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Dirac and Majorana Field Operators with Self/Anti-Self Charge Con-
jugate States
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We discuss relations between Dirac and Majorana-like field operators with self/anti-self charge conjugate states. The
connections with recent models of several authors have been found.
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In Refs. (Dvoeglazov 2003,2006,2009,2011,2013,2015,
2016) we considered the procedure of construction of the
field operators ab initio (including for neutral particles).
The Bogoliubov-Shirkov method has been used, Ref. (Bo-
goliubov & Shirkov 1984).

In the present article we investigate the spin-1/2 case for
self/anti-self charge conjugate states. We look for interre-
lations between the Dirac field operator and the Majorana
field operator. It seems that the calculations give mathemat-
ically and physically reasonable results in the helicity basis
only.

We write the charge conjugation operator into the form:

C = eiθc


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

K = −eiθcγ2K . (1)

It is the anti-linear operator of charge conjugation. K is the
complex conjugation operator. We define the self/anti-self
charge-conjugate 4-spinors in the momentum space
(Ahluwalia 1996):

CλS,A(p) = ±λS,A(p) , (2)
CρS,A(p) = ±ρS,A(p) . (3)

Thus,

λS,A(pµ) =
(
±iΘφ∗L(p)

φL(p)

)
, (4)

and

ρS,A(p) =
(

φR(p)
∓iΘφ∗R(p)

)
. (5)

φL, φR can be boosted with the Lorentz transformation
ΛL,R matrices.1
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1 Such definitions of 4-spinors differ, of course, from the original Ma-
jorana definition in x-representation:

ν(x) =
1
√

2
(ΨD(x) + Ψc

D(x)) , (6)

Cν(x) = ν(x) that represents the positive real C− parity field oper-
ator. However, the momentum-space Majorana-like spinors open various
possibilities for description of neutral particles (with experimental conse-
quences, see (Kirchbach & Compean & Noriega 2004).

The rest λ− and ρ− spinors are:2

λS
↑ (0) =

√
m

2


0
i
1
0

 , λS
↓ (0) =

√
m

2


−i
0
0
1

 , (7)

λA
↑ (0) =

√
m

2


0
−i
1
0

 , λA
↓ (0) =

√
m

2


i
0
0
1

 , (8)

ρS
↑ (0) =

√
m

2


1
0
0
−i

 , ρS
↓ (0) =

√
m

2


0
1
i
0

 , (9)

ρA
↑ (0) =

√
m

2


1
0
0
i

 , ρA
↓ (0) =

√
m

2


0
1
−i
0

 . (10)

Thus, in this basis the explicit forms of the 4-spinors of the
second kind λS,A

↑↓ (p) and ρS,A
↑↓ (p) are:

λS
↑ (p) =

1
2
√

Ep + m


ipl

i(p− + m)
p− + m
−pr

 , (11)

λS
↓ (p) =

1
2
√

Ep + m


−i(p+ + m)

−ipr

−pl

(p+ + m)

 ,

λA
↑ (p) =

1
2
√

Ep + m


−ipl

−i(p− + m)
(p− + m)
−pr

 ,

λA
↓ (p) =

1
2
√

Ep + m


i(p+ + m)

ipr

−pl

(p+ + m)

 ,

2 The choice of the helicity parametrization for p → 0 is doubtful in
Ref. (Ahluwalia & Grumiller 2005), and it leads to unremovable contra-
dictions, in my opinion.
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ρS
↑ (p) =

1
2
√

Ep + m


p+ + m

pr

ipl

−i(p+ + m)

 , (12)

ρS
↓ (p) =

1
2
√

Ep + m


pl

(p− + m)
i(p− + m)
−ipr

 ,

ρA
↑ (p) =

1
2
√

Ep + m


p+ + m

pr

−ipl

i(p+ + m)

 ,

ρA
↓ (p) =

1
2
√

Ep + m


pl

(p− + m)
−i(p− + m)

ipr

 .

As we showed λ− and ρ− 4-spinors are not
the eigenspinors of the helicity. Moreover, λ− and ρ− are
not (if we use the parity matrix

P =
(

0 1
1 0

)
R) the eigenspinors of the parity, as op-

posed to the Dirac case. The indices ↑↓ should be referred
to the chiral helicity quantum number introduced in the 60s,
η = −γ5h, for λ spinors. While

Puσ(p) = +uσ(p) , Pvσ(p) = −vσ(p) , (13)
we have

PλS,A(p) = ρA,S(p) , PρS,A(p) = λA,S(p) (14)
for the Majorana-like momentum-space 4-spinors on
the first quantization level. In this basis one has

ρS
↑ (p) = −iλA

↓ (p) , ρS
↓ (p) = +iλA

↑ (p) , (15)

ρA
↑ (p) = +iλS

↓ (p) , ρA
↓ (p) = −iλS

↑ (p) . (16)

The analogs of the spinor normalizations (for λS,A
↑↓ (p) and

ρS,A
↑↓ (p)) are the following ones:

λ
S

↑ (p)λS
↓ (p) = −im , λ

S

↓ (p)λS
↑ (p) = +im , (17)

λ
A

↑ (p)λA
↓ (p) = +im , λ

A

↓ (p)λA
↑ (p) = −im , (18)

ρS
↑ (p)ρS

↓ (p) = +im , ρS
↓ (p)ρS

↑ (p) = −im , (19)

ρA
↑ (p)ρA

↓ (p) = −im , ρA
↓ (p)ρA

↑ (p) = +im . (20)
All other conditions are equal to zero.

The λ− and ρ− spinors are connected with the u− and
v− spinors by the following formula:
λS
↑ (p)

λS
↓ (p)

λA
↑ (p)

λA
↓ (p)

 =
1
2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1




u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)


(21)

provided that the 4-spinors have the same physical dimen-
sion.3

3 The change of the mass dimension of the field operator has no suffi-
cient foundations because the Lagrangian can be constructed on using the
coupled Dirac equations, see Ref. (Dvoeglazov 1995). After that one can
play with

√
m to reproduce all possible mathematical results, which may

(or may not) answer to the physical reality.

We construct the field operators on using the Bogoliubov-
Shirkov procedure with λS

η (p):

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3
∑
η=↑↓

∫
d4p δ(p2

0 − E2
p)e−ip·x√m

[λS
η (p0,p)cη(p0,p)] = (22)

=
√

m

(2π)3

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)]

[θ(p0) + θ(−p0)]e−ip·x
∑
η=↑↓

λS
η (p)cη(p)

=
√

m

(2π)3
∑
η=↑↓

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)][

θ(p0)(p)λS
η (p)cη(p)e−ip·x+

+ θ(p0)λS
η (−p)cη(−p)e+ip·x]

=
√

m

(2π)3
∑
η=↑↓

∫
d3p
2Ep

θ(p0)[
λS

η (p)cη(p)|p0=Ep
e−i(Ept−p·x)+

+ λS
η (−p)cη(−p)|p0=Epe+i(Ept−p·x)

]
Thus, comparing with the Dirac field operator we have

1) instead of uh(±p) we have λS
η (±p); 2) possible change

of the annihilation operators, ah → cη. Apart, one can make
corresponding changes due to normalization factors. Thus,
we should have∑

η=↑↓

λA
η (p)d†η(p) =

∑
η=↑↓

λS
η (−p)cη(−p) . (23)

Multiplying by λ
A

−κ(p) or λ
S

−κ(−p), respectively, we find
surprisingly:

d†κ(p) = − ipy

p
σy

κτ cτ (−p) , (24)

cκ(−p) = − ipy

p
σy

κτd†τ (p) . (25)

The above-mentioned contradiction may be related to the
possibility of the conjugation which is different from that
of Dirac. Both in the Dirac-like case and the Majorana-like
case (cη(p) = e−iϕdη(p)) we have difficulties in the con-
struction of field operators (Dvoeglazov 2018b).

The bi-orthogonal anticommutation relations are given
in Ref. (Ahluwalia 1996). See other details in
Ref. (Dvoeglazov 1995a, 1997). Concerning with the P ,C
and T properties of the corresponding states
see Ref. (Dvoeglazov 2011) in this model.

Similar formulations have been presented in
Refs. (Markov 1937), and (Barut & Ziino 1993). Namely,
the reflection properties are different for some solutions of
relativistic equations therein. Two opposite signs at the mass
terms have been taken into account. The group-theoretical
basis for such doubling has been given in the papers by
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Gelfand, Tsetlin (1957) and Sokolik (1957), who first pre-
sented the theory of 5-dimensional spinors (or, the one in
the 2-dimensional projective representation of the inversion
group) in 1956 (later called as “the Bargmann-Wightman-
Wigner-type quantum field theory” in 1993).
The corresponding connection with the time reversion has
been clarified therein. It was one of the first attempts to ex-
plain the K-meson decays. M. Markov proposed two Dirac
equations with opposite signs at the mass term (Markov
1937) to be taken into account:

[iγµ∂µ −m] Ψ1(x) = 0 , (26)
[iγµ∂µ + m] Ψ2(x) = 0 . (27)

In fact, he studied all properties of this relativistic quan-
tum model (while the quantum field theory has not yet been
completed in 1937). Next, he added and subtracted these
equations. What did he obtain?

iγµ∂µϕ(x)−mχ(x) = 0 , (28)
iγµ∂µχ(x)−mϕ(x) = 0 . (29)

Thus, the corresponding ϕ and χ solutions can be presented
as some superpositions of the Dirac 4-spinors u− and v−.
These equations, of course, can be identified with the equa-
tions for the Majorana-like λ− and ρ−, which we presented
in Ref. (Dvoeglazov 1995b).4

iγµ∂µλS(x)−mρA(x) = 0 , (30)
iγµ∂µρA(x)−mλS(x) = 0 , (31)
iγµ∂µλA(x) + mρS(x) = 0 , (32)
iγµ∂µρS(x) + mλA(x) = 0 . (33)

Neither of them can be regarded as the Dirac equation. How-
ever, they can be written in the 8-component form as fol-
lows:

[iΓµ∂µ −m] Ψ(+)(x) = 0 , (34)
[iΓµ∂µ + m] Ψ(−)(x) = 0 , (35)

with

Ψ(+)(x) =
(

ρA(x)
λS(x)

)
,Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, (36)

Γµ =
(

0 γµ

γµ 0

)
. (37)

It is possible to find the corresponding Lagrangian, projec-
tion operators, and the Feynman-Dyson-Stueckelberg prop-
agator. For example,

L =
i

2
[Ψ(+)Γµ∂µΨ(+) − (∂µΨ(+))ΓµΨ(+)+

+ Ψ(−)Γµ∂µΨ(−) − (∂µΨ(−))ΓµΨ(−)

]
−

− m[Ψ(+)Ψ(+) −Ψ(−)Ψ(−)] . (38)

The projection operator P+ can be easily found, as usual,

P+ =
Γµpµ + m

2m
. (39)

4 Of course, the signs at the mass terms depend on, how do we associate
the positive- or negative- frequency solutions with λ and ρ.

However, due to the fact that P− satisfies the Dirac equa-
tion with the opposite sign, we cannot have P+ + P− =
1. This is not surprising because the corresponding states
Ψ± do not form the complete system of the 8-dimensional
space. One should consider the states Γ5Ψ±(p) too. See
also (Dvoeglazov 2018a) for the methods of obtaining the
propagators in the non-trivial cases.

In the previous papers I explained: the connection with
the Dirac spinors has been found (Dvoeglazov 1995b;
Kirchbach & Compean & Noriega 2004) through the uni-
tary matrix, provided that the 4-spinors have the same phys-
ical dimension.5 Thus, this represents itself the rotation of
the spin-parity basis. However, it is usually assumed that
the λ− and ρ− spinors describe the neutral particles, mean-
while, the u− and v− spinors describe the charged parti-
cles. Kirchbach, Compean and Noriega (2004) found the
amplitudes for neutrinoless double beta decay (00νβ) in
this scheme. It is obvious from (21) that there are some ad-
ditional terms comparing with the standard calculations of
those amplitudes. One can also re-write the above equations
into the two-component forms. Thus, one obtains the Feyn-
man and Gell-Mann (1958) equations.

Barut and Ziino (1993) proposed yet another model.
They considered γ5 operator as the operator of the charge
conjugation. In their case the self/anti-self charge conjugate
states are, at the same time, the eigenstates of the chirality.
Thus, the charge-conjugated Dirac equation has a different
sign compared with the ordinary formulation:

[iγµ∂µ + m]Ψc
BZ = 0 , (40)

and the so-defined charge conjugation applies to the whole
system, fermion + electromagnetic field, e → −e in the co-
variant derivative. The superpositions of the ΨBZ and Ψc

BZ

also give us the “doubled Dirac equation”, as the equations
for λ− and ρ− spinors. The concept of the doubling of
the Fock space has been developed in the Ziino works, cf.
(Gelfand & Tsetlin 1957; Sokolik 1957; Dvoeglazov 1998)
in the framework of the quantum field theory (Ziino 1996).
Next, it is interesting to note that we have for the Majorana-
like field operators (aη(p) = bη(p)):[

ν
ML

(xµ) + Cν
ML †

(xµ)
]
/2 =

∫
d3p

(2π)3
1

2Ep
(41)

∑
η

[(
iΘφ∗ η

L
(pµ)

0

)
aη(pµ)e−ip·x+

+
(

0
φη

L(pµ)

)
a†η(pµ)eip·x

]
,[

ν
ML

(xµ)− Cν
ML †

(xµ)
]
/2 =

∫
d3p

(2π)3
1

2Ep
(42)

∑
η

[(
0

φη
L
(pµ)

)
aη(pµ)e−ip·x+

+
(
−iΘφ∗ η

L
(pµ)

0

)
a†η(pµ)eip·x

]
.

5 The reasons of the change of the fermion mass dimension are unclear
in the recent works on elko.
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This naturally leads to the Ziino-Barut scheme of massive
chiral fields. See, however, the recent paper (Dvoeglazov
2018b) which deals with the problems of the Majorana field
operator.
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