y

=1 r=1 =x+1

Y
T

Since f.(y) = X&)/

)/pr , therefore
@ / a=l dJ(pf) “ /
5) « 1) (y)dy = 1 —z)dy) . 108
/y ((p" +9) * fo) (y)dy / (+/y Py )y> (108)

y
=1 z=1  DF =241

Since p(z) = 1+ [{ p/(x)dz, thus p(a — z) =1+ [, p'(y — z)dy and

“ / * = ‘ “1e=E1(@) 4 £-1c(a: = o a—mdj(pf)
[ o fw= [ (€m0 ep) iy = [ a0 =P

=1 =1

To analyze the last three integrals on the right side of Equation (105), we first need to
compute the convolution integral [ (f: * fz) (z)dz
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Lemma 31.

(109)

00
=2

>0 dJ(p%)>2
Dy

[ @de = [ (g @de = ([

Proof. By the virtue of Lemma 28 and recalling that convolution in the function domain cor-
responds to multiplication in the transform domain, hence

LU 1)) = i) = ([ d‘”p))

=1 p¥

where J(pf) is set to 0 for < 1. By recalling that if F'(s) is the Laplace transform of f(¢) then
F(s)/s is the Laplace transform of [} f(z)dz, hence

. </xyz(fg ¥ ff)(fc)dIE) = é (/;01 eaxd,];gg)y'

Using the final value theorem (which states that lim; ., f(t) = lims_,0 sF(s)), we then have
o0 = dJ(pt)\>
|- e a7 Y
=2 =1 Py

To analyze the second integral on the right side of Equation (105) for a < 4, we need to
compute the integral [V, (f: * f.) (x)dx. We will start this task by the following definition.

Definition 11.

O]

maw) = [ (fax fo) (2)do,
and in general,
) = [ (o * Sz fon) (@),
where, fo = fo1 = feo = ... = fen

Let g(x) defined as follows

g(x) = fo(x) for 1<z<a
g(x) =0 otherwise

then

%0 a 1 dJ(pe a
Lg(x) = /_1 e “g(x)dr = /_1 e_o‘xpgcd(igr)dx = /_1 e fo(x)dxdr

then be the virtue of Lemma 31, for y > 2a we have

[ o wa= ([ d‘]]ff)f,

a

We also note that

a

(foxf) @de = [ (g%9) (@)da.

=2 r=2
and
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Lemma 32. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < c (where
1/2 < c< 1), then

ha(a) = /m a2 (fo * f2) (w)dz = O (p,~(1-e min(a/Dte) (110)

Proof. First, we dissect the function f.(z) into two functions ¢; (z) and g2(z) where

91(z) = fe(x) for 1<z <a/2

g1(z) =0 otherwise
g2(x) = fe(x) for a/2<z<a
g2(z) =0 otherwise
Therefore,
f s i@z = [ osoios [ tosg@is [ )@t | (o) o)

Since g; * g1(z) = 0 for x > a, therefore

“ o0 a/ o\ 2
[ s g = [ 2<gl*gl><m>dx:</l 2dJ<pr>> |

¥
- o= pE

and by the virtue of Lemma 9 we then have

| o+ gz =0 (p 2079 log?p,). (1)
=2

Also, since gg * g2(x) = 0 for x < a, therefore

[ @)@ =o, (112)

Furthermore, [;' , g1 * g2(z)dz = [;', g2 * g1(x)dz, where

/::2(91 * g2)(z)dr = /;a/Z (/71/12 91(7)g2(x — T)d7'> dz,

note that for the inter integral g; (7) = 0 outside the interval [1, a/2] and for the outer integral
(91 * g2)(y) = 0 outside the interval [a/2, a]. Changing the order of integration, we then have

[ wrmwi= [ ( [ ot r)d:c) dr.

Since g2(z) = 0 for z < a/2, therefore by the virtue of Lemma 9 we then have

/a g2(x — 7)dx

o =0 (p = 10g p/?)
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Since

a/2
< [ lauto)

-0 (pr—a(l—c)/2 logp?/z) /a

[ (g

/xa g2(x — 7)dx

=a/2

dr,

thus
/2
()l

T=

[ o+ g @yis

=2

By the virtue of Lemma 11, we then have

[ (o g)@)as

=2

=0 ( ,—(1=0)/2 g pa/ 2) O(loga) (113)
Combining Equations (111), (113) and (112), we then have

| e f2) @)do = O (py=0meminzariee)
O

Lemma 33. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < c< 1), then

/ ) (ﬁ_le_El(o‘) % ﬁ_lz’f(a;p,«) % E_ls(a;pr)) (y) dy =0 (pr—(l—c) min(2,a/2)+e) (114)
y:

Proof. Since L= 'e=F1(®) = p/(y) + 6(y) and L 'e(; p,) = f. , therefore

/ 1 (£71e ™) w £70e(aspy) % L7Me(aspr) ) () dy = / (P 0 fex fo) (v)
y= y=

We will first compute the integral fyoil ((p' 4+ 0) = fe * fz) (y) by using the final limit theorem
and recalling that if F'(s) is the Laplace transform of f(t¢) then F'(s)/s is the Laplace transform
of f(f f(x)dx. Thus

[+ 0 < fx £) () = lim (P @e@ip (i)
=1

a—0

/yoo (0 +0)x fox f2) (y) = </1°°M)2

=2 Pr
Note that the integral lower limit of y was set to 2 since f.(z) = 0 for « < 1. If the non-trivial
zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢, then by the virtue of Lemma 9 we
then have

or

/: ((p +0)*fex fo) (y) = O (pr‘m‘c) log® pr) . (115)

In the following, we will first analyze the size of fyoia (0 +90)* fex f-) (y). The size of
Jy—y (' +8) * fo % f2) (y) is then given by

[ (40 s f) = [ (40 fexf) )= [ (0 +0) £ 1) )
=2 =2

y=a

Toward this end, we first write
(040 fox £) W) = [ o ly=a)fex L))o+ (L5 £)(0)
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Thus
_/y (/xy:2p,(y—x)(f5*f€)(l’)d$+(fe*f&)(y)> dy,

AR SNAIOE
y=2 =2

or
/yag ((:0/ +5) * fe * fa) (y) =

Changing the the order of integration and noting that p'(z) = 0 for z < 1, we then have

[ renw= [ @ ([ Fu-ndy)des [* s @

/y: (/:2 P (y— ) (fex fs)(ﬂv)dm) dy + /y:(fg % f2)(y)dy,

) [ @ o ree @ = [ e (14 [0 5wy

Hence u u
| @40 fx )@ = [ pla=a)(fex ) @)da.
y=2 r=2

Similarly, we can also show that

/y(x; ((p"+0) # fex fo) (y) = /;02 pla —x)(fe * fo)(x)dx.

Thus - -
[ @0 fox ) = [ pla—a)(fox £ @)da

y=a
Using integration by parts, we can write the above integral as

[ @ 0 £ 5 1 0) = pOhala) — [ ha(e)dpla — ).

y=a
Since the function p(z) is a positive monotone decreasing function where p(z) < 1 and since

ha(z) = O (pr—(l—c) min(zv“ﬂ)‘*‘e) for x > a, hence

/y O: (¢ +8) = fo = fe) <y>] = 0 (p, (1 mina/2e) (116)
Finally, we have
[+ )@= [ (05 Lk 1) )
y=2 y=a

[+ fr £) ) =
y:
and referring to Equations (115) and (116), we then have

[ +8) 5 fox 1) ()| = O (.- mitzer2re)
y=2

or
(ﬁflefEl(a) % ﬁile’:‘(a;pr) » 5715(04;]771)) (3/) dy = O (prf(lfc) min(2,a/2)+e)

/CL
y=2
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In the following lemma, we will analyze the second integral of Equation (105) for k = 3

Lemma 34. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < c<1),thenfora <4

/ 1 (L7172 s 700 py) 5 L7 (s pr) % L72e(spr) ) () dy = O (p, 0 =/3+¢) (117)
y:

Proof. Since L™ e™F1(@) = p/(y) + 5(y) and L™ e(e; p,) = f , therefore

a

/y“ (L7162 s £70e(aspr) + L7 (s pr) % L7 (s pr) ) (1) dy = / ((p" +0) # fox fox f2) ()

/a ((pl+5)*fs*fs*fe)(y):/a (P,*fs*fs*fs)(y)+/ (fs*fs*fe)(y)
Y Yy

a
=1 =1 y=1

We will first compute the integral |, ;:1 (fe * fe % fo) (y). As it was the case with Lemma 32,
we dissect the function f.(z) into three functions g1 (x), g2(x) and g3(x) where

gi(x) = fe(z) for 1<z<a/3

g1(x) =0 otherwise
g2(x) = fe(x) for a/3 <x<2a/3
g2(z) =0 otherwise
and
g3(x) = fo(x) for 2a/3<z<a
g3(z) =0 otherwise
Hence,
a 3 3 3 a
[ e berf)@dr =333 [ (g g5+ 90) (@)da (118)
e=l =1 j=1k=1"=1

We will first compute [ (g1 * g1 * g1)(x)dx Since (g1 * g1)(z) = 0 for z > 2a/3, therefore

“ oo a/ o\ 2
| ooz~ [ (gl*gl)(x)dx:</1 3dJ(Pr>> .

=1 z=1 Dy

and by the virtue of Lemma 9, we then have
/_1(91 * g1)(z)dz = O (Prw*l) log? Pr) .
Furthermore, since (g1 * g1)(z) = 0 for > 2a/3 and ¢, (z) = 0 for z > a/3, hence

[e.9]

/: (g1 % (91 % 91))(x)dx = / (g1 % g1 % g1)(z)dx

=1 r=1
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As it was the case with Lemma 31, by the virtue of Lemma 28 and recalling that convolution
in the function domain corresponds to multiplication in the transform domain,

o3 _dIpe)\’
=1 s

Lg% g1 % g1)(x) = (/ emor &)

By recalling that if F'(s) is the Laplace transform of f(¢) then F'(s)/s is the Laplace transform
of [J f(x)dz, we then have

([ o) - (222

Using the final value theorem (which states that lim;_,~ f(¢) = lims_0 sF'(s)), we then have

[e.e]

/: (g1 % (g1 % 1)) (x)dx = /

=1 =1

a/3 dJ(pr)\°
=1 Dy .

(g1 % (g1 % 90)) (@) = ( /

and by the virtue of Lemma 9, we then have

/ (g g g)(@)dr = 0 (p* D log? (119)
It should be noted that the [;" (g1 * g1 * g1)(z)dz is equal to zero for a < 3. This follows from
the fact that g1 (y) = 0 fory < 1.

To compute the remaining terms of Equation (118), we first need to compute the integral
fy“zly(gi * g;)(y)|dy for y < a, where i = 1,2 or 3 and j = 1,2 or 3. Let g;;(y) be defined for
y < aas

a

05(w) = (94 9)W) = | 9:(gs(y = T)ar
where i = 1,2 or 3and j = 1,2 or 3. Our task is to compute the integral [ ;(g11 * gi)(z)dz
for k = 2 and 3 (note that that we have computed earlier this integral for k£ = 1), the integral
Jo_1(g12 * gi)(x)dx for k = 1,2 and 3, the integral [, (g13 * gi)(z)dz for k = 1,2 and 3 and

the integral [" (922 * gx)(z)dz for k = 2. Note that go3(y) and g33(y) are both equal to zero.

We will first compute g11(y),

a/3
g1 (y) = (g1 xg1)(y) = /T q(T)g1(y — 7)dr

note that since g;(z) = 0 for x < 1 and z > a/3, hence the product g;(7)gi1(y — 7) = 0 for
y<2andy > 2a/3. For2 <y < a/3+1,g11(y) is given by 2

2The convolution g11(y) can be depicted as the integral within the overlap of two windows. This overlap falls
within the interval [1, a/3]. The first window is fixed with a starting point at 7 = 1 and ending point at 7 = a/3. The
second window is a sliding window with a leading edge at y — land a lagging edge at y — a/3. Initially, for values
of y less than 2, there is no overlap between the two windows. For values of y between 2 and 1 + a/3, we will have
an overlap between the starting point of the fixed window (i.e 7 = 1) and the leading edge of the sliding window
(i.ey—1). Aty =1+ a/3, the overlap covers the entire fixed window. For values of y between 1+ a/3 and 2a/3, we
will have an overlap between the lagging edge of the sliding window (i.e y — a/3) and the ending point of the fixed

window (i.e 7 = a/3).
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mw = [ a@ay s

and by the virtue of Equation (29), we then have

au(y) = /Tyl (i S(pr” —pi) i) (i 5(pry;;— pi) 1 >d7’

T _
=1 \iZ1 Pr i=1 Dr y—7

Fora/3+1 <y <2a/3, g11(y) is given by

a/3 X 5(p T —pi) 1) (T —p) 1
= SR . - dr
911(y) /Ty_a/3 (; o - ; o y—1

Hence, for2 <y <a/3+1, g11(y), we have

lgu(y)|< /yl (iw - 1) (i 5(p”y;: p), 1 T) dr (120)

—
=1 \iz1  Pr T

and fora/3 +1 <y < 2a/3, g11(y), we have

e /a/s (i o —pi) | 1> <§’: 5(pry;;— pi) | ; i T) dr  (121)

T=y—a/3 \;—1 jZa T i=1 Dr

Sincel <7<a/3and1 <y —7<a/3 hencel/rand 1/(y — 7) are both less or equal to one.

Thus
a a a/3 a a/3 5 TT* ’
/ \gn(yNS/ / dey—i—Z/ / Zudfdw
=1 Yy T y=1Jr pr

=1 =1 =1 i—1

a CL/3

— 0(pr" — i) . §(p YT — i)
yz/l —/1 (; qu~> (Z p?¥T> dr dy

i=1
1<y—7<a/3

by changing the order of interchanging for the third double integral on the right side of
the above equation, we then have

a a/3

0 T _ . 0 y—T __ .
/ / (Z 5(pr - pz)> (Z 5(pr i pz)>deyS
v i=1 Dy i=1 br
y:l 1
1<y—7<a/3
a/3 00 5 T a oo 5 y—T
/ (Z (Pr T—pz)> / (Z (Pr yi: pz)) dy dr
24 \i=1 pr - i=1 pr
1<y—7<a/3

By the virtue of the Mertens’ theorem where Zgi:m 1/pr =loga+ O(1/log p,), we then have
P (0 —p) ) (T~ p) (& o0 o)
TT— i 7177— 7 pTT_pi
/] (Z o ) (Z S )dmy< (1og(a/3) + O(1/105 1)) [ (Z
vz - i=1 Dr i=1 br 2 \i=1
1<y—7<a/3
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or

a/3

f -1\ (=@ —pi) 2
/ / ( = )(Zp drdy < (log(a/3) + O(1/log ;)
- 1<y 7<a/3 =
Consequently,
a/3
a a2 a Pr 1 9
[ i< G w2 [ |3 |yt osa/) + O /logp))?. (22)
= =% \pi=pr £
or
/ 911 (y)|< @ (123)

Following the same steps to show that [, [g11(y)|< a?, we can also show that Jy=1lg12(y)],
Jy—1lg22(y)| and [i"[g13(y)| are less than or equal to a*.

To compute the integral [ (g2 * g1 * g1)(z)dz, we first write it as follows

/: (92 % g1 % g1)(x)dx = /a (911 * g2)(x)dx = /::1 /Til 911(7)g2(z — T7)dTdx

=1 x=1

[Eil(911 * g2)(z)dr = /Ta:1 g11(7) </;1 g2(x — T)dfﬂ) dr

Since g2(y) = M for y > a/3 and g2(y) = 0 for y < a/3, then by the virtue of Lemma 10

we then have .
/ g2(x — 7)dx
=1

or

-0 (pT—(l—c)a/3+e>

Since [,_[g11(y)|< a? and

| ton s g)@de| < [ lgu(l| [ gala = 7)da|dr,
therefore for a fixed value of @ we then have
/ (911 % g2)(@)dz| = O (p,a0=9)/3+) (124)
r=1

Similarly, the integral [ | (g3 * g1 * g1)(z)dz can be written as

[ onrg@ie= " au) ([ st —nar) ar

Since g3(y) = W for y > 2a/3 and g3(y) = 0 for y < 2a/3, then by the virtue of Lemma
10 we then have

gg(-f - T)da} -0 (prf(lfc)Qa/3+e)
=1

Thus,

| o< g0)(@)ds

< /T;|911(T)|

/xa g93(x — 7)dx

dr = O (pr—2a(1—c)/3+6> (125)
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Following the same steps to derive Equations (124) and (125), we can also show that

—0 (pr—a(l—c)/?)-l-e) (126)

i

/: (912 * g2)(w)dx

=1

| (g g2)(@)ds

=1

and

/x " (g1 % 95)(@)da

=1

-0 <p7"72a(lfc)/3+e) (127)

Combining Equations (118), (119), (124), (125), (126), (127) and noting that g»3(y) and
g33(y) are both equal to zero, we then have

[ s dex £ @)do = O (p, 179/ (128)

=1

Furthermore, since f.(x) and p(z) is zero for = < 1, hence for a < 4 we have

/y L e for ) () =0 (129)

=1

Combining Equations (128) and (129), we then have

/ya ((pf +0) % fox fox f2) (y) = O (pr_a(l_c)/3+e)

=1

or

/ 1 (ﬁ_le_El(a) % E_lff(()é;pT) % ﬁ_IE(CM;pr) %« 5_15(04;}%)) (y) dy = O (pr—a(l—c)/fi-‘re)
y=

O]

The next lemma deals with the remaining terms of the second integral of Equation (105)
(i.e terms with k£ > 4).

Lemma 35. Fora < 4and k > 4,

[ (e B e £ (Fasp) ) () dy = 0

1

Proof. Since L= 'e=F1(®) = p/(y) + 6(y) and L 'e(; p,) = f. , therefore

/1a (Eile*El(a) s« L1 (sk(a;pr))) (y)dy = / ) (o +0) * for * fea * ... % far) (y)dy

where f.(z) = fa(z) = fea(zr) = ... = fex(z). Furthermore, since f.(z) = 0 for z < 1 and
p'(z) =0forxz < 1, hence fora < 4and k > 4,

[ (e B s £ (M asp)) () dy = 0

1
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Combining Lemmas 33, 34 and 35, we can then have the following lemma for the second
integral of Equation (105)

Lemma 36. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < c< 1), thenfora < 4

a o k
/ r-1g=Fi(e) , p-1 Z (-1 Flaip) | ) dy =0 (pr—a(l—c)/?)-i-s)
1 k! ’

k=2

The following two lemmas deals with the third and fourth integrals of Equation (105)

Lemma 37. Unconditionally, we have

a 201
/1 (c—le—El(a) w 1 (Z m'ém(a;pr)>> dy =0 (pr_H_E)

m=1 """

Proof. Referring to Equation (103), we have

/6y —2 oy —3 oy — 4
L75(e;p)(y) = —Z( (gpiQ ) + (gpig ) + (Zp# )>

i=r

Thus,

(67t P i) () = =3 (P2 A8 Pl

i=r

=[Oy —2 oy —3 oy —4
Z( (y=2)  dy-3) oy ))
=\ 2p? 3pi® 4p;*

where L7t F1(®) = /() + 6(y) and the convolution of two Dirac delta functions is also a
Dirac delta function. More specifically, the convolution 6 (x—a)*6(x—b) is given by § (z—a—b).
Since {7 p/(z)dz = 1and [*7_6(z)dx = 1, thus

a > 1 1 1
-1 _—FEi(a) -1 . <92 ( )
/y (e e P L o) (y)dy‘_ ; 32+ 53 T o

Since " 1, < 1/pr—1and >°2°, ﬁ < 1/(npy—1), therefore

=7 p;2

a 2
L le B 4 £715 (s py d ‘ < —
/yl( ( p))(y)y o

Let my(y) = L7 B1@ « £715(a; p,) (y), maly) = L7 B/« L715(as py) + L7165(es pr) (y)
and so on. Thus

a 2
[ | <2
Y

Pr

Furthermore,

/ya ma(y)dy = /ya (ml * £*15(o¢;p7«)) (y)dy = /ya /TOO my(y — 7) L6 pr) (T)dT dy

=1 =1J7r=1



thus

[ (s st@inn) iy < [ 27 BGasp )@l [ ity — | ar
y=1 T=1 y=1
or a 9 o
[ (e stasmn) | <~ [~ £ 5 ()i
y=1 Pr Jr=1
Since
o ® (= (dly—2)  dy—3)  dy—4) 1
L716(a; pr d</ < + + ...>d<,
/7:1 (cipr)(T)dr| < y=1 (; 2p;? 3p3 4pit Y Dr
thus
[ (e a0 @iy < 2
=1 P
or

/ (L’_le_El(o‘) * L716(a; py) * E_lé(a;pT)) (y)dy' < %
y=1 by

Repeating these steps (to derive f;:1 ma(y)dy) m — 1 times, we then have

/yil Mo (y)dy = /yil (mm,l * E_lé(a;pr)) (y)dy < i

Py
Consequently
/a L leBrle) y £t io: i(Sm(Ofp,«) dy =0 (pT_1+€> .
1 = m! ’

Lemma 38. For a fixed a, we have unconditionally

a X 1\k 00
/1 <L’_16_E1(°‘) w1 (; ( kll) sk(a;pr)> w1 (Z nilém(a;pr)>> dy =0 (pr—l-‘re).

m=1 :

Proof. The proof of this lemma follows similar steps to those presented in the proof of Lemma
37. Details of this proof are presented in Appendix 2. ]

Combining Lemmas 29, 30, 36, 37 and 38, we then have the following third key theorem

Theorem 8. If the non-trivial zeros of ((s) are restricted to the strip 1 — c < R(s) < ¢ (where
1/2 < c<1),then fora <3

“ dJ f —all—cC €
R(l,pr;l,pr“)z—/ilp(a—x) p(f)+0(p,, a W*). (130)
and for a < 4
“ dJ f —all—cC €
Mmemﬂz—/ﬂMWﬂﬂ f)+0@rﬂ W+) (131)
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Equations (130) and (131) (of Theorem 8) and Equation (81) (of Theorem 4) provide two
different representations for the term R(1, p,; 1, p,*). Our analysis to examine the validity of
the Riemann Hypothesis (and in general, the locations of the non-trivial zeros) will be based
on analyzing the difference between these two representations. Before we proceed with this
task, we will first analyze some properties of the integral [[=,(d.J(p{)/p}). If the non-trivial
zeros of ((s) are restricted to the strip 1 —c¢ < R(s) < ¢ (where 1/2 < ¢ < 1), then by the virtue
of Lemma 10 we have

o0 dJ(Py) —(1—
= =0 Dr (1= logp; ).
/yl pr ( 8 )

Furthermore, referring to Appendix 3, we also have

/°° dJ(f%)

=z Dr

= Qp0-0-0%).

where € can be made arbitrary small by choosing p, sufficiently large. Therefore, for suffi-
ciently large NV and for some constant , there are an infinite number of p,’s (that are greater

than N) such that
/ > dJ(p})
y=1 p7y"

Moreover, for any positive number h, we also have

< dJ(py) _ —h(1=c),, (1) _ —h(1=e), —(1—0)
/y:1+h = o) ((1 + h)p, Pr logpr) =0 (p,, Dy Ingr> ,

> kp,~(1F9=¢ > .

Thus,

> dJ(py 1 dJ (p} ¢, —(1-c
/ (5):/ (5)+O< hi-c), ~(1 )logpr).
Yy T Y

Therefore, for sufficiently small /, we can always find infinitely many p,’s so that the integral
fyoil (dJ(p¥)/pY) is determined by values of y in the vicinity of one. In other words; we have

/°° dJ (p)
y=1 P%

:/”h dJ(p%)+/°° dJ(pT)
Yy

=1 Pg y=1+h Pr
where,
> dJ(p¥)
/ (5r > kpr—(l—c)—s > 0,
y=1 Dr
and 0 (o)
/ Pl < kyp,0=9p,~1=9) log p,.

y=14+h Pr

for some constant ki. Therefore, for any h and for sufficiently large p,, there are infinitely
many p, satisfying the following equation

oo dJ(pY 1+h dJ(pY
/ W) _ +51)/ wy) (132)
y=1 Pr y=1 Dr
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where 0 is given by O(pr_h(l_c)) and it can be made arbitrary close to zero by choosing p,
sufficiently large.

It should be noted that the above analysis for the integral |, yoil (dJ(p¥)/pY) can be extended
to the integral [ =, (g(y)d.J(p})/p}) where g(y) is a differentiable function for y > 1 and both

g(y) and ¢'(y) grow no faster than e% or decay no slower than e~% for any 0 > 0 (for ex-
ample, g(y) or —g(y) is given by 1,y,y2,...,y™, 1/y,1/y%,..,1/y", (logy)™). For the integral
Jy21(9(y)dJ (p})/pY), we then have

/ > dJ (py)

=1 Dr

and (refer to Appendix 3),

where € can be made arbitrary small by choosing p, sufficiently large. Therefore, for suffi-
ciently large N and for some constant k, there are an infinite number of p,’s (that are greater

than N) such that
oo dJ(p¥
/ g (y) (y )
y

Jy=1 Dr

> kp, ~(Ho)—c 5 q.

After analyzing the integral |, ;i 1(dJ(p¥)/pY¥), we now turn our attention in the next section
to the analysis of two representations of the term R(1, p,; 1,p,%).

7 The two representations of R(1,p,;1,p,®) and the location of ¢(s) non-
trivial zeros.

The first representation of R(1, p,; 1, p,*) is based on Equation (81) of Theorem 4 where we
have unconditionally

s 47 (p,Y 4 (pr dr(pY .
BlLpi ) == [ plofy =) 2 PG [ T 00

r

The second representation of the term R(1,p,;1,p,*) for a < 4 is based on Equation (131) of
Theorem 8

¢ dJ f —all—c €
R(lapr;lapr“)=—/ pla — ) (f)+0(pr @ )/3+).

=1 -

Consequently, we have the following theorem

Theorem 9. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < ¢ < 1), then fora < 4

5 dJ(p.Y dJ (p, o dT(pY
<—/ pla/y—1) (Z ) / p / R(1,p/Y;1,p27Y) (5)>—
1 Dr % Dr
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(_ /: o x)dJ;ff)> _0 (prfa(lfc)/3+e) . (133)

=1 '

where € can be made arbitrary small by choosing p, sufficiently large.

For the remaining of the paper, we will analyze Equation (133) to examine which part of
the critical strip is void of not-trivial zeros (in other words; use Equation (133) to determine
the value of c). The difference [*%(p(a — z)dJ (p)/p%) — [*/*(p(a/y — 1)dJ (p¥)/pY) in Equa-
tion (133) can be written as fffl g(x)dJ (p¥)/p¥) where is g(x) a differentiable function for
y > 1 and both g(z) and ¢/(x) grow no faster than €% or decay no slower than e~ for any
d > 0. Thus, referring to Appendix 3

> dJ (pY) e,
/y:z(p(a—y)—p(a/y—l)) p;j :Q<pr( (14¢) ))7

Hence, there are infinite numbers of primes p,’s is such that

a/2 Y a/2 Y
[ bt x)d‘;(;f’") [ otaty - 1>d‘]]f§"’

> kprf(lJrc)fe

for some positive constant k. However, the term | fj/z((l — pla — x))dJ(p,Y)/pY)| is given
by O(pr a/ 2+E). Therefore, If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ <
R(s) < ¢, then the the integral Ir = ff/Q(R(l,pry; 1,p¢~Y)dm(p¥)/p¥) has to equal the sum
Sy = [y pla—2)(dI (W) /p7) — [/ (play—1)d T (0,7) /pY) — [ (d] (p,?) /) within a mar-
gin of O (pr_“(l_c)/ 3+E). Our task will then be focused on computing the integral Ir =

! / 2(R(l, oY 1, pt~Y)dn(p¥)/pY) at different values of a and comparing the result with the

sum Sy = [ (p(a — 2)dJ (5 /%) — [ (p(a/y — 1)dT (p2) /pY) — Ji(dJ (pr¥) /pY)

In the following, we will compute the integral Ip = ff/ 2(R(1,py¥; 1, p%¥)dm (pY) /pY¥) and

the sum S; = [2 (p(a — 2)dJ (p?)/p%) — [/ (pla/y — 1)dJ (p¥)/pY) — [&n(dT (p,¥)/pY) for
values of a in the range 3 < a < 4.

Lemma 39. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where 1/2 <
¢ < 1), then for 3 < a < 4, thesum Sy = [/ (p(a —y)dJ (p})/p¥) — f/z(p(a/y —1)dJ(pY)/pY)
— Jay2(dJT (p,¥) /) is given by

a/2 dJ (p¥ a/3 [ ra—y dv\ dJ(p¥
SJ:—/ logy (5T)+/ (/ log(v—l)v> (fT)+
1 Dpr 1 (a—y)/y % Dpr

/ya_2 </va_y log(v — 1)?) dJ(;yp?y") + /aj;l log(a — y)dJ(pﬁ)

=a/3 =2 p pvg

Proof. For the interval 3 < a < 4, the representation of the functions p(a —y) and p((a —v)/y)
is dependent on the value of y. For values of y in the range 1 <y < a/3, we have [7]

o=y dv
pla—y) =1-logla—y) + [ logv—1)T.
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and ( p
1 a=y)/
p(y(a— )) =1—log(a— )+logy+/ log(v—l) vv

Thus, for values of y in the range 1 <y < a/3, we have

—/la/gp(a/y—l +/ (yy) =

_ /1a/ log +/ (/1, log(v — 1)?) dJ(é)

For values of y in the range a/3 < y < a — 2, we have

a-y dv
pla—y) = 1—log(afy)+/2 Iog(vfl)j,

and .
p (y(a - y)) =1+logy —log(a —y).

Thus, for values of y in the range a/3 < y < a — 2, we have

_/aj;p(a/y—l +//3 (a—y ;ry)_

-2 qj(py) o2 pe- dv dJ(pY
—/ log y (5T) +/ (/ log(v —1) v) (57«)
a/3 Dbr a/3 2 br

Similarly, for values of y in the range a — 2 < y < a/2, we have

a/2 dJ(p,Y a/2 dJ(pY a/2 dJ(p¥
—/ pla/y —1) (2 )+/ pla—y) (p>=—/210gy1§y)-

—2 Dr -2 pr

For values of y in the range a/2 < y < a — 1, we have

/aal pla — y)dj(fg) = /al(l —log(a —y)) dJ(f’y)-

/2 Dr a/2 pr

while for values of y in the range a — 1 < y < a, we have

a dJ(py) _/“ dJ(py)
/a—lp(a v) pl Jaor pl o

Thus, for values of y in the range a/2 < y < a, we have

/a pla—y) dj(fg) = —/aa_llog(a = y)id‘](f%) + /a dj(fg)-

a/2 pr /2 pr a/2 Pr

combining Equations (134), (135), (136) and (137), we then get desired result.

The next lemma deals with the term Iz
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Lemma 40. If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < c (where
1/2 < ¢ < 1), then for 3 < a < 4, the integral Ip = fla/Q R(1,p,Y;1,p87Y)dr(pY)/pY is given by

a/2 a—us AT (DY a/2 /g dJ(p¥ a—l dJ(p¥
/ R(LpTy; 17p7" y) (y ) = _/ P < - 2) logy (y )_/ 10g((l—y) (y )+
1 Dr 1 Yy Dr a/2 Dr

a/2 z _ _ z
(] v (55 ) ) 2
z=1 y=1 Y Yy pr

R - — 2\ dI(pE
/ o (/ | logy o (a’ . S 1> “yfdy) p(fr) L O(p,—e =93y (138
z=a y= z

Proof. To compute the integral I = [{ /2 R(1,pY; 1, p0Y)dn(p¥)/pY, we first note that for
a < 4, the value of a — y is less than 3. Referring to Equation (131) of Theorem 8 or Equation
(90) of Theorem 5, we have for b < 3

b dJ(p* e 1) 2
R(l,p;l,p”)z—/1 p(b— =) ]ff)+0(p bleb)/2tey

Therefore, fora <4and 1 <y < a/2, we have

a—y
a=y E - dJ((p¥)*
R(1,p%;1,p%7%) = R(L,p,% 1, (o) 7 ) = —/ S p <a : —93> ((52) ) in
z=1 Y (pr)
where by the virtue of Lemma 22,
H=0 when 1< a”y <2
)

and by the virtue of Theorem 5 or theorem 8

H=0(p) 502 yhen 2< 279 <3
Yy

However, the inequality 2 < % < 3is equivalent to the following inequality

a a
Z <y< g
or
2£ < a—1y < 701
3 4
and 5
3‘;(0— <’ ; Yie-1)/2 < é(e— 1)
Consequently,

H = O(p,~ e~ D/3+€), when 2 < =Y 3
Y

and fora < 4and 1 <y < a/2, we have

B a—y a — dJ /ly,. X a(e— .
R(1,p % 1,p07Y) = —/i p( . Y —x) ((]ff)x)) + O(p,~ e D/3+ey,

75



Defining z = yz , we then have

a— @y a — z\ dJ i —a(e— .
R(1,p:%;1,p07) Z*/ p( Y ) (f ) | O(p,ete-1/3+ey,
z=y Yy Yy Dy

/ R(1,p,Y; 1, p? )dﬂ(pr) . /ya/2 </Za_yp <a -y Z) dJ (p7) +O(pr—a(1—c)/3+e)) ﬂiﬁ/)‘

=1 =y Y j pr

Since dr(p¥) > 0 and p¥ is a monotone increasing and strictly positive function of y, therefore

/ O a(l- C)/3+e) dﬂ(pr) — O(pr_a(c_l)/3+e) /(1/2 d’iT(pg’f)
? 1 ¥

and by the virtue of Lemma 11, we then have
/ O a(l—c /3+E) dﬂ;pr) _ O(pr—a(l—c)/ii—l-e),

therefore

a/2 o dm(pY a/2 ¢ ra=y /g — 2\ dJ(p?)\ drn(p¥ —a(1—c) /3t
[ R S = [T (- 2) S S o, e

y Pz Py

By noting that dn(p¥)/pY = dlogy + dJ(pZ)/p; and referring to Appendix 4 (where we
showed that [{/? (f“_yp (w - ;) dJ(pi)) 4I@r) — O(p,~1+¢) ), we then have

z=y Yy PF 2

dﬂ- a/2 oy a— dJ —a —C €
/ R(1,p.Y;1,p87Y) (y ?) :_/1 </ p< Yy y) (pr)>dlogy+0(pr (1—c)/3+ ).

pr =y Yy D5

Using the method of integration by parts, we then have

dm r a2 oy a— z\ dJ i —a(l—c €
/ R(1,p,¥;1,p%7Y) (‘""):/1 1Ogyd(/ p< ?J_y) (f)>+0(pr (1) 3 +ey

pr =y Yy by

due to the change in y by Ay is given by

i) d«f(py)

The change in the integral [7_ p (L;y —
a—-y — z
S(LE55) 48 -
z=y Y Y D7

a—y—Ay _ z a—y _ z
/ p( a—z _1> dJ(pr )_/ p(a z_l) dJ(p,n)7
=ytAy - \Y + Ay Pr® 2=y (7 P

7"

or

a—y _ 2z y+Ay — z
A(/ p(a y_Z) dJ(pr)>:_/ p(a Z_1> dJ(p7)
=y Yy Yy pﬁ z=y Yy pi
a—y — a—z a—y — — 2
N L
z=a—y—Ay Yy Pr z=y y+ Ay Yy pr
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where

a— z a— z a—z a—z
D
p(y+Ay P\ Py 2 Y

Consequently
Y fa—y  z\ dJ(p;) a dJ(py) dJ(pr""Y)
([ (5050 - () S i
= '\ Ty ) e "\y 7 © praY
a-y — —zdJ(p?
ay [T (2 ) R, (139)
z=y Y Y Pr
and
a/2 Y a/2 d Y a/2 d 07
/ R(l,pry;l,p?_y)ﬂf’") = —/ p (a —2) logy J(f’") —/ IOgZ%Jr
1 Dr 1 Yy T 1 Dr
a/2 a—y _ _ 2z
/ logy ( / o (a ° - 1) = dJ(pT)) dy+0(p,*1=/3Fe),
1 z=y Yy Yy j 2
or
a/2 _ g dm(pY a/2 /g dJ(p¥ a—1 dJ(p¥
/ R(L,p¥; 1, pfr y)% = —/ p<—2> log y (yp )—/ log(a—y) (y i
1 Dr 1 Yy Dr a/2 Dr
a/2 a—y _ _ 2z
/ log y (/ o (a ‘- 1) £ QZdJ(pT)) dy + O(p, 211 =9)/3+e),
1 z=y Yy Y 7

For the third integral on the right side of above equation, we rearrange the double integral as
follows

a/2 a—y _ _ 2z
[ (5542 -
y=1 z=y Y Yy by

a/2 z _ _ dJ(n? a—1 a—z _ _ dJ(n?
Jo (L e (557 ) ) S5 L, (L oo (557 1) ) S5
z=1 =1 Yy Yy Dr z=a/2 y=1 Yy ) by

Consequently,

a/2 _dm(pY a2 (q dJ (p¥ a=1 dJ(p¥
/ R(1,p; 1, p} y)# = —/ p( —2) logy (5 )—/ log(a—y) (5 )+
1 1 Yy Dr a/2 Dr

a/2 z _ _ z
/ / logyp'<a z_l)a 2Zdy> dJ(f,,)+
z=1 y=1 Yy Yy by

a—1 a—z _ _ Z
z Y
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Thus, for 3 < a < 4, the difference between S; = [ (p(a — y)dJ (p})/pY) — f/z(p(a/y —

AT (p,) /pY) = [T (p,¥) /pt) and I = [¢/*(R(L,p,¥; 1, pe~¥)dr(pt) /pY) can be computed
by combining Equations (134), (135), (136), (137) and (138) to get

a/2 dJ(pY a/3 ra—y d dJ(pY
SJ—IRZ—/ 1 (5T)+/ / log(v — 1) (z?r)+
1 1 (a=y)/y v pr

[ (e S50 [0 -2 s 0
[ oo (B2 ) ) 8-

a—1 a—y _ _ dJ (Y
/ </ logv p/ (CL . Yy _ 1> av2ydv) (57") + O(pr—a(l—c)/?)-i-e)' (140)

y=a/2 v=1 pr

Since for a/3 < y < a—2, the integral ["_J (log(v — 1)dv/v) is a differentiable function that
grows no faster than p;¥ (for any € > 0), hence

a2/ ra-y v dT(pY) o
1 1= . — 0O , a(l—c)/3+e )
/y—a/3 (/v—2 og(v—1) v ) pr (p )

T

Similarly for a/2 < y < a — 1, the integral [/ logv p/ ( — 1) ““/dv is a differentiable
function that grows no faster than ps¥ (for any € > 0),. Therefore,

a—l a—y _ _ y
/ </ log v p/ <ay - 1> a dev> de](?]}?r) -0 (pr—a(l—c)/Q—l—e)
y=a/2 v=1 v v Dy

Furthermore, he function —logy + p(a/y — 2)logy are differentiable functions that grow no
faster than p¥ (for any € > 0), therefore,

o/2 4J (1} afoke
—/ logy +/ ( ) ogy (p):O(pr /6+)
a/3 pr

However, by the virtue of Theorem 9, we have S; — Igr = O (pr_“(l_c)/ 3+€). Thus, Equa-

tion (140) can written as follows,
a/3 d Y
O<p;a(1fc>/3+€) _ / log + / ( ) oy J(fT) N
1 Dr

a/3 a—y Y
/ </ e 5E) -
1 (a—y)/y v pr
a/3 Yy — —_ Yy
/ (/ log v o/ (“ y_ 1) a dev> 4J(pt) (141)
y=1 v=1 v v Dr

For1l <y <a/3, let

91(y) = (—1 +p (Z - 2)) logy
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-y dv
) = [ loge-1T
v=(a=y)/y v

and

_ [ fa—y \a—y
93(y) = /Mlogvp = 1) —gdv

[

Therefore, Equations (138) and (141 ) can be written as

a/ 7
0 (p, o=/ = /1 "0 + 60) +gs(y))dJ]§§ )

Without loss of generality, we can define g;(y) for y > a/3 as ¢1(y) = c1 + d1/y, where
g1(a/3) = c14+3dy /aand g, (a/3) = —9d; /a®. Also, fory > a/3, we set ga(y) = ca+ds/y, where
g2(a/3) = ¢3 + 3da/a and gy(a/3) = —9dy/a?. Similarly, for y > a/3, we let g3(y) = c3 + d3/y,
where g3(a/3) = ¢3 + 3d3/a and gs(a/3) = —9d3/a?. With this definition of g1 (y), g2(y) and
g3(y) for y > a/3 (where the functions ¢1(y), ¢g2(y) and g3(y) are bounded, differentiable and
monotone increasing or decreasing depending on the sign of d;(y), d2(y) and d3(y)), we have

—a(1- > dJ(py)
O (p,—o1-0)/3+¢ :/ n + r)
(» ) | 500) + 20+ 9s0) =
Combining the above two equations, we then have
—a(l—c)/3+e > dJ(p¥
0 (b =) = [“ (1) + 92(0) + 9u() 22, (142)

In the following, we will show that function g (v) + g2(y) + g3(y) is positive and monotone
increasing by showing that its derivative is positive for y > 1. Toward this end, we first
note that g1(y) + g2(y) + g3(y) = 0 at y = 1. To show that the derivative of the function
91(y)+g2(y)+gs(y) is positive, we have (note that for 1 <y < a/3, p(a/y—2) = 1-log(a/y—2)),

dg1(y)
dy

1 1 1
= 2( + ) logy — — log(a — 2y),
a—2y y Yy

we also have

dga(y) 1 a
= — log(a —1—1y) +
dy a—y ( ) y(a—y)

a
log(a — 2y) — — log v,
( ) yla—y)

and dgs(y) ( )
g3(y ala—y

= log .

dy Pa—2y) 87

Therefore for 1 < y < a/3and 3 < a < 4, d(g1(y) + 92(y) + g3(y))/dy is positive and the
function g1 (y) + g2(y) + g3(y) is positive and monotone increasing for 1 < y < a/3. Since the
function ¢ (y) + g2(y) + g3(y) (for y > 1) is differentiable and both ¢(y) and ¢'(y) grow no
faster than e or decay no slower than e~% for any ¢ > 0). Thus, referring to appendix 3, we
then have

[ (00 + () + )

=z

-0 (p(cflfe)z)

T
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Therefore, If the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where
1/2 < ¢ < 1), then for sufficiently large N, there are infinitely many prime numbers p, (where
pr > N) satistying the following equation

10 (prfa(lfc)/BJre) =Q (p;(lfc)fe) (143)

This result leads to our main theorem

Theorem 10 (Main Theorem). Non-trivial zeros of the Riemann zeta function ((s) can be found
arbitrary close to the line R(s) = 1

Proof. Our previous analysis shows that if the non-trivial zeros of ((s) are restricted to the
strip 1 — ¢ < R(s) < ¢ (where 1/2 < ¢ < 1), then Equation (143) will follow, i.e.

10 (pr—a(l—c)/3+e) -0 ( 'r( —c)—e¢ )

For3 <a <4, a(l —c)/3 >1— c. Consequently, we can always find sufficiently large p, that
contradicts Equation (143). This contradiction infers that non-trivial zeros of the Riemann
zeta function ((s) can be found arbitrary close to the line R(s) = 1.

U

Theorem 10 infers the following important corollary

Corollary 2. Not all of the non-trivial zeros of the Riemann zeta function ((s) lie on the critical line
Re(s) = %

Moreover, Equation (143) can be used to estimate where the distribution of the prime
numbers deviates or starts to deviate from what has been predicted by the Riemann hypothe-
ses. As mentioned earlier, we don’t expect to have inconsistent results with RH for values of
a less than 3. Hence, we need to set a greater than 3. In the following, we will set a equal to
4 — § with ¢ = 0.5 (where ¢ is an arbitrary small number). For a = 4 — 6 and ¢ = 0.5, the left
side of Equation (143) is less than ki p; 23+ for some constant k1 while the right side of the
equation is greater than kop,~1/27¢ for some constant ky. Therefore, to contradict Equation
(143), we need to set p, greater than p,; where

koptl® > ky. (144)

Equation (144) infers that there are infinitely many prime numbers p, > p,; where Ir =
JE(R(Lpo¥5 1, piY)dr (pf) /pY) and the sum S = [, p(4=2)(dT(97)/pF) = J} (p(4/y=1)dT (p:¥) /})
- f (dJ(pY)/pY) are not the same within a margm of O(pr v 6+E) Consequently, there are in-
finitely many prime numbers greater than p; that do not follow the distribution predicted by

the Riemann hypothesis. Notice that proper estimation of p,; depends on careful handling of

the estimation of k; and k». In other words; there are infinitely many prime numbers greater

than (k1 /k2)?* that don’t follow what has been predicted by the Riemann Hypothesis.

Appendix 1

72 1
1=rl Di s

Using Lebesgue-Stieltjes integral, we can write the sum

/pT2 dﬂ'
= rlpl br1
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or

i 1 /m dLi(z) /m dJ(x)
i=rl pzs Pri ‘/'US Pri xs
Hence
2 P2 ]
Y == / . dx + &(s;pr1, Pr2)-
i=rl pz Pr1 €T log €

For R(s) > 1, the integral [P? —-L_dz can be computed directly from the definition of

pr1 xslogx
tz

the Exponential Integral £ (z) = [ —dt (where R(z) > 0) to obtain

Pr2 1
/ d = B((s = 1)logpra) = Fr((s — 1) log pr2)
p

. xSlogx

1 Pr2 1
To compute the integral [,"? 7535

dx for R(z) < 1, we first write the integral as follows

. rélogx Pri log x

/pr? 1 d Pr2 =718 cog(t log ) dr — i/pr2 e~7198 % gin(t log ) .
P p

- - log

Dpro € C log COS(

The first integral on the right side [ Tog

stitution y = log x to obtain

t18%) 7: can be computed by using the sub-

/pr2 6*0' log COS(t log .’E) d /logprz e(lfU)y Cos(ty) d
Tr = —_—_—m
D It

rl log z og pri ’
or
/1”T2 e_alogwcos(t log :c)d /IOgPﬂ e(1=0)y cos(ty)d +/10gpr2 e(l—a)yd log pro e(l—o‘)yd
T = - —ay y— Y.
Pri log x log pr1 log pr1 Yy log pr1 Y
Hence,
/pT2 e~71987 cos(t log :c)d /Ingrl e(l=)y(1 — cos(ty))d /10%1%2 e(1=9)y (1 — cos(ty))d
T = — —
Pri log x € € Y

logpr1 o(1—0)y logpra o(1=0)y
/ dy —|—/ dy
€ Yy € Yy

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z3 = y/log pr2 , we then obtain

/1’”2 e~ 1987 cog(t log ) dp — /1 e(1=o)(logpr)z1(1 — cos(t(log pr1)21))
p €

le—
- log x

/log pr1 ?1

/1 e(1=o)logpr2)22 (1 _ cos(t(log pro)22))

dzo—
/log pro z2
1 e(1=0)(log pr1)z1 1 e(1=0)(log pr2)22
e/log pr1 Z1 e/log pro 29
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By the virtue of the following identity [1] (refer to page 230)

/0 et _tcos(bt))dt = L log(1+6/a%) + Li(a) + REy(~a + ib)],

where a > 0, we then obtain the following

dx = R[E1((s — 1)1og py1)] + Li((1 — o) log pr1) -

/Pr? e~71987 cos(t log )
Pri 1Og x

§]EE[E‘I((S - 1) 1ngr2)} - Li((l - U) 10gpr2)_

1 e(1—0)(logpr1)z1 1 e(1=0)(logpr2)22
[l
e/log pr1 21 e/log pro 22

With the variable substantiations w; = (1 — o)(log p,1)2z1 and wy = (1 — o)(log pr2)22 and by

adding and subtracting the terms — f((ll ;))elogp "2 de + Ja- (1 i logp"l dw—wll, we then have

dz = R[E1((s — 1)log p1)] + Li((1 — o) log pr1) -

/T’T2 e~71987 cos(t log )
Pri 1Og x

RIE1((s — 1) log pra)] — Li((1 — o) log pr2)+

(1—0) log pro ew2 — 1 (1—0)log pr1 eWwr _ 1
/ dwg — / dwi+
(1-0)e w2 (1—0)e w1

1—0)e w2

/(1—0) log pro de /(1—0) log pr1 dwl
( (1—o)e w1

Using the following identity [1] (refer to page 230)

a t_l
/ ©——dt = Fi(a)  log(a) -
0

where a > 0, we then obtain for o < 1,

/pr? e~ 1987 cos(t log )
Pri 1Og x

dr = R[E1((s — 1)log pr1)] — R[E1((s — 1) log pr2)]

Similarly, using the identity [1] (refer to page 230)

1 ,at bt

/ eSltn()dt — 7 — arctan(b/a) + S[E (—a + ib)),
0

where a > 0, we can show that for 0 < 1, we have

/Pr? e~7198 % 5in(t log )
Ppri1 log x

dx = S[Ey((s — 1) log pr1)] — S[E1((s — 1) log pra)].

Therefore, for R(s) > 0.5, we have

Z ? = F1((s — 1) logpy1) — Er((s — 1) log pr2) + (s; pr1, pra)
1 (3
where, €(s; pr1, pra) = [r2 20,
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Appendix 2
To unconditionally show that
/a E_le_El(a) * £—1 i (_1)k5k(a'p7~) " E_l i iém(a_pr) dy -0 (pr—1+e) .
1 = k! ’ = m! ’
we will first unconditionally show that

/la (EleEl(a) L1 (i (_kl!)kgk(a;pr)>>

k=1

< e2 log a+O(1/py) )

For k = 1, by referring to Lemma 30, we have

a . o _ a—1 dJ g
[(te s e eep) tydy = [ pta— ) L)
y:l r=1 p'r

Since 0 < p(y) < 1 and referring to Lemma 11, we then unconditionally have

[ (27t B« £ e(ain)) (9) dy| < 2loga+ O(1 /)
y:

Letki(y) = (L e P1@sLVe(a; p,) (y), ko(y) = (L e Pr @ s L e (o p )L e (0 ) ()
and so on. Thus

/a kl(y)’ < 2loga+O(1/py)
y=1

Furthermore,

/yil ka(y)dy = /yil (/ﬂ * [,*15(0[;]71”)) (y)dy = / > kr(y — )L Ye(as py) (7)dr dy

y=1J1r=1

a

thus, by changing the order of integration, we then have

dr

/;1 (kl i L_le(a;pr)) (y)dy‘ < /T: lﬁ_le(a;pr)(T)‘ ’/yil ki(y — 7)dy

or

/yal (k1% £7'e(espr)) (9)dy| < (2loga+O(1/p,) /Oo £ (s pr)(7)| dr

and by the virtue of Lemma 11, we then have

/ (s £7"e(aspr) <y>dy\ < (2loga+O(1/p,)?,

or

/ ! (L7t s L7 e(aspy) 5 L7 (0 pr)) (y)dy‘ < (2loga+O(1/pn)*.
y:

Repeating these steps (to derive f;zl ka(y)dy) k — 1 times, we then have

[ iy = | [ (b £7e(@in) ()| < (2loga+ 0(1/p)
y= y=
Consequently,
a o (_1)k
/ <£1€E1(a) x« L1 (Z ( k;ll) ek(a;pr)>> (y)dy < teogaJrO(l/pT)‘ (145)
! =1 "
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Let (km)1(y) = (571 “BUe) Lo S R (s pr) ¢ L710(aspr))(y). Let (km)a(y) =
(L e Brle) =L(oe = Yk (s py)) * £715(cs py) * £715(c; py))(y) and so on. Thus

/yil(kmh(y)dy = /yil (5—16—E1(a) w« L1 (Z - (a; pr)) *ﬁ—ld(a;pr)> (y)dy

and by the virtue of Equation(145), we then have

[ Gmnyag| < et [* |2t ap,) )| dr
Y T=1

=1

Since
- © (S (0y—2)  dy-3) dy—4 1
L5(c; pr d</ < ...)d —
(ip)@dr| < | AL\ "o Tgn g y< oo
thus
210ga+0(1/pr)
/ (km)1 dy’
y=1
or
a 00 2log a+O(1/pr)
/ (EleEl x L7 1(2 , ozpr))*ﬁlfs(a;pr)) (y)dy <
y=1 = K r
Similarly,
| mpatydy = [ (G« £75(asp,) ()dy.
y=1 y=1
where

/y km J1x L7 15(a pr)> (y)dy’ < /Tool ’ﬁ*lé(a;pr)(r)‘ ‘/yal(km)l(y — 7)dy| dr

/yil ((k}m)l *£—16(a;pr)> (y)dy‘ W/ r-1 16(c; py) ()] dr

Thus

[ (55

Repeating these steps m times, we then have

a = —E . 1 . - eZloga—i—O(l/pr)
/ 1(5 X @ . am) et (o™ ) ) iy <

m! p]

/1 ¢2loga+0(1/pr)
(aspr) | * £ <2!6(a pr) ) (y)dy < T

Consequently, for a fixed a, we then have

/1” (EleEl ( (o pr)> <L (i nlﬂém(a;pr)» dy =0 (pflﬂ) :

m=1
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Appendix 3

On RH, we will show that there are infinitely many prime numbers p, such that

/100 dJZEg];Zr!) -0 (p;l/Qfe) ,

and in general, there are infinitely many prime numbers p, such that

/loo g(y)djp(g’y) =Q(p 1),

where g(y) (or —g(y) is zero for y < 1 and it is a differentiable function for y > 1 and both ¢(y)
and ¢'(y) grow no faster than % or decay no slower than e~% for any § > 0 (for example,
fory > 1, g(y) = 1,y,v% ....,v", 1/y, 1/y2,..,1/y", (logy)™). There are a variety of theorems
(that are based on Paley- Wiener theorems) that establish the relationship between the decay
properties of a function with its Fourier, Laplace or Mellin transform (within its region of
convergence). Our analysis is similar to Landau approach that establishes the relationship
between the decay (or growth) rate of a Riemann integrable function and the region over
which its Mellin transform is analytic [12].

Toward this end, we first write J(z) = 7(z) — Li(z) as [16]

|log z/log 2] (L o) —
J(z) = n(x) — Li(z) = — (/™) ()

- n log x
where,
Tah(u) —u .
P(z) = ———d — Li(2
(@)= | wlogu M T g2 i(2),
Hence, on RH, we have
Y(z) —x T p(u) —u 1)2 1/3
J(z) =222 = —du—1L o (z/
(z) log * 2 ulog?u " i@+ (x )7
or
1 x’ z 1 uf
J(z) = —+/ — | du — Li(z"?) + O ('/3),
(z) logarzp: o, <u10g2u; p) u — Li(z'/?) (a: )
and
1 eyplogpr Y 1 e?Plogpr
J(pY) = +f dz — Li(p¥/?) + O (pv/*
(#F) ylogprzp: p poe2 <z2logprzp: p ) @) ( )
Let :
1 eyplogpr
Ji(pY) =
ylogpr < p
and 1
y 1 e*Plogpr
Ja(p :/ dz
then,

T(pY) = 1) + Ja(p¥) — Li(p¥/*) + O (p¥/?)
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In the following, we will show that, on RH, || /22, dJ(p;)/p;|= Q (p,(n_l/ 2_6)y) by showing
that the Laplace transform of integral fyoo dJ(p?)/pz is analytic function for o > —(1/2) log p,
with singularities at (—1/2 + ;) log p, (that correspond to the zeros of the zeta function at

pi = 1/2+if%;). Thus, the value of | [Z, dJ(p;)/p;| grows faster than P27 due to the pres-
ence of these singularities at (—1/2 —Hﬁl) log p;. In other words; if the value of [ [Z d.J(p;)/p}|

grows at a rate slower than P2 then the Laplace transform of the integral f y dJ(p7)/pr
will be analytic at 0 = —(1/2)logp,. This contradicts our earlier assertion that the Laplace

transform function has singularities at (—1/2 + if3;) log p, (or the Laplace transform integral
diverges for o = —(1/2) log p).

To compute the Laplace transform (and its singularities) of the integral [,* dJ(p;)/p; , we
have,

/°° dJi(p7) _ Ji pr
Y

P / Jl pr dpr
Dr

Therefore,

/OOdJl(pf)_ 1 Z(pi’)p+ 1 /“’(122(3’5)’))6&

U ypr log py p logprJy \zpi 7 p

As mentioned earlier, the sum }° (2*/p) is conditionally convergent and it should be per-
formed over the nontrivial zeros with |v;|< T as T approaches infinity. Furthermore, refer-
ring to lemma 2 of reference [16], the sum is p(:z:p_1 /p) is uniformly convergent. Hence, the
integral and the sum in the above equation can be interchanged. In other words; the integral
on the right side of the above equation can be performed term by term. Therefore, on RH, we
have

> d z 1 y(=1/2+p5;) log pr 1 00 Z( 1/248;) log pr
/ N(P7) _ ¢ + / dz)| (146
Y D7 ylog pr o Pi log p, P y Z2pi
Furthermore,

/oo dJ>(p;) _ /°° 1d / 1 Zewmlogprdw
y  DE y prdz \Jle2 wilogp, 7 p;

or, on RH, we have

1) z 1 oo ,2(—1/2+8;) log pr
/ dJa(p;) _ Z / e i @ (147)
vy DF log pr 4\ Jy Z2p;
and /2
Ia A7) _ / e~/ ogwr g (148)
Y pr logpr

Moreover, using the method of integration by parts, we then have

z/3
/ > do(fj) — 0 (pr2v?) (149)
y by
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Combining Equations (146), (147), (148) and (150) we then have

/°° dJp;)
y j

1 eY(—1/2+p;) log pr 00 z(—1/2+0:)log pr 00 z(—1/2+pi)log pr
> + / dz + / dz | —
y y

log py ypi zpi 2 pi
1 /OO —(2/2) logprdz + ) ( —2y/3> (150)
log p, Jy z

To compute the Laplace transform of the integral, we note that the Laplace transform of
the function ¢ is given 1/(s — a) with a pole (or singularity) at s = a. We also note the
Laplace transform of the function e f(¢) is given by F(s — a) where F(s) is the Laplace
transform of f(t). In other words; multiplication of a function f(t) by e* will shift the poles
or singularities of its Laplace transform F'(s) by a. Furthermore, the Laplace transform of the
integral [,* f(t)dt is given by F(0)/s — F(s)/s (note that [[* f(t)dt = [° f(t)dt — [ f(t)dt
The Laplace transform of the integral [ f(t)dt is given by F(s)/s. Furthermore, by the virtue
of the final value theorem, the integral [ f(¢)dt is given by F'(0) and its Laplace transform
is then given by F/(0)/s). Consequently, the Laplace transform of the integral [ f(t)dt has
a removable singularities at s = 0 and its singularities are the same as the singularities of
F(s). Using these Laplace transform properties, one may then conclude that, on RH, all the
singularities of the Laplace transform of the integral fyoo dJ(p;)/p: in Equation (150) are on

the line 0 = —3 logp,. Thus, | [, d.J(p?)/p:| grows faster than e(~0-?1oePr=9¥ Hence, for any
prime nurnber p, there are 1nf1n1te1y many primes p, > p such that

> dJ(p?) ( —1—6)
r = Q r 2 .
/1 Py g

Similar analysis can be applied to show that if the Laplace transform of a function g(z)
is analytic for o > 0 with singularities on the line ¢ = 0 (this includes functions that are
differentiable where the function and its derivative grow no faster than %% or decay no slower
than e~% for any § > 0), then there are infinitely many prime numbers p, such that

o0 dJ(p: B
/ g(z)# :Q(pr2 )
1 by
More specifically,
. z/3
o dJ(p? o0 dJ(pz)  dJ(p7)  dLi(pF?) 4O (pr
[7 o) _ [ g(z)( wh) | dI0h) | diei®) 00
2=y pr =Y pr pr pr pr
where
o0 ClJl(pi) g(y) e*y(lfpi)bgpr /oog 721 pi) log pr
z = dz | —
/y o pr ylogprzp: pi logprzp: v pi

e—2(1=pi)logpr
([ )
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/00 o) dJa(p?) B /00 g(x e—2(1- ﬂz)logm Z /oo g (x e—2(1=pi)log py "
Yy D7 IOgPr P y Pi P y Pi

and

z/2
/Oog( )dLl( / )) _ 1 /OO g( ) —(z/2 IngTdZ /OO g/ z/2)10gprdz
y J log pr 2 y

On RH, all the singularities of the Laplace transform of the above three integrals are on line
o = —1ilogp,. Thus, |2, (9(2)(dTi(p) /p} + dJa(pf) /p} + dJs(p;)/p})| grows faster than

e(—0.510gpr =€)y Gince 3
dO (pf/ )

P o) ) o (e
/y 9(2) = (p )
therefore 0 (p?)
0o z _1_,
[T o™ —a (5 +)
1 by

In general, if the Riemann zeta function has non-trivial zero(s) for values of s on the line
R(s) = ¢ and no non-trivial zeros for values of s with £(s) > ¢, then by following the same
steps, we can also show that there are infinitely many primes p, such that

> dJ(py c—1—e
[0t

and there are infinitely many prime numbers p, such that

/100 g(y)dﬁf%) =Q(m ).

Appendix 4

In this appendix, we will compute the size of the the integral [ o2 ( =) p (“ ¥ y) %gf‘)) %53)
when the non-trivial zeros of ((s) are restricted to the strip 1 — ¢ < R(s) < ¢ (where 1/2 <
¢ < 1). First we note that although the function J(z) is not a non-decreasing function, J(x)
is given by 7(z) — Li(x) where both 7(z) and Li(z) are non-decreasing functions. Therefore,
we can use theorem 21.67 of [8] for the method of integration by parts for Lebesgue-Stieljtes

integrals to obtain,
a/2 ( ra=y /g — 2\ dJ(p?)\ 1 N 2\ dJ(p?)\ J(pY¥
(05240 B ([ o525 ) 2
1 Jz=y Yy Y 2 br z=y Yy Yy by Dpr
>y fa—y 2\ dJ(pi 1
(50 58) )
z=y Y Y pr pr
a/2 Y a— _ 2
_/ J(zzr)d</ yp(a y_Z) dJ(m)) (151)
1 Dr z=y Y Y T
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where
( /a—yp (a -y z) dJ(pi)) T | _ ( /a—l , (a -y z) dJ(pi)) J(pr)
=y y oy p P,y =1 y oy p Pr

Since the function p ((a — y)/y — z/y) is positive, bounded and differential over the range
y<z<a-—y(y=>1) hence

/;1 p((a—y)/y—z/y)dJ(p?)/pZ| = O(pr 1=9Fe),
or ,
Y fa—y 2\ dJ@;)\ J(pY) ¢ C(1-)te
(=) S52) o
We also have —
/Z:y p((a—y)/y—z/y)dJ(p?)/pZ| = O(p; 1=+

thus

/1a/2 ) </Zc;yp (a ; y Z) de(fpi)) d <pl%>| — O(p20-9+e),

To compute the size of the last term fla/2 J(pz) (f;;yy p (a*y — 5) dJ(pz)
refer to Equation (139)

(7055 ) o3 2

dy/ (a—z 1)a—2sz(pf)’
Yy j 2
we then have

/2 J(pY) Yy fa—y z\ dJ(p?) o2 J(p¥) (a dJ(pY)
[P 5 ) [ )
1 Dr z=y ) Yy br 1 Dbr Y br

_/111/2 J(%g) dJ(pril*y) . /Ia/2 J(;;?g) (/Zay Y (a -z 1) a ;sz(fi)) dy (152)

pr prtTY Dr =y Y Y D7

To compute the first integral [, a/2 ‘](p F (% 2) dJ:zS %) we use the method of integration
by part to obtain
I (@)W (WD o [T eI ey dTen
/ gy P\ = ] pl-—2 - / y P\~

1 pr Y ¥ br Y 1 1 br Y ¥

a/2 —9
/ T2 (pY)d (p (a/ v )> (153)

1 Dr
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where by the virtue of Lemma 9,
J(pY 2 /a
()22
br Yy

af W/ —
/1 2J2(p¥)d <p( /%y 2)>

Dr
Thus by rearranging the terms of Equation (153), we then have

a/2 Y dJ(pY
[ 2880 (2 -2) 28

and

_ O(p—2(1+c)+e)

r

pr
or,

_ O(p—2(1+c)+e)

/1a/2 J(p%f)p (a 2) dJ(py)

pY y

The second integral of Equation (152) can be written as

/ /2 J(p¥) dJ (p," "
1

)_ L .
= [ I,
br J1

pr Y
or /2
o2 J(p¥) dJ (p7Y) 1 ’ o/2
. — eI = [ e e ).
[ = e = [ e e
hence

a/2

pi poY

Pt o

/a/2 J(p¥) dJ (p,*Y) (J(p%f) I[P /W () dJ(pry>)
1 1

and the virtue of Lemmas 9 and 11, we then have

/ /2 J(p¥) dJ (p,*Y)
1 pi pY

— O(p;a(1+c)/2+e)

For the third integral of Equation (152)

a/2 J(pY Yy la—z a—zdJ(p?
) )
1 pr z=y Y Y by

a/2 Y a—y _ _ z
LRI 5 ) 5
1 z=y Yy Yy Y2

p?
Since the function p/ (% - 1) 7 is positive, bounded and differentiable over the range

<

y<z<a—y(y>1),thus|[7Yp (ay;z — 1) %% = O(p; '797¢). Therefore, for a < 4
a/2 J(pY a-y a—z a—zdJ(pZ —a(14c)/2te
/ il (/ p’( —1> 5 (f )>dy‘ = O(p, *+)/2Fe)
1 p"’ zZ=Yy ?/ y pr

90



Consequently, for a < 4
/“/2 (/“‘yp (a—y _ Z) dJ(l)i)) dJ (pY)
1 2=y ) Yy pi Pg
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