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Abstract

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved,
for k-triangular and regular lattice group-valued set functions. We use sliding hump techniques
and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some

open problems.

1 Introduction

Dieudonné-type theorems (see [33]) are the object of several studies about convergence and uni-
form boundedness theorems for regular set functions and related topics about (weak) compactness of
measures. A historical comprehensive survey can be found in [18]. Among the most important devel-
opments existing in the literature about these subjects, see for instance [2, 3, 29, 30, 31, 32, 37, 44], and
in particular, concerning the setting of lattice group-valued measures, we quote [6, 9, 10, 12, 13]. In
[14, 24] some Dieudonné-type theorems were proved for lattice group-valued finitely additive regular
measures in the context of filter convergence, while some versions of uniform boundedness theorems
in this setting are proved in [11, 25]. In [38, 39, 40, 46] some Dieudonné-type theorems were proved
for k-triangular and non-additive regular set functions. Some examples of k-triangular set functions
are the M-measures, that is monotone set functions m with m()) = 0, continuous from above and
from below and compatible with respect to supremum and infimum, which have several applications
in several branches, among which intuitionistic fuzzy sets and observables (see also [1, 17, 27, 34, 41]).
Some examples of non-monotone 1-triangular set functions are the Saeki measuroids (see [42]). In
[17, 20, 21, 22, 23] some limit theorems were proved for lattice group-valued k-subadditive capacities

and k-triangular set functions.
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In this paper we prove some Dieudonné convergence theorems and a version of Nikodym bounded-
ness theorem for regular and k-triangular lattice group-valued set functions, extending earlier results
proved in the real case in [38, 39, 40] using some diagonal matrix theorems. Our techniques are direct
and inspired by sliding hump-type methods. We use the tool of (D)-convergence, because we can
apply the powerful Fremlin lemma (see also [36, 41]), which replaces the %—technique and allows to
replace a sequence of regulators with a single (D)-sequence. Observe that, in the lattice group con-
text, in the Nikodym boundedness theorem we assume the existence of a single increasing sequence of
positive elements of the involved lattice group, with respect to which the set functions are supposed
to be pointwise bounded on a suitable sublattice, playing a role similar to that of the class of all open
subsets of a topological space. We see that in general this condition cannot be replaced by a simple

setwise boundedness (see also [11, 25, 45]). Finally, some open problems are posed.

2 Preliminaries

We begin with recalling the following basic facts on lattice groups (see also [18, 28]).

Definitions 2.1 (a) A lattice group R is said to be Dedekind complete if every nonempty subset of
R, bounded from above, has supremum in R.

(b) A Dedekind complete lattice group R is super Dedekind complete iff for every nonempty set
A C R, bounded from above, there is a countable subset A’, with \/ A = \/ A.

(c) A nonempty subset S of a lattice group R is bounded iff there exists an element v € R with
|x| < u for each z € S.

(d) Let (t,)n be an increasing sequence of positive elements of R, and let () # S C R. We say that
S is bounded by (t,)y iff there is n, € N with |z| < ¢, whenever z € S.

(e) A sequence (op), in a lattice group R is called an (O)-sequence iff it is decreasing and

=3

op =0.
1
(f) A bounded double sequence (at;):; in R is a (D)-sequence or a regulator iff (as;); is an (O)-

p

sequence for any t € N.

oo
(g) A lattice group R is weakly o-distributive iff /\ (\/ at,¢(t)) = 0 for every (D)-sequence (a )¢

in R.

(h) A sequence (z,,), in R is said to be order convergent (or (O)-convergent ) to x iff there exists
an (O)-sequence (0p), in R such that for every p € N there is a positive integer ng with |z, —z| < g,
for each n > ng, and in this case we write (O) lim z,, = x.

(i) We say that (z,), is (O)-Cauchy iff the?e is an (O)-sequence (7p), in R such that for every
p € N there is a positive integer ng with |z, — z4| < 7, for each n, ¢ > ny.

(j) A sequence (xn,), in R is (D)-convergent to x iff there is a (D)-sequence (ay;);; in R such
[ee]

that for every ¢ € NN there is ng € N with |z, — z| < \/ ay () Whenever n > ng, and we write
t=1



(D)lim x, = .
n
(k) We say that (z,), is (D)-Cauchy iff there exists a (D)-sequence (by;)¢; in R such that for each
o0
¢ € NN there is ng € N with |z, — x| < \/ bt p(t) Whenever n, ¢ > ng.

t=1
(1) A lattice group R is said to be (O)-complete iff every (O)-Cauchy (resp. (D)-Cauchy) sequence

is (O)-convergent (resp. (D)-convergent).
o0 n
(m) We call sum of a series Z Zy, in R the limit (O) limZxT, if it exists in R.
n
r=1

n=1 =
(n) If R is a vector lattice, then we say that (z,,), (r)-converges to x iff there exists u € R, u > 0,

such that for every € > 0 there is ng € N with |z, — 2| < eu whenever n > ny.

(0) A vector lattice R satisfies property (o) iff for every sequence (uy,),, of positive elements of R
there are a sequence (a, ), of positive real numbers and an element v € R with a, u, < u for each
n € N.

(p) A lattice £ of subsets of an infinite set G satisfies property (E) iff for each disjoint sequence
(Ch)n in & there is a subsequence (Cj,.)r, such that £ contains the o-algebra generated by the sets
Ch,, m € N (see also [43]).

Remark 2.2 Note that every Dedekind complete lattice group is both (O)- and (D)-complete. More-
over, observe that every (O)-convergent sequence is also (D)-convergent to the same limit in any
lattice group, while the converse is true if and only if the involved (¢)-group is weakly o-distributive.
Furthermore, it is known that every (r)-convergent sequence in any vector lattice is (O)-convergent
too (see also [28, 47]). The converse, in general, is not true. For example, let B be the o-algebra
of all Borel subsets of [0, 1], A be the Lebesgue measure on [0, 1], L° := L°([0,1], B, A) be the space
of all measurable real-valued functions defined on [0, 1], with the identification of A-null sets, and
R := {f € L%[0,1],B,)\): f is bounded}. If (u,), is any sequence of positive elements of R, then
there exists a sequence (L), of positive real numbers such that u, < L,, for every n € N, where L,,
denotes the function which assumes the constant value L,. Since R fulfils property (o), there are
a sequence (ay, )y of positive real numbers and a positive real number v with a,, L,, < v, and hence
an Up < anly, < v, for every n € N. Hence, R satisfies property (o). It is known that in L° order and
(r)-convergence coincide with almost everywhere convergence, while in R, order convergence coin-
cides with the almost everywhere convergence dominated by a constant function, and (r)-convergence
coincides with uniform convergence (see also [47]). Moreover, since LY is weakly o-distributive (see
also [8]), then in LY (O)- and (D)-convergence coincide in L°, and so they coincide also in R. Hence,
R is weakly o-distributive too. Finally, observe that, in the space L°, order, (D)- and (r)-convergence

are equivalent (see also [8, 47]).

We now recall the following property of convergence in lattice groups (see also [23, Proposition 3.1}).

Proposition 2.3 Let R be a Dedekind complete lattice group, x € R, and (xy), be a sequence in R,
such that



2.3.1) for every subsequence (Tn,)q of (Tn)n there is a sub-subsequence (v, )r, convergent to x with

respect to a single (D)-sequence (as )t -

Then (D)limx,, = x with respect to (a;)¢ -
n

Proof: Suppose by contradiction that there are ¢ € N¥ and a strictly increasing sequence (ng)q with
o0
|20, — x| £ \/ ay oty for each ¢ € N. Thus any subsequence of (zy,), does not (D)-converge to x

t=1
with respect to (a;):,;, obtaining a contradiction with 2.3.1). O

Remark 2.4 An analogous of Proposition 2.3 holds, if (D)-convergence is replaced by (O)-conver-

gence.

We now recall the Fremlin lemma, by means of which it is possible to replace a sequence of regulators

with a single (D)-sequence, and which will be fundamental in the sequel, to prove our main results,
€

because it has the same role as the 2—n—argument. This is one of the reason for which we often prefer

to deal with (D)-convergence rather than (O)-convergence.

Lemma 2.5 (see also [36, Lemma 1C], [41, Theorem 3.2.3]) Let R be any Dedekind complete (¢)-
(

group and (aﬁ))u, n € N, be a sequence of regulators in R. Then for every u € R, u > 0 there is a

(D)-sequence (at;)¢; in R with

q &9 o]
u A (Z(\/ aig(Hn))) < t\/law,(t) for every ¢ € N and ¢ € NV,

n=1 t=1

We now deal with the main properties of k-triangular lattice group-valued set functions. Let R
be a Dedekind complete and weakly o-distributive lattice group, G be an infinite set, £ C P(G) be

an algebra, m : £L — R be a bounded set function and k be a fixed positive integer.

Definitions 2.6 (a) The semivariation of m is defined by setting
v(m)(A) = ve(m)(A) == \/{Im(B)| : B€ L, BC A}, AcL.
If £ C L is a lattice, then we put
ve(m)(A) .= \/{Im(B)|: B€ €, BC A}, AcL.

The set function vg(m) is called the semivariation of m with respect to E.

(b) We say that m is k-triangular on L iff
m(A) —km(B) <m(AUB) <m(A) + km(B) whenever A, Be X, ANB=10 (1)
and

0 =m(0) <m(A) for each A € X. (2)



(c) Let £ C L be a sublattice of £. We say that a set function m : £ — R is £-(s)-bounded iff there
exists a (D)-sequence (at ;)¢ such that, for every disjoint sequence (Cp,)p, in &, (D) li}rln ve(m)(Ch) =0
with respect to (as;):;. A set function m is (s)-bounded iff it is £-(s)-bounded.

(d) We say that the set functions m; : L — R are E-uniformly (s)-bounded iff there exists a

(D)-sequence (at;)¢; such that, for every disjoint sequence (C})p, in &,

(D)lim (\/ ve(m;)(Cn)) = 0
j
with respect to (as ;). The m;’s are uniformly (s)-bounded iff they are L-uniformly (s)-bounded.
(f) We say that the set functions m; : L — R, j € N, are equibounded on L iff there is u € R with
|m;(A)| < u for every j € Nand A C L.

Now we recall the following

Proposition 2.7 (see also [23, Proposition 2.6]) If m : L — R is k-triangular, then v(m) is k-

triangular too.

Proposition 2.8 (see also [23, Proposition 2.7]) Let m : L — R be a k-triangular set function. Then
for everyn € N, n > 2, and for every pairwise disjoint sets E1, Fo, ..., E, € L we have

n n n
m(Er) — kY m(E,) < m(U Eq> <m(E)+ kY m(E,), (3)
q=2 q=1 q=2

and in particular
m(Ey) < (U )—i—kZm (4)
q=1
We now turn to regular lattice group-valued set functions.
Definition 2.9 Let G, H be two sublattices of L, such that G is closed under countable unions, and

the complement of every element of H belongs to G. A set function m : £ — R is said to be regular

iff there exists a (D)-sequence (at;)s; such that

2.9.1) for every E € L there are two sequences (V) in G and (K,,),, in H with V,, D E D K, for each
n € N and such that for any ¢ € NN there exists ng € N with

( V\K \/atap

whenever n > ng, and

2.9.2) for every W € H there are two sequences (G,), in G and (Fy,), in H with W C F,41 C G,, C F,
for every n € N, and such that for each ¢ € NN there is n* € N with

( G \W \/atcp

whenever n > n*.



We now prove the following property of regular set functions.

Proposition 2.10 (see also [17, Theorem 3.10]) If G is a compact Hausdorff topological space, L,
G, H are the classes of all Borel, open and compact subsets of G, respectively, and m : L — R is a

k-triangular, increasing and regular set function, then

(0)limm(1,) = 0 (5)

[e.e]
whenever (I,)n s a decreasing sequence in L with ﬂ I, = 0, with respect to a single regulator inde-

n=1

pendent of the choice of (I)n.

Proof: Let (I,), be as in (5). Let (at;):; be a (D)-sequence satisfying 2.9.1). For every n € N

o0

there is K,, € ‘H with K,, C I, and m(I, \ K,) < \/ At p(t4n)- By virtue of Lemma 2.5, there is a
t=1
(D)-sequence (ov )¢ with
[e.9] o0
m(G) A (Z( at,‘p(Hn))) < \/ (1) for each ¢ € N and ¢ € NN,
n=1 t=1 t=1

Let O, :== G\ K,, n € N. Note that O,, € G for every n and G = U Oy, since ﬂ K,=0. As G

n=1 n=1

n n

is compact, there is ng € N with G = U O;, and hence m K; = (0, whenever n > ng. For such n’s,
i=1 i=1

taking into account (3), we have

mt) < m(@) A (mita (()56)) <
< m(G)A(m(Q(A\K»))g ©)

7
n

< m(G) A (k: > m(li\ Ki)) <k \ arg
i=1 t=1

(see also [38, Lemma 1]). Thus the assertion follows. O

Remark 2.11 Observe that, if £ is an algebra with property (E) and m : £ — R is positive,
increasing and satisfies (5), then m is also (s)-bounded (with respect to a single regulator). To prove
this, let (A,), be any disjoint sequence in £ and (B,), be any subsequence of (A;),. By property

(E), there is a subsequence (Cy), of (By)n, such that U C, € L for every P C N. Since m is

nepP
increasing and m(0)) = 0, we get

0<m(Cy) < m(U Ci)

i=n



From (5) and (7) we get (O)limm(C,) = 0 with respect to a single regulator (independent of (A;,)n,
n
(Bn)n and (Cp)yn). By arbitrariness of the sequence (B), and Proposition 2.3 it follows that
(D)limm(Cy,) = 0 with respect to a single regulator, and this proves the claim.
n

The converse, in general, is not true (see also [23, Remark 2.12]).

Proposition 2.12 (see also [17, Proposition 3.4]) If m : L — R is a k-triangular and increasing set

function satisfying (5), then we get

(UE)<mE1 +k2m (7)

for every sequence (Ey), in L, such that U E, € L whenever A C N.
neA

The following proposition will be useful in proving our Dieudonné convergence theorem (see also [10,
Lemma 3.1]).

Proposition 2.13 With the same notations and assumptions as above, let m : L — R be a reqular

and k-triangular set function. Then for each V € G we get
ve(m)(V) = vg(m)(V). (8)

Proof: Pick arbitrarily V' € G, and let ()¢, be a (D)-sequence related to regularity of m. Choose
B € £ with B C V, and fix arbitrarily ¢ € NN, By regularity of m, there is O € G, O D B, with

ve(m)(O\ B) < \/%w (9)

Let U:= 0NV, then U D B. From (9) and k-triangularity of m we get

m(B) < m({U)+km(U\ B) <
< wg(m)(V) + kve(m)(O\ B) < (10)
< vg(m)(V) +k \/ Y, o(t)
t=1

Taking in (10) the supremum as B € £, B C V, we obtain
e m)(V) < v6(m)(V) + 5\ 90 ()
t=1
From (11) and weak o-distributivity of R we deduce
ve(m)(V) < vg(m)(V) +k (\/ Yrptr)) = vg(m)(V). (12)
peNN t=1

Since the converse inequality is straightforward, then (8) follows from (12). This ends the proof. O



Definition 2.14 A sequence m; : L — R, j € N, of set functions is said to be (RD)-regular on L iff

there is a (D)-sequence (ay ;)¢ such that

2.14.1) for every E € L there are two sequences (V;,), in G and (K, ), in H such that for every
oo

¢ € NN and j € N there is ng € N with v(m;)(V,, \ K,) < \/ ag () for every n > ng, and
t=1

2.14.2) for every disjoint sequence (H,), in £ there is a sequence (Oy,), in G such that O,, D H,, for
oo
each n € N and (D) limv(m;) (U Oi> = 0 for every j € N with respect to (at;),-
n

i=n
We now recall the following
Proposition 2.15 (see also [10, Proposition 2.6]) Let R be any Dedekind complete and weakly o-

distributive lattice group, and mj : L — R, j € N, be a sequence of regqular equibounded set functions.

Then they satisfy 2.14.1) and the following property:

2.15.1) there exists a requlator (Bi;)t, such that for every W € H there are two sequences (Gy)n in
G and (Fy), in H, with W C Fyy1 C G C F, for every n € N and such that for each ¢ € NN
and j € N there is n* € N with

ve(m;)(Gn \ W) < \/Btgo
for every n > n*.

Definition 2.16 Let £, G, H be as in Definition 2.9. The set functions m; : £ — R, j € N, are

uniformly regular iff there exists a (D)-sequence (at ;)¢ such that

2.16.1) for each E € L there exist two sequences (V,,), in G and (K,), in H with V,, D E D K, for
every n € N and such that for each ¢ € NV there exists ng € N with

<3

\/ v(m;) (Vi \ Kn) <

J

Atp(t)

iy
Il
—

for all n > ng, and

2.16.2) for any W € H there are two sequences (G,), in G and (F),), in H with W C F,41 C G, C F,
for each n € N, and such that for every ¢ € NN there exists n* € N with

\ o(m;)(Gn \ W) < \/aw

J

whenever n > n*.



3 The main results

In this section we prove a Dieudonné convergence-type theorem and a Dieudonné-Nikodym bound-
edness theorem for regular and k-triangular lattice group-valued set functions. Let R be a Dedekind
complete and weakly o-distributive lattice group. We begin with recalling the following Brooks-

Jewett-type theorem for k-triangular set functions.

Theorem 3.1 (see [23, Theorem 3.3]) Let G be any infinite set, L C P(G) be an algebra, £ C L
be a lattice, satisfying property (E), m; : L — R, j € N, be a sequence of equibounded, k-triangular
and E-(s)-bounded set functions. If the limit mo(E) :=limm;(E) exists in R for every E € £ with
respect to a single requlator, then the m;’s are 5—unif0rmjly (s)-bounded, and my is k-triangular and

(s)-bounded.
The following technical lemma will be useful in the sequel.

Lemma 3.2 (see [23, Lemma 3.4]) Let L C P(G) be an algebra, G and H be two sublattices of L,
such that the complement of every element of H belongs to G, mj : L — R, j € N, be a sequence of

k-triangular and G-uniformly (s)-bounded set functions. Fix W € H and a decreasing sequence (Hp )y,

in G, with W C Hy for eachmn € N. If

(D) liran< \/ mj(A)> = /\( \/ mj(A)> =0 for every j € N (13)

AeG,ACH,\W n  AeG,ACH,\W

with respect to a single (D)-sequence (ag;)e, then

oV V) AV Y mi) -

Jj  A€GACH,\W n j AeG,ACH,\W

with respect to (at )

The next step is to prove a Dieudonné-type theorem for k-triangular lattice group-valued set functions,
which extends [10, Lemma 3.2].

Theorem 3.3 Let L C P(G) be an algebra, G and H be two sublattices of L, such that G is closed
under countable unions and the complement of every element of H belongs to G, m; : L — R, j € N,
be a sequence of equibounded, regular, k-triangular and G-uniformly (s)-bounded set functions. Then

the m;’s are L-uniformly (s)-bounded and uniformly regular on L.

Proof: Let (H,), be a disjoint sequence of elements of L, (as;):; be a (D)-sequence, satisfying

2.14.1), u = \/ m;(A), and according to Lemma 2.5, let (b;;);; be a regulator in R, with
jeNAeLl

u A (Z(\/ at7¢(t+h)>> < \/ bty for every p € NY and ¢ € N. (14)
h=1 t=1 t=1

9



Let (ct)e,; be a (D)-sequence associated with G-uniform (s)-boundedness, and set d;; = (k+1)(by; +
ct1), ety = (k+1)(ar; +dp ), for every t, I € N. We prove that the m;’s are L-uniformly (s)-bounded
with respect to the regulator (e;;);;. Otherwise, there is ¢ € NN with the property that for every
h € N there are jj, n, € N with n;, > h and By, € £ with B;, C Hj,, and

my, (Bp) £ \/ (1) (15)

By 2.14.1), for every h € N there is A;, € H, A, C By, with

my, (By \ Ap) < \/ (1) (16)

From (15) and (16) it follows that

my, (Ap) £ \/ di ot (17)
t=1

otherwise, thanks to k-triangularity of m;, , we should get
mj, (Br) < mj, (Ap) + kmy, (Bp \ Ap) < \/ dt (1)

which contradicts (15). Moreover, observe that from 2.14.1), in correspondence with ¢, for every h
there are G, € G and Fj, € H, with Ay, C G, C Fj, and

[v(m1) V... Voo(my,)|(Fn \ Ap) < \/atsot+h

h

Set now Gt = Gy, Gy = Ghyr \ (U F> h > 2. Since the G}’s are disjoint elements of G, then,
r=1

thanks to G-uniform (s)-boundedness and taking into account Proposition 2.13, we find a positive

integer hg with

\ ve(m))(G;) =\ vg(m))(G;) < \/ erp
J J t=
h
whenever h > hg. Since for every h we get Ap11\ G, C U (Fy \ A,), then
r=1

[y

mjh (Ap) < mjh (Ap N GZ) +my, (An\ G},)

\/ tolt +k\/bt¢ < \/dt@ for every h > hy,

t=1 t=1 t=1
which contradicts (17), getting £-uniform (s)-boundedness of the m;’s. Conditions 2.16.2) and 2.16.1)
on uniform regularity of the m;’s follow easily from Proposition 2.15 and Lemma 3.2 used with
H,=G,\W,neN,and H, =V, \ K,,, G =H = L, W = () respectively, where G,, is as in 2.15.1),
V,, and K, are as in 2.14.1). O

Now we are in position to prove the following theorem, which extends [10, Theorem 3.3].

10



Theorem 3.4 Let G, R, L, G, H be as above, and suppose that m; : L — R, j € N, is a sequence of

equibounded, reqular, k-triangular and (s)-bounded set functions, such that there ezists
mo(E) := (D) lim m;(E) for every E € G
J
with respect to a single requlator. Then,

3.4.1) the measures mj, j € N, are L-uniformly (s)-bounded and uniformly regular;

3.4.2) there exists in R the limit mo(E) = (D) lim m;(E) for each E € L with respect to a single
J

regulator;
3.4.3) the set function myq is reqular, k-triangular and (s)-bounded.

Proof: 3.4.1) is a consequence of Theorems 3.1 and 3.3.
3.4.2). Choose arbitrarily £ € L, and let (y;):; be a (D)-sequence associated with uniform
oo
regularity. For each ¢ € NN there is U € G with U D E and vz (m;)(U \ E) < \/ Yr,o(1) for every

t=1
7 € N. Moreover, in correspondence with U there is jp € N with

m;(U) = mjup(U)] < \/ e
t=1

for every j > jo and p € N, where (ay;);; is a regulator related to (D)-convergence on G. By

k-triangularity of m; and m;,, we get

m;(E) —mjip(E) < mi(U) = mjp(U) + kmi(U\ E) + kmjip(U\ E),
mjtp(E) —mi(E) < mypp(U) —m;(U) +km;i(U\ E) + kmjip(U \ E),
and hence
Im;(E) —mjp(E)| < [mi(U) —mysp(U)| +kmi(U\ E) + kmjip(U\ E) <
< V@4 D) + e (18)
=1

for every j > jo and p € N. From (18) it follows that the sequence (m;(E)); is (D)-Cauchy in R.
Since R is a Dedekind complete lattice group, then the sequence (m;(E)); is (D)-convergent, with
respect to a regulator independent of E (see also [7, 28]). Thus 3.4.2) is proved.

3.4.3). Straightforward. O

The next step is to prove a uniform boundedness theorem for k-triangular regular lattice group-

valued set functions. We begin with the following result, which extends [11, Proposition 4.5].

Proposition 3.5 Let my : L — R, h € N, be a sequence of k-triangular set functions, and let (t,)n

be an increasing sequence of positive elements of R. Suppose also that

11



3.5.1) for every disjoint sequence (H;); in L, the set {my(H;): h,j € N} is bounded by (tn)n.
Then the set {mp(A): h € N, A € L} is bounded in R.

Proof: First of all observe that, thanks to 3.5.1), for every fixed element A € L thereisn =n(A) € N
with 0 < mp,(A) < t,04) for every h € N. We now prove that the set {m,(A4) : h € N, A € L} is
bounded by the sequence ((k+1)t,),. Suppose, by contradiction, that this is not true. By hypothesis,
there is n1 € N such that my(G) < t,, for all h. Moreover, there exist A; € £ and h; € N such that
mp, (A1) £ (k+ 1)t,,. We have also my, (G \ A1) £ tp,: otherwise, by k-triangularity of my, and (4)
used with ¢ =2, B} = Ay, By = G\ Aj, we get

mp, (Al) < mp, (G) + kmhl (G \ Al) <tp, + k‘tnl = (k‘ + l)tnl-

It is not difficult to check that either {mp(A N A;): A € L, h € N}, or {mp(A\ A1): A € L,
h € N} (or both, possibly) is not bounded in R: otherwise, if u; = \/{mh(A NA)):Ae L,heN},
up = \/{mh(A \ A1) : A€ L, heN}, then, thanks to triangularity of the my,’s, we have

0 <mp(A) <mp(ANA) +kmp(A\ A1) <up + kug

for each A € £ and h € N, and hence the set {mp,(A): A € £, h € N} is bounded in R, getting a
contradiction. In the first case, set C; := Aj, otherwise put Cy := G \ A;. Then, set D := G\ C}.
Now we use the same argument as above, by replacing G by C1: so we find a set Ay C C, As € L
and two integers ng > ni, ho > hy, with mp,(A2) € (k+ 1)t,, and mp, (C1\ A2) £ t,,. Put Cy := Ag
or Cy := (1 \ A2 according as the {m,(ANAy): Ae L,h e N} or {mp(A\ A2) : A€ L,h € N}
is bounded, set Dy := C4 \ Ca, and let us repeat the same argument as above. Proceeding by
induction, we find a disjoint sequence (D;); and two strictly increasing sequences (n;);, (h;); in N

with mp,; (Dj) £ tn; for every j € N, obtaining a contradiction with 3.5.1). This ends the proof. O

We now turn to our main uniform boundedness theorem for regular and k-triangular lattice group-

valued set functions, which extends [11, Theorem 4.6].

Theorem 3.6 Let mj: L — R, j €N, be a (RD)-regular sequence of k-triangular set functions, and
suppose that there is an increasing sequence (ty), of positive elements of R such that for every U € G
the set {m;(U): j € N} is bounded by (tp)n.

Then the set {m;(E):j € N, E € L} is bounded in R.

Proof: Let (at;):; be a (D)-sequence, according to 2.14.1) and 2.14.2), and choose arbitrarily E € L.

(0.9}
By 2.14.1), there is U € G, U D E, with v(m;)(U \ E) < \/ ay for every j € N. For each n € N

tl=1
o0

put wy, :=t, + \/ at;. Taking into account k-triangularity of m;, in correspondence with U there is
tl=1
n € N with

m;(E) <m;(U) +ko(m;)(U\ E) <wg,  —m;j(E) < =m;(U) + kvo(my)(U\ E) < wy

12



for every j € N. Thus the set {m;(F) : j € N} is bounded by the sequence (wy,)s,.
By virtue of Proposition 3.5, it will be enough to prove that, for every disjoint sequence (Hp), in
L, the set {m;(Hy): j,n € N} is bounded by the sequence (yy,)n, where y, = knw,, n € N.
Proceeding by contradiction, assume that there is a disjoint sequence (H,), in £, such that the
set {m;(Hpy): j,n € N} is not bounded by (yn)n. For each n there are i(n), h(n) € N with

M) (Hiny) £ (B0 + 1w, (19)
By passing to suitable subsequences, we can assume that
my(Hy) £ (kn 4+ 1)w, for any n € N. (20)

By 2.14.2), for each n € N there exists a set O,, € G with

O, D H,, for each n € N and (D) limv(m;) (U OZ-> =0 for every j € N (21)

i=n
oo
with respect to (at;)¢, and hence there is an integer ny > 1 with m;(E) < \/ at for every E € L,
ti=1
o (o]
EC U O;, and a fortiori for each F € L, E C U H;. We get
i=n1 i=n1
[o¢]
ml(EUHl) L w; foreach £ € L, E C U H;:
i=n1
otherwise, by k-triangularity of m, and (4) used with ¢ = 2, E; = Hy, Ey = E, we have
oo
my(Hy) < mi(BEUH) +kmy(B) <wi +k \/ ary < (k+ D,
ti=1

which contradicts (20). Let jo > n; be an integer such that

\/{mn(Hl) in e N} <ty,.

o0 o0
By 2.14.2) there is an integer ny > jo such that mj,(E) < \/ apy forany E € L, E C U H;. For
t,l=1 i=na
such E’s we have

mg,(EUHy U Hjy) £ wj,
otherwise, by k-triangularity of mj, and (4) used with ¢ =3, E1 = Hj,, E» = E, E3 = Hy, we get
mj,(Hj,) < my,(EUHLU Hjy) + myy (E) + my, (H1) +my,y (Hjy) <

o0
< wj, +k \ an+kwj, <3kwj, < (kja + Duwy,,
tl=1

13



which contradicts (20). Let js3 > na be an integer such that
\/{mn(Hj2) :n € N} <wj,.

o
By 2.14.2), in correspondence with mj, there is ng > js with mj, (E) < \/ ay for every E € L,
tl=1

o
E C U H;. For such E’s we have
i=ng

mj, (B U Hy U Hj, U Hjy) £ wj,

otherwise, by k-triangularity of m;, and (4) used with ¢ =4, By = Hj,, By = F, B3 = Hy, Ey = Hj,,

we get
mj3(Hj ) < ij(E UHUHj, U Hjs) + mjs(E) + mj:a(Hl) +
oo
+ g (Hy) +myy (Hj) <wjy +k \/ ang + kwj, + kwj, <

til=1
< dkwjy < (kjs + 1wy,

which contradicts (20). Proceeding by induction, it is possible to construct two strictly increasing

sequences (jp)n, (np)n, such that ny > jp > h for every h € N, and

’I’)’Ljh(EUHlUHj2 U...UHjh) fwjh

[e.e]
whenever h € N and F € £ with E C U H;.

1=np,

o0
Set j1 =1and H = U Hj,. Note that H € G and mj, (H) £ wj, for every h € N. But the set

h=1
{mp(H) : h € N} is bounded by the sequence (wy,),, and so we get a contradiction. This ends the

proof. O
We now give an example of (RD)-regular sequence.

Example 3.7 Let R = L° = L°([0,1], B, \) be as in Remark 2.2, G be a compact Hausdorff topolog-
ical space, L be the o-algebra of all Borel subsets of G, G and H be the classes of all open and of all
compact subsets of G, respectively. First of all, observe that 2.9.2) is a consequence of 2.9.1). Indeed,
pick arbitrarily W € H and let (V,,),, be a sequence of elements of G, satisfying 2.9.1). Since G is com-
pact and Hausdorff, G is also normal (see also [35, Theorem XI.1.2]). As G is normal, thanks to [35,
Proposition VII.3.2], in correspondence with W and V; there is a set Uy € G with W C Uy C Uy C Vi,
where U; denotes the topological closure of U; in G. Analogously, we can associate to W and U; N5
aset Uy € G with W C Uy C Uy C Uy N Va. Proceeding by induction, we construct a decreasing
sequence (Uy,)y, in G, with W C U1 C Upy1 C U, N Viyq. Since the sequence (V4,),, satisfies 2.9.1),

it is not difficult to see that the sequences (U,), and (U,), fulfil 2.9.2).

14



Let m; : L — R, j € N, be a sequence of k-triangular and regular set functions. We will prove
that (m;); satisfies 2.14.1) and 2.14.2). Since in LY the (r)-, (O)- and (D)-convergences coincide (see
Remark 2.2), then for every j € N there exists u; € R, u; > 0, such that for every E € L there are
two sequences (Vrfj))n in G and (KT(lj))n in H, with Vi) 5 E 5 KY for each n and such that for

every € > 0 there is a positive integer ng = ng(e, 7, E) with

v(mj)(Vn(j) \ KT(Lj)) <euj whenever n > no. (22)

n n
For every n € N, set V,, := ﬂ Véj), K, = U Kflj): note that V,, € G, K, € Hand V,, D E D K,
Jj=1 Jj=1
for every n. Since R satisfies property (), in correspondence with the sequence (u;); there exist a
sequence (a;); of positive real numbers and an element v € R, v > 0, with 0 < a;u; < u for every
j € N. Note that u does not depend on the choice of F € L. For every ¢ >0, j € Nand F € L, let

Ny = n4(e, j, £) = no(e aj, j, E), where ng is as in (22). We get
v(m;) (Vi \ Kp) < o(my) (VI \ KDY <eaju; <eu (23)

1
for each n > n,. If we take o, = —u, p € N, then it is not difficult to check that 2.14.1) is satisfied.
p

We now prove 2.14.2). Choose any disjoint sequence (Hy), in £ and let u be as in (23). In

set OV :Og)< L

correspondence with j, n € N and W) = V"*(kznijﬂv

L ontj+l jHa) 20d

, , 1 S 2
FY) = Féﬁ(W) = K”*(kznijﬂ J.H,)» Where n, is as in (23). For each n € N, put O, = ﬂ oW
j=1

n
and F,, = U F,(Lj). Note that O, € G, F,, € H and O,, D H, D F,, for each n. Moreover, from (23)
j=1
we get

0(m)(On \ Fn) < o(my) (O \ FY) <

S W u for every j, n € N. (24)

(0@ o
Now, for each n € N set U, := U 0;, Cp, = m F;. Since the sequence (H,,), is disjoint and F,, C H,
=n =n

for every n € N, then C,, = ) for every n € N. Taking into account (7), from (24) we get

o)) = vl ) = oim) (0 (N 5)) = 2

- v(mj)(Uwi \F)) < B v(m)(O\F) <k k2iij+1 u= 2n1+j u

(see also [38, Lemma 1]). Thus 2.14.2) is proved. O

The following example shows that, in Theorem 3.5, in general the condition 3.5.1) cannot be replaced
by the boundedness of the set {m;(U) : j € N}.
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Example 3.8 (see also [45, Example 5]) Let R be the vector lattice ¢q of all real sequences convergent
to 0, endowed with the usual ordering, B be the o-algebra of all Borel subsets of [0, 1]. Note that ¢ is
Dedekind complete and weakly o-distributive, and that in ¢y order, (D)- and (r)-convergence coincide
with coordinatewise convergence dominated by an element of ¢ (see also [28, 45, 47]). For every n € N
and E € Bset mp(F) = (u1(E), ..., un(E),0,...,0,...), where u,(F) = / sin(nmx) dz. It is known
(see [45]) that every m,, is a o-additive measure and the set {m,(E) : nEE N} is bounded in ¢ for
every ' € B. However, it is not possible to find a positive increasing sequence (t,), satisfying the
hypothesis of Theorem 3.6, since sup{un(A) : A € B} =1 for each n. Moreover, from this it follows
that the set {m,(E) :n € N, E' € B} is not bounded in cy.

Open problems: (a) Prove similar results with respect to other kinds of (s)-boundedness, bounded-
ness and/or convergence, and relatively to different types of variations in the setting of non-additive
lattice-group valued set functions (see also [22, 40]).

(b) Find some other conditions under which 2.14.1) and/or 2.14.2) hold.
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