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Abstract

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved,

for k-triangular and regular lattice group-valued set functions. We use sliding hump techniques

and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some

open problems.

1 Introduction

Dieudonné-type theorems (see [33]) are the object of several studies about convergence and uni-

form boundedness theorems for regular set functions and related topics about (weak) compactness of

measures. A historical comprehensive survey can be found in [18]. Among the most important devel-

opments existing in the literature about these subjects, see for instance [2, 3, 29, 30, 31, 32, 37, 44], and

in particular, concerning the setting of lattice group-valued measures, we quote [6, 9, 10, 12, 13]. In

[14, 24] some Dieudonné-type theorems were proved for lattice group-valued finitely additive regular

measures in the context of filter convergence, while some versions of uniform boundedness theorems

in this setting are proved in [11, 25]. In [38, 39, 40, 46] some Dieudonné-type theorems were proved

for k-triangular and non-additive regular set functions. Some examples of k-triangular set functions

are the M -measures, that is monotone set functions m with m(∅) = 0, continuous from above and

from below and compatible with respect to supremum and infimum, which have several applications

in several branches, among which intuitionistic fuzzy sets and observables (see also [1, 17, 27, 34, 41]).

Some examples of non-monotone 1-triangular set functions are the Saeki measuroids (see [42]). In

[17, 20, 21, 22, 23] some limit theorems were proved for lattice group-valued k-subadditive capacities

and k-triangular set functions.
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In this paper we prove some Dieudonné convergence theorems and a version of Nikodým bounded-

ness theorem for regular and k-triangular lattice group-valued set functions, extending earlier results

proved in the real case in [38, 39, 40] using some diagonal matrix theorems. Our techniques are direct

and inspired by sliding hump-type methods. We use the tool of (D)-convergence, because we can

apply the powerful Fremlin lemma (see also [36, 41]), which replaces the
ε

2n
-technique and allows to

replace a sequence of regulators with a single (D)-sequence. Observe that, in the lattice group con-

text, in the Nikodým boundedness theorem we assume the existence of a single increasing sequence of

positive elements of the involved lattice group, with respect to which the set functions are supposed

to be pointwise bounded on a suitable sublattice, playing a role similar to that of the class of all open

subsets of a topological space. We see that in general this condition cannot be replaced by a simple

setwise boundedness (see also [11, 25, 45]). Finally, some open problems are posed.

2 Preliminaries

We begin with recalling the following basic facts on lattice groups (see also [18, 28]).

Definitions 2.1 (a) A lattice group R is said to be Dedekind complete if every nonempty subset of

R, bounded from above, has supremum in R.

(b) A Dedekind complete lattice group R is super Dedekind complete iff for every nonempty set

A ⊂ R, bounded from above, there is a countable subset A′, with
∨
A′ =

∨
A.

(c) A nonempty subset S of a lattice group R is bounded iff there exists an element u ∈ R with

|x| ≤ u for each x ∈ S.

(d) Let (tn)n be an increasing sequence of positive elements of R, and let ∅ 6= S ⊂ R. We say that

S is bounded by (tn)n iff there is n∗ ∈ N with |x| ≤ tn∗ whenever x ∈ S.

(e) A sequence (σp)p in a lattice group R is called an (O)-sequence iff it is decreasing and
∞∧
p=1

σp = 0.

(f) A bounded double sequence (at,l)t,l in R is a (D)-sequence or a regulator iff (at,l)l is an (O)-

sequence for any t ∈ N.

(g) A lattice group R is weakly σ-distributive iff
∧

ϕ∈NN

( ∞∨
t=1

at,ϕ(t)

)
= 0 for every (D)-sequence (at,l)t,l

in R.

(h) A sequence (xn)n in R is said to be order convergent (or (O)-convergent ) to x iff there exists

an (O)-sequence (σp)p in R such that for every p ∈ N there is a positive integer n0 with |xn−x| ≤ σp
for each n ≥ n0, and in this case we write (O) lim

n
xn = x.

(i) We say that (xn)n is (O)-Cauchy iff there is an (O)-sequence (τp)p in R such that for every

p ∈ N there is a positive integer n0 with |xn − xq| ≤ τp for each n, q ≥ n0.
(j) A sequence (xn)n in R is (D)-convergent to x iff there is a (D)-sequence (at,l)t,l in R such

that for every ϕ ∈ NN there is n0 ∈ N with |xn − x| ≤
∞∨
t=1

at,ϕ(t) whenever n ≥ n0, and we write
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(D) lim
n
xn = x.

(k) We say that (xn)n is (D)-Cauchy iff there exists a (D)-sequence (bt,l)t,l in R such that for each

ϕ ∈ NN there is n0 ∈ N with |xn − xq| ≤
∞∨
t=1

bt,ϕ(t) whenever n, q ≥ n0.

(l) A lattice group R is said to be (O)-complete iff every (O)-Cauchy (resp. (D)-Cauchy) sequence

is (O)-convergent (resp. (D)-convergent).

(m) We call sum of a series

∞∑
n=1

xn in R the limit (O) lim
n

n∑
r=1

xr, if it exists in R.

(n) If R is a vector lattice, then we say that (xn)n (r)-converges to x iff there exists u ∈ R, u ≥ 0,

such that for every ε > 0 there is n0 ∈ N with |xn − x| ≤ ε u whenever n ≥ n0.
(o) A vector lattice R satisfies property (σ) iff for every sequence (un)n of positive elements of R

there are a sequence (an)n of positive real numbers and an element u ∈ R with an un ≤ u for each

n ∈ N.

(p) A lattice E of subsets of an infinite set G satisfies property (E) iff for each disjoint sequence

(Ch)h in E there is a subsequence (Chr)r, such that E contains the σ-algebra generated by the sets

Chr , r ∈ N (see also [43]).

Remark 2.2 Note that every Dedekind complete lattice group is both (O)- and (D)-complete. More-

over, observe that every (O)-convergent sequence is also (D)-convergent to the same limit in any

lattice group, while the converse is true if and only if the involved (`)-group is weakly σ-distributive.

Furthermore, it is known that every (r)-convergent sequence in any vector lattice is (O)-convergent

too (see also [28, 47]). The converse, in general, is not true. For example, let B be the σ-algebra

of all Borel subsets of [0, 1], λ be the Lebesgue measure on [0, 1], L0 := L0([0, 1],B, λ) be the space

of all measurable real-valued functions defined on [0, 1], with the identification of λ-null sets, and

R := {f ∈ L0([0, 1],B, λ): f is bounded}. If (un)n is any sequence of positive elements of R, then

there exists a sequence (Ln)n of positive real numbers such that un ≤ Ln for every n ∈ N, where Ln

denotes the function which assumes the constant value Ln. Since R fulfils property (σ), there are

a sequence (an)n of positive real numbers and a positive real number v with an Ln ≤ v, and hence

an un ≤ anLn ≤ v, for every n ∈ N. Hence, R satisfies property (σ). It is known that in L0 order and

(r)-convergence coincide with almost everywhere convergence, while in R, order convergence coin-

cides with the almost everywhere convergence dominated by a constant function, and (r)-convergence

coincides with uniform convergence (see also [47]). Moreover, since L0 is weakly σ-distributive (see

also [8]), then in L0 (O)- and (D)-convergence coincide in L0, and so they coincide also in R. Hence,

R is weakly σ-distributive too. Finally, observe that, in the space L0, order, (D)- and (r)-convergence

are equivalent (see also [8, 47]).

We now recall the following property of convergence in lattice groups (see also [23, Proposition 3.1]).

Proposition 2.3 Let R be a Dedekind complete lattice group, x ∈ R, and (xn)n be a sequence in R,

such that
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2.3.1) for every subsequence (xnq)q of (xn)n there is a sub-subsequence (xnqr
)r, convergent to x with

respect to a single (D)-sequence (at,l)t,l.

Then (D) lim
n
xn = x with respect to (at,l)t,l.

Proof: Suppose by contradiction that there are ϕ ∈ NN and a strictly increasing sequence (nq)q with

|xnq − x| 6≤
∞∨
t=1

at,ϕ(t) for each q ∈ N. Thus any subsequence of (xnq)q does not (D)-converge to x

with respect to (at,l)t,l, obtaining a contradiction with 2.3.1). 2

Remark 2.4 An analogous of Proposition 2.3 holds, if (D)-convergence is replaced by (O)-conver-

gence.

We now recall the Fremlin lemma, by means of which it is possible to replace a sequence of regulators

with a single (D)-sequence, and which will be fundamental in the sequel, to prove our main results,

because it has the same role as the
ε

2n
-argument. This is one of the reason for which we often prefer

to deal with (D)-convergence rather than (O)-convergence.

Lemma 2.5 (see also [36, Lemma 1C], [41, Theorem 3.2.3]) Let R be any Dedekind complete (`)-

group and (a
(n)
t,l )t,l, n ∈ N, be a sequence of regulators in R. Then for every u ∈ R, u ≥ 0 there is a

(D)-sequence (at,l)t,l in R with

u ∧
( q∑
n=1

( ∞∨
t=1

a
(n)
t,ϕ(t+n)

))
≤
∞∨
t=1

at,ϕ(t) for every q ∈ N and ϕ ∈ NN.

We now deal with the main properties of k-triangular lattice group-valued set functions. Let R

be a Dedekind complete and weakly σ-distributive lattice group, G be an infinite set, L ⊂ P(G) be

an algebra, m : L → R be a bounded set function and k be a fixed positive integer.

Definitions 2.6 (a) The semivariation of m is defined by setting

v(m)(A) = vL(m)(A) :=
∨
{|m(B)| : B ∈ L, B ⊂ A}, A ∈ L.

If E ⊂ L is a lattice, then we put

vE(m)(A) :=
∨
{|m(B)| : B ∈ E , B ⊂ A}, A ∈ L.

The set function vE(m) is called the semivariation of m with respect to E .

(b) We say that m is k-triangular on L iff

m(A)− km(B) ≤ m(A ∪B) ≤ m(A) + km(B) whenever A,B ∈ Σ, A ∩B = ∅ (1)

and

0 = m(∅) ≤ m(A) for each A ∈ Σ. (2)
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(c) Let E ⊂ L be a sublattice of L. We say that a set function m : L → R is E-(s)-bounded iff there

exists a (D)-sequence (at,l)t,l such that, for every disjoint sequence (Ch)h in E , (D) lim
h
vE(m)(Ch) = 0

with respect to (at,l)t,l. A set function m is (s)-bounded iff it is L-(s)-bounded.

(d) We say that the set functions mj : L → R are E-uniformly (s)-bounded iff there exists a

(D)-sequence (at,l)t,l such that, for every disjoint sequence (Ch)h in E ,

(D) lim
h

(∨
j

vE(mj)(Ch)
)

= 0

with respect to (at,l)t,l. The mj ’s are uniformly (s)-bounded iff they are L-uniformly (s)-bounded.

(f) We say that the set functions mj : L → R, j ∈ N, are equibounded on L iff there is u ∈ R with

|mj(A)| ≤ u for every j ∈ N and A ⊂ L.

Now we recall the following

Proposition 2.7 (see also [23, Proposition 2.6]) If m : L → R is k-triangular, then v(m) is k-

triangular too.

Proposition 2.8 (see also [23, Proposition 2.7]) Let m : L → R be a k-triangular set function. Then

for every n ∈ N, n ≥ 2, and for every pairwise disjoint sets E1, E2, . . . , En ∈ L we have

m(E1)− k
n∑

q=2

m(Eq) ≤ m
( n⋃
q=1

Eq

)
≤ m(E1) + k

n∑
q=2

m(Eq), (3)

and in particular

m(E1) ≤ m
( n⋃
q=1

Eq

)
+ k

n∑
q=2

m(Eq). (4)

We now turn to regular lattice group-valued set functions.

Definition 2.9 Let G, H be two sublattices of L, such that G is closed under countable unions, and

the complement of every element of H belongs to G. A set function m : L → R is said to be regular

iff there exists a (D)-sequence (at,l)t,l such that

2.9.1) for every E ∈ L there are two sequences (Vn)n in G and (Kn)n in H with Vn ⊃ E ⊃ Kn for each

n ∈ N and such that for any ϕ ∈ NN there exists n0 ∈ N with

v(m)(Vn \Kn) ≤
∞∨
t=1

at,ϕ(t)

whenever n ≥ n0, and

2.9.2) for every W ∈ H there are two sequences (Gn)n in G and (Fn)n in H with W ⊂ Fn+1 ⊂ Gn ⊂ Fn

for every n ∈ N, and such that for each ϕ ∈ NN there is n∗ ∈ N with

v(m)(Gn \W ) ≤
∞∨
t=1

at,ϕ(t)

whenever n ≥ n∗.
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We now prove the following property of regular set functions.

Proposition 2.10 (see also [17, Theorem 3.10]) If G is a compact Hausdorff topological space, L,

G, H are the classes of all Borel, open and compact subsets of G, respectively, and m : L → R is a

k-triangular, increasing and regular set function, then

(O) lim
n
m(In) = 0 (5)

whenever (In)n is a decreasing sequence in L with
∞⋂
n=1

In = ∅, with respect to a single regulator inde-

pendent of the choice of (In)n.

Proof: Let (In)n be as in (5). Let (at,l)t,l be a (D)-sequence satisfying 2.9.1). For every n ∈ N

there is Kn ∈ H with Kn ⊂ In and m(In \Kn) ≤
∞∨
t=1

at,ϕ(t+n). By virtue of Lemma 2.5, there is a

(D)-sequence (αt,l)t,l with

m(G) ∧
( q∑
n=1

( ∞∨
t=1

at,ϕ(t+n)

))
≤
∞∨
t=1

αt,ϕ(t) for each q ∈ N and ϕ ∈ NN.

Let On := G \Kn, n ∈ N. Note that On ∈ G for every n and G =
∞⋃
n=1

On, since
∞⋂
n=1

Kn = ∅. As G

is compact, there is n0 ∈ N with G =

n⋃
i=1

Oi, and hence

n⋂
i=1

Ki = ∅, whenever n ≥ n0. For such n’s,

taking into account (3), we have

m(In) ≤ m(G) ∧
(
m(In \

( n⋂
i=1

Ki

))
≤

≤ m(G) ∧
(
m
( n⋃
i=1

(Ii \Ki)
))
≤ (6)

≤ m(G) ∧
(
k

n∑
i=1

m(Ii \Ki)
)
≤ k

∞∨
t=1

αt,ϕ(t)

(see also [38, Lemma 1]). Thus the assertion follows. 2

Remark 2.11 Observe that, if L is an algebra with property (E) and m : L → R is positive,

increasing and satisfies (5), then m is also (s)-bounded (with respect to a single regulator). To prove

this, let (An)n be any disjoint sequence in L and (Bn)n be any subsequence of (An)n. By property

(E), there is a subsequence (Cn)n of (Bn)n, such that
⋃
n∈P

Cn ∈ L for every P ⊂ N. Since m is

increasing and m(∅) = 0, we get

0 ≤ m(Cn) ≤ m
( ∞⋃
i=n

Ci

)
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From (5) and (7) we get (O) lim
n
m(Cn) = 0 with respect to a single regulator (independent of (An)n,

(Bn)n and (Cn)n). By arbitrariness of the sequence (Bn)n and Proposition 2.3 it follows that

(D) lim
n
m(Cn) = 0 with respect to a single regulator, and this proves the claim.

The converse, in general, is not true (see also [23, Remark 2.12]).

Proposition 2.12 (see also [17, Proposition 3.4]) If m : L → R is a k-triangular and increasing set

function satisfying (5), then we get

m
( ∞⋃
n=1

En

)
≤ m(E1) + k

∞∑
n=2

m(En) (7)

for every sequence (En)n in L, such that
⋃
n∈A

En ∈ L whenever A ⊂ N.

The following proposition will be useful in proving our Dieudonné convergence theorem (see also [10,

Lemma 3.1]).

Proposition 2.13 With the same notations and assumptions as above, let m : L → R be a regular

and k-triangular set function. Then for each V ∈ G we get

vL(m)(V ) = vG(m)(V ). (8)

Proof: Pick arbitrarily V ∈ G, and let (γt,l)t,l be a (D)-sequence related to regularity of m. Choose

B ∈ L with B ⊂ V , and fix arbitrarily ϕ ∈ NN. By regularity of m, there is O ∈ G, O ⊃ B, with

vL(m)(O \B) ≤
∞∨
t=1

γt,ϕ(t). (9)

Let U := O ∩ V , then U ⊃ B. From (9) and k-triangularity of m we get

m(B) ≤ m(U) + km(U \B) ≤

≤ vG(m)(V ) + k vL(m)(O \B) ≤ (10)

≤ vG(m)(V ) + k

∞∨
t=1

γt,ϕ(t).

Taking in (10) the supremum as B ∈ L, B ⊂ V , we obtain

vL(m)(V ) ≤ vG(m)(V ) + k
∞∨
t=1

γt,ϕ(t). (11)

From (11) and weak σ-distributivity of R we deduce

vL(m)(V ) ≤ vG(m)(V ) + k
∧

ϕ∈NN

( ∞∨
t=1

γt,ϕ(t)

)
= vG(m)(V ). (12)

Since the converse inequality is straightforward, then (8) follows from (12). This ends the proof. 2
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Definition 2.14 A sequence mj : L → R, j ∈ N, of set functions is said to be (RD)-regular on L iff

there is a (D)-sequence (at,l)t,l such that

2.14.1) for every E ∈ L there are two sequences (Vn)n in G and (Kn)n in H such that for every

ϕ ∈ NN and j ∈ N there is n0 ∈ N with v(mj)(Vn \Kn) ≤
∞∨
t=1

at,ϕ(t) for every n ≥ n0, and

2.14.2) for every disjoint sequence (Hn)n in L there is a sequence (On)n in G such that On ⊃ Hn for

each n ∈ N and (D) lim
n
v(mj)

( ∞⋃
i=n

Oi

)
= 0 for every j ∈ N with respect to (at,l)t,l.

We now recall the following

Proposition 2.15 (see also [10, Proposition 2.6]) Let R be any Dedekind complete and weakly σ-

distributive lattice group, and mj : L → R, j ∈ N, be a sequence of regular equibounded set functions.

Then they satisfy 2.14.1) and the following property:

2.15.1) there exists a regulator (βt,l)t,l such that for every W ∈ H there are two sequences (Gn)n in

G and (Fn)n in H, with W ⊂ Fn+1 ⊂ Gn ⊂ Fn for every n ∈ N and such that for each ϕ ∈ NN

and j ∈ N there is n∗ ∈ N with

vL(mj)(Gn \W ) ≤
∞∨
t=1

βt,ϕ(t)

for every n ≥ n∗.

Definition 2.16 Let L, G, H be as in Definition 2.9. The set functions mj : L → R, j ∈ N, are

uniformly regular iff there exists a (D)-sequence (at,l)t,l such that

2.16.1) for each E ∈ L there exist two sequences (Vn)n in G and (Kn)n in H with Vn ⊃ E ⊃ Kn for

every n ∈ N and such that for each ϕ ∈ NN there exists n0 ∈ N with

∨
j

v(mj)(Vn \Kn) ≤
∞∨
t=1

at,ϕ(t)

for all n ≥ n0, and

2.16.2) for any W ∈ H there are two sequences (Gn)n in G and (Fn)n in H with W ⊂ Fn+1 ⊂ Gn ⊂ Fn

for each n ∈ N, and such that for every ϕ ∈ NN there exists n∗ ∈ N with

∨
j

v(mj)(Gn \W ) ≤
∞∨
t=1

at,ϕ(t)

whenever n ≥ n∗.
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3 The main results

In this section we prove a Dieudonné convergence-type theorem and a Dieudonné-Nikodým bound-

edness theorem for regular and k-triangular lattice group-valued set functions. Let R be a Dedekind

complete and weakly σ-distributive lattice group. We begin with recalling the following Brooks-

Jewett-type theorem for k-triangular set functions.

Theorem 3.1 (see [23, Theorem 3.3]) Let G be any infinite set, L ⊂ P(G) be an algebra, E ⊂ L
be a lattice, satisfying property (E), mj : L → R, j ∈ N, be a sequence of equibounded, k-triangular

and E-(s)-bounded set functions. If the limit m0(E) := lim
j
mj(E) exists in R for every E ∈ E with

respect to a single regulator, then the mj’s are E-uniformly (s)-bounded, and m0 is k-triangular and

(s)-bounded.

The following technical lemma will be useful in the sequel.

Lemma 3.2 (see [23, Lemma 3.4]) Let L ⊂ P(G) be an algebra, G and H be two sublattices of L,

such that the complement of every element of H belongs to G, mj : L → R, j ∈ N, be a sequence of

k-triangular and G-uniformly (s)-bounded set functions. Fix W ∈ H and a decreasing sequence (Hn)n

in G, with W ⊂ Hn for each n ∈ N. If

(D) lim
n

( ∨
A∈G,A⊂Hn\W

mj(A)
)

=
∧
n

( ∨
A∈G,A⊂Hn\W

mj(A)
)

= 0 for every j ∈ N (13)

with respect to a single (D)-sequence (at,l)t,l, then

(D) lim
n

(∨
j

( ∨
A∈G,A⊂Hn\W

mj(A)
))

=
∧
n

(∨
j

( ∨
A∈G,A⊂Hn\W

mj(A)
))

= 0

with respect to (at,l)t,l.

The next step is to prove a Dieudonné-type theorem for k-triangular lattice group-valued set functions,

which extends [10, Lemma 3.2].

Theorem 3.3 Let L ⊂ P(G) be an algebra, G and H be two sublattices of L, such that G is closed

under countable unions and the complement of every element of H belongs to G, mj : L → R, j ∈ N,

be a sequence of equibounded, regular, k-triangular and G-uniformly (s)-bounded set functions. Then

the mj’s are L-uniformly (s)-bounded and uniformly regular on L.

Proof: Let (Hn)n be a disjoint sequence of elements of L, (at,l)t,l be a (D)-sequence, satisfying

2.14.1), u =
∨

j∈N,A∈L
mj(A), and according to Lemma 2.5, let (bt,l)t,l be a regulator in R, with

u ∧
( q∑
h=1

( ∞∨
t=1

at,ϕ(t+h)

))
≤
∞∨
t=1

bt,ϕ(t) for every ϕ ∈ NN and q ∈ N. (14)
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Let (ct,l)t,l be a (D)-sequence associated with G-uniform (s)-boundedness, and set dt,l = (k+ 1)(bt,l +

ct,l), et,l = (k+ 1)(at,l + dt,l), for every t, l ∈ N. We prove that the mj ’s are L-uniformly (s)-bounded

with respect to the regulator (et,l)t,l. Otherwise, there is ϕ ∈ NN with the property that for every

h ∈ N there are jh, nh ∈ N with nh ≥ h and Bh ∈ L with Bh ⊂ Hnh
and

mjh(Bh) 6≤
∨
t=1

et,ϕ(t). (15)

By 2.14.1), for every h ∈ N there is Ah ∈ H, Ah ⊂ Bh, with

mjh(Bh \Ah) ≤
∞∨
t=1

at,ϕ(t). (16)

From (15) and (16) it follows that

mjh(Ah) 6≤
∞∨
t=1

dt,ϕ(t) : (17)

otherwise, thanks to k-triangularity of mjh , we should get

mjh(Bh) ≤ mjh(Ah) + kmjh(Bh \Ah) ≤
∞∨
t=1

dt,ϕ(t),

which contradicts (15). Moreover, observe that from 2.14.1), in correspondence with ϕ, for every h

there are Gh ∈ G and Fh ∈ H, with Ah ⊂ Gh ⊂ Fh and

[v(m1) ∨ . . . ∨ v(mjh)](Fh \Ah) ≤
∞∨
t=1

at,ϕ(t+h).

Set now G∗1 = G1, G
∗
h+1 = Gh+1 \

( h⋃
r=1

Fr

)
, h ≥ 2. Since the G∗h’s are disjoint elements of G, then,

thanks to G-uniform (s)-boundedness and taking into account Proposition 2.13, we find a positive

integer h0 with ∨
j

vL(mj)(G
∗
h) =

∨
j

vG(mj)(G
∗
h) ≤

∞∨
t=1

ct,ϕ(t)

whenever h ≥ h0. Since for every h we get Ah+1 \G∗h+1 ⊂
h⋃

r=1

(Fr \Ar), then

mjh(Ah) ≤ mjh(Ah ∩G∗h) +mjh(Ah \G∗h)

≤
∞∨
t=1

ct,ϕ(t) + k
∞∨
t=1

bt,ϕ(t) ≤
∞∨
t=1

dt,ϕ(t) for every h ≥ h0,

which contradicts (17), getting L-uniform (s)-boundedness of the mj ’s. Conditions 2.16.2) and 2.16.1)

on uniform regularity of the mj ’s follow easily from Proposition 2.15 and Lemma 3.2 used with

Hn = Gn \W , n ∈ N, and Hn = Vn \Kn, G = H = L, W = ∅ respectively, where Gn is as in 2.15.1),

Vn and Kn are as in 2.14.1). 2

Now we are in position to prove the following theorem, which extends [10, Theorem 3.3].
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Theorem 3.4 Let G, R, L, G, H be as above, and suppose that mj : L → R, j ∈ N, is a sequence of

equibounded, regular, k-triangular and (s)-bounded set functions, such that there exists

m0(E) := (D) lim
j
mj(E) for every E ∈ G

with respect to a single regulator. Then,

3.4.1) the measures mj, j ∈ N, are L-uniformly (s)-bounded and uniformly regular;

3.4.2) there exists in R the limit m0(E) = (D) lim
j
mj(E) for each E ∈ L with respect to a single

regulator;

3.4.3) the set function m0 is regular, k-triangular and (s)-bounded.

Proof: 3.4.1) is a consequence of Theorems 3.1 and 3.3.

3.4.2). Choose arbitrarily E ∈ L, and let (yt,l)t,l be a (D)-sequence associated with uniform

regularity. For each ϕ ∈ NN there is U ∈ G with U ⊃ E and vL(mj)(U \ E) ≤
∞∨
t=1

yt,ϕ(t) for every

j ∈ N. Moreover, in correspondence with U there is j0 ∈ N with

|mj(U)−mj+p(U)| ≤
∞∨
t=1

αt,ϕ(t)

for every j ≥ j0 and p ∈ N, where (αt,l)t,l is a regulator related to (D)-convergence on G. By

k-triangularity of mj and mj+p we get

mj(E)−mj+p(E) ≤ mj(U)−mj+p(U) + kmj(U \ E) + kmj+p(U \ E),

mj+p(E)−mj(E) ≤ mj+p(U)−mj(U) + kmj(U \ E) + kmj+p(U \ E),

and hence

|mj(E)−mj+p(E)| ≤ |mj(U)−mj+p(U)|+ kmj(U \ E) + kmj+p(U \ E) ≤

≤
∞∨
i=1

(2 k + 1)(yi,ϕ(i) + αi,ϕ(i)) (18)

for every j ≥ j0 and p ∈ N. From (18) it follows that the sequence (mj(E))j is (D)-Cauchy in R.

Since R is a Dedekind complete lattice group, then the sequence (mj(E))j is (D)-convergent, with

respect to a regulator independent of E (see also [7, 28]). Thus 3.4.2) is proved.

3.4.3). Straightforward. 2

The next step is to prove a uniform boundedness theorem for k-triangular regular lattice group-

valued set functions. We begin with the following result, which extends [11, Proposition 4.5].

Proposition 3.5 Let mh : L → R, h ∈ N, be a sequence of k-triangular set functions, and let (tn)n

be an increasing sequence of positive elements of R. Suppose also that

11



3.5.1) for every disjoint sequence (Hj)j in L, the set {mh(Hj): h, j ∈ N} is bounded by (tn)n.

Then the set {mh(A) : h ∈ N, A ∈ L} is bounded in R.

Proof: First of all observe that, thanks to 3.5.1), for every fixed element A ∈ L there is n = n(A) ∈ N
with 0 ≤ mh(A) ≤ tn(A) for every h ∈ N. We now prove that the set {mh(A) : h ∈ N, A ∈ L} is

bounded by the sequence ((k+1)tn)n. Suppose, by contradiction, that this is not true. By hypothesis,

there is n1 ∈ N such that mh(G) ≤ tn1 for all h. Moreover, there exist A1 ∈ L and h1 ∈ N such that

mh1(A1) 6≤ (k+ 1)tn1 . We have also mh1(G \A1) 6≤ tn1 : otherwise, by k-triangularity of mh1 and (4)

used with q = 2, E1 = A1, E2 = G \A1, we get

mh1(A1) ≤ mh1(G) + kmh1(G \A1) ≤ tn1 + k tn1 = (k + 1)tn1 .

It is not difficult to check that either {mh(A ∩ A1): A ∈ L, h ∈ N}, or {mh(A \ A1): A ∈ L,

h ∈ N} (or both, possibly) is not bounded in R: otherwise, if u1 =
∨
{mh(A ∩A1) : A ∈ L, h ∈ N},

u2 =
∨
{mh(A \A1) : A ∈ L, h ∈ N}, then, thanks to triangularity of the mh’s, we have

0 ≤ mh(A) ≤ mh(A ∩A1) + kmh(A \A1) ≤ u1 + k u2

for each A ∈ L and h ∈ N, and hence the set {mh(A): A ∈ L, h ∈ N} is bounded in R, getting a

contradiction. In the first case, set C1 := A1, otherwise put C1 := G \ A1. Then, set D1 := G \ C1.

Now we use the same argument as above, by replacing G by C1: so we find a set A2 ⊂ C1, A2 ∈ L
and two integers n2 > n1, h2 > h1, with mh2(A2) 6≤ (k+ 1)tn2 and mh2(C1 \A2) 6≤ tn2 . Put C2 := A2

or C2 := C1 \ A2 according as the {mh(A ∩ A2) : A ∈ L, h ∈ N} or {mh(A \ A2) : A ∈ L, h ∈ N}
is bounded, set D2 := C1 \ C2, and let us repeat the same argument as above. Proceeding by

induction, we find a disjoint sequence (Dj)j and two strictly increasing sequences (nj)j , (hj)j in N
with mhj

(Dj) 6≤ tnj for every j ∈ N, obtaining a contradiction with 3.5.1). This ends the proof. 2

We now turn to our main uniform boundedness theorem for regular and k-triangular lattice group-

valued set functions, which extends [11, Theorem 4.6].

Theorem 3.6 Let mj : L → R, j ∈ N, be a (RD)-regular sequence of k-triangular set functions, and

suppose that there is an increasing sequence (tn)n of positive elements of R such that for every U ∈ G
the set {mj(U): j ∈ N} is bounded by (tn)n.

Then the set {mj(E) : j ∈ N, E ∈ L} is bounded in R.

Proof: Let (at,l)t,l be a (D)-sequence, according to 2.14.1) and 2.14.2), and choose arbitrarily E ∈ L.

By 2.14.1), there is U ∈ G, U ⊃ E, with v(mj)(U \ E) ≤
∞∨

t,l=1

at,l for every j ∈ N. For each n ∈ N

put wn := tn +
∞∨

t,l=1

at,l. Taking into account k-triangularity of mj , in correspondence with U there is

n ∈ N with

mj(E) ≤ mj(U) + k v(mj)(U \ E) ≤ wn, −mj(E) ≤ −mj(U) + k v(mj)(U \ E) ≤ wn

12



for every j ∈ N. Thus the set {mj(E) : j ∈ N} is bounded by the sequence (wn)n.

By virtue of Proposition 3.5, it will be enough to prove that, for every disjoint sequence (Hn)n in

L, the set {mj(Hn): j, n ∈ N} is bounded by the sequence (yn)n, where yn = k nwn, n ∈ N.

Proceeding by contradiction, assume that there is a disjoint sequence (Hn)n in L, such that the

set {mj(Hn): j, n ∈ N} is not bounded by (yn)n. For each n there are i(n), h(n) ∈ N with

mh(n)(Hi(n)) 6≤ (k n + 1)wn. (19)

By passing to suitable subsequences, we can assume that

mn(Hn) 6≤ (k n + 1)wn for any n ∈ N. (20)

By 2.14.2), for each n ∈ N there exists a set On ∈ G with

On ⊃ Hn for each n ∈ N and (D) lim
n
v(mj)

( ∞⋃
i=n

Oi

)
= 0 for every j ∈ N (21)

with respect to (at,l)t,l, and hence there is an integer n1 > 1 with m1(E) ≤
∞∨

t,l=1

at,l for every E ∈ L,

E ⊂
∞⋃

i=n1

Oi, and a fortiori for each E ∈ L, E ⊂
∞⋃

i=n1

Hi. We get

m1(E ∪H1) 6≤ w1 for each E ∈ L, E ⊂
∞⋃

i=n1

Hi :

otherwise, by k-triangularity of m1 and (4) used with q = 2, E1 = H1, E2 = E, we have

m1(H1) ≤ m1(E ∪H1) + km1(E) ≤ w1 + k

∞∨
t,l=1

at,l ≤ (k + 1)w1,

which contradicts (20). Let j2 > n1 be an integer such that∨
{mn(H1) : n ∈ N} ≤ tj2 .

By 2.14.2) there is an integer n2 > j2 such that mj2(E) ≤
∞∨

t,l=1

at,l for any E ∈ L, E ⊂
∞⋃

i=n2

Hi. For

such E’s we have

mj2(E ∪H1 ∪Hj2) 6≤ wj2 :

otherwise, by k-triangularity of mj2 and (4) used with q = 3, E1 = Hj2 , E2 = E, E3 = H1, we get

mj2(Hj2) ≤ mj2(E ∪H1 ∪Hj2) +mj2(E) +mj2(H1) +mj2(Hj2) ≤

≤ wj2 + k
∞∨

t,l=1

at,l + k wj2 ≤ 3 k wj2 ≤ (k j2 + 1)wj2 ,

13



which contradicts (20). Let j3 > n2 be an integer such that∨
{mn(Hj2) : n ∈ N} ≤ wj3 .

By 2.14.2), in correspondence with mj3 there is n3 > j3 with mj3(E) ≤
∞∨

t,l=1

at,l for every E ∈ L,

E ⊂
∞⋃

i=n3

Hi. For such E’s we have

mj3(E ∪H1 ∪Hj2 ∪Hj3) 6≤ wj3 :

otherwise, by k-triangularity of mj3 and (4) used with q = 4, E1 = Hj3 , E2 = E, E3 = H1, E4 = Hj2 ,

we get

mj3(Hj3) ≤ mj3(E ∪H1 ∪Hj2 ∪Hj3) +mj3(E) +mj3(H1) +

+ mj3(Hj2) +mj3(Hj3) ≤ wj3 + k

∞∨
t,l=1

at,l + k wj2 + k wj3 ≤

≤ 4 k wj3 ≤ (k j3 + 1)wj3 ,

which contradicts (20). Proceeding by induction, it is possible to construct two strictly increasing

sequences (jh)h, (nh)h, such that nh > jh ≥ h for every h ∈ N, and

mjh(E ∪H1 ∪Hj2 ∪ . . . ∪Hjh) 6≤ wjh

whenever h ∈ N and E ∈ L with E ⊂
∞⋃

i=nh

Hi.

Set j1 = 1 and H =
∞⋃
h=1

Hjh . Note that H ∈ G and mjh(H) 6≤ wjh for every h ∈ N. But the set

{mh(H) : h ∈ N} is bounded by the sequence (wn)n, and so we get a contradiction. This ends the

proof. 2

We now give an example of (RD)-regular sequence.

Example 3.7 Let R = L0 = L0([0, 1],B, λ) be as in Remark 2.2, G be a compact Hausdorff topolog-

ical space, L be the σ-algebra of all Borel subsets of G, G and H be the classes of all open and of all

compact subsets of G, respectively. First of all, observe that 2.9.2) is a consequence of 2.9.1). Indeed,

pick arbitrarily W ∈ H and let (Vn)n be a sequence of elements of G, satisfying 2.9.1). Since G is com-

pact and Hausdorff, G is also normal (see also [35, Theorem XI.1.2]). As G is normal, thanks to [35,

Proposition VII.3.2], in correspondence with W and V1 there is a set U1 ∈ G with W ⊂ U1 ⊂ U1 ⊂ V1,
where U1 denotes the topological closure of U1 in G. Analogously, we can associate to W and U1 ∩V2
a set U2 ∈ G with W ⊂ U2 ⊂ U2 ⊂ U1 ∩ V2. Proceeding by induction, we construct a decreasing

sequence (Un)n in G, with W ⊂ Un+1 ⊂ Un+1 ⊂ Un ∩ Vn+1. Since the sequence (Vn)n satisfies 2.9.1),

it is not difficult to see that the sequences (Un)n and (Un)n fulfil 2.9.2).

14



Let mj : L → R, j ∈ N, be a sequence of k-triangular and regular set functions. We will prove

that (mj)j satisfies 2.14.1) and 2.14.2). Since in L0 the (r)-, (O)- and (D)-convergences coincide (see

Remark 2.2), then for every j ∈ N there exists uj ∈ R, uj ≥ 0, such that for every E ∈ L there are

two sequences (V
(j)
n )n in G and (K

(j)
n )n in H, with V

(j)
n ⊃ E ⊃ K

(j)
n for each n and such that for

every ε > 0 there is a positive integer n0 = n0(ε, j, E) with

v(mj)(V
(j)
n \K(j)

n ) ≤ ε uj whenever n ≥ n0. (22)

For every n ∈ N, set Vn :=
n⋂

j=1

V (j)
n , Kn :=

n⋃
j=1

K(j)
n : note that Vn ∈ G, Kn ∈ H and Vn ⊃ E ⊃ Kn

for every n. Since R satisfies property (σ), in correspondence with the sequence (uj)j there exist a

sequence (aj)j of positive real numbers and an element u ∈ R, u ≥ 0, with 0 ≤ aj uj ≤ u for every

j ∈ N. Note that u does not depend on the choice of E ∈ L. For every ε > 0, j ∈ N and E ∈ L, let

n∗ = n∗(ε, j, E) = n0(ε aj , j, E), where n0 is as in (22). We get

v(mj)(Vn \Kn) ≤ v(mj)(V
(j)
n \K(j)

n ) ≤ ε aj uj ≤ ε u (23)

for each n ≥ n∗. If we take σp =
1

p
u, p ∈ N, then it is not difficult to check that 2.14.1) is satisfied.

We now prove 2.14.2). Choose any disjoint sequence (Hn)n in L and let u be as in (23). In

correspondence with j, n ∈ N and
1

k 2n+j+1
set O(j)

n = O(j)
n

( 1

k 2n+j+1

)
= Vn∗( 1

k 2n+j+1 ,j,Hn)
and

F (j)
n = F (j)

n

( 1

k 2n+j+1

)
= Kn∗(

1

k 2n+j+1 ,j,Hn)
, where n∗ is as in (23). For each n ∈ N, put On =

n⋂
j=1

O(j)
n

and Fn =
n⋃

j=1

F (j)
n . Note that On ∈ G, Fn ∈ H and On ⊃ Hn ⊃ Fn for each n. Moreover, from (23)

we get

v(mj)(On \ Fn) ≤ v(mj)(O
(j)
n \ F (j)

n ) ≤ 1

k 2n+j+1
u for every j, n ∈ N. (24)

Now, for each n ∈ N set Un :=
∞⋃
i=n

Oi, Cn :=
∞⋂
i=n

Fi. Since the sequence (Hn)n is disjoint and Fn ⊂ Hn

for every n ∈ N, then Cn = ∅ for every n ∈ N. Taking into account (7), from (24) we get

v(mj)(Un) = v(mj)(Un \ Cn) = v(mj)
(( ∞⋃

i=n

Oi

)
\
(( ∞⋂

i=n

Fi

))
= (25)

= v(mj)
( ∞⋃
i=n

(Oi \ Fi)
)
≤ k

∞∑
i=n

v(mj)(Oi \ Fi) ≤ k
∞∑
i=n

1

k 2i+j+1
u =

1

2n+j
u

(see also [38, Lemma 1]). Thus 2.14.2) is proved. 2

The following example shows that, in Theorem 3.5, in general the condition 3.5.1) cannot be replaced

by the boundedness of the set {mj(U) : j ∈ N}.
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Example 3.8 (see also [45, Example 5]) Let R be the vector lattice c0 of all real sequences convergent

to 0, endowed with the usual ordering, B be the σ-algebra of all Borel subsets of [0, 1]. Note that c0 is

Dedekind complete and weakly σ-distributive, and that in c0 order, (D)- and (r)-convergence coincide

with coordinatewise convergence dominated by an element of c0 (see also [28, 45, 47]). For every n ∈ N

and E ∈ B set mn(E) = (µ1(E), . . . , µn(E), 0, . . . , 0, . . .), where µn(E) =

∫
E

sin(nπ x) dx. It is known

(see [45]) that every mn is a σ-additive measure and the set {mn(E) : n ∈ N} is bounded in c0 for

every E ∈ B. However, it is not possible to find a positive increasing sequence (tn)n satisfying the

hypothesis of Theorem 3.6, since sup{µn(A) : A ∈ B} = 1 for each n. Moreover, from this it follows

that the set {mn(E) : n ∈ N, E ∈ B} is not bounded in c0.

Open problems: (a) Prove similar results with respect to other kinds of (s)-boundedness, bounded-

ness and/or convergence, and relatively to different types of variations in the setting of non-additive

lattice-group valued set functions (see also [22, 40]).

(b) Find some other conditions under which 2.14.1) and/or 2.14.2) hold.
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