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This small article is intended to be a contribution to the LinkedIn group “Pre-University 

Geometric Algebra”. The main idea is to show that in geometric algebra we have the Pythagoras’ 

and De Gua’s theorems without a metric defined. This allows us to generalize these theorems to 

any dimension and any signature.  
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The geometric product 
 

In geometric algebra, we define a non-commutative product of two vectors with the 

properties of associativity and distributivity, which can be decomposed into the symmetric and 

anti-symmetric parts 
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where we can define that vectors are orthogonal if  
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which means that orthogonal vectors anti-commute. Likewise, we can define that vectors are 

parallel if 
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which means that parallel vectors commute. These definitions are in accordance with the usual 

definitions in algebras. For example, we could define that two vectors a and b are parallel if a = 

b, where  is a real number, but it is obvious that these vectors commute in geometric algebra, 

since real numbers commute with vectors.  

Now we can show that products 2 a aa  commute with al vectors. One can say that this is 

obvious, since 2a  is a real (or a complex) number. However, we do not need such an interpretation 

(that is, we do not need to introduce a metric, yet). Obviously, 2a  commutes with the vector a. 

Consider a vector b, which is orthogonal to the vector a. Then we have  

2 2    a b aab aba baa ba , 

which means that the commutativity here follows from the geometric product properties. Now we 

can show that this means that 2a  commutes with all vectors, but the pleasure is left to the reader.  

 

Orthogonal vectors 
 

Consider two orthogonal vectors in any dimension and of any signature. We have 

 
2 2 2 2 2 2 2          a b a ab ba b a ab ab b a b , 

which means that the Pythagoras’ theorem is valid. Let us look at two 2D examples 

 
22 2 2 2 2

1 2 1 2 1 2 2 1 1 2:    1 1 1 2           e e e e e e e e e e , 

 
21,1 2 2 2 2

1 2 1 2 1 2 2 1 1 2:   1 1 1 0            e e e e e e e e e e . 

 Note that the commutativity properties of geometric product play a central role here. Simply 

stated, with the geometric product we have the Pythagoras’ theorem in any vector space we can 

imagine. Moreover, we have this important result without definition of a metric.  

 

De Gua's theorem 
 

Now we can show how to get De Gua’s theorem easily. First, note that the anti-symmetric 

part of geometric product of two vectors is a bivector, which we can write as 
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where   stands for the outer (wedge) product. It is not difficult to show that the magnitude of a 

bivector is proportional to the area of the parallelogram defined by the vectors a and b. Namely, 

decomposing the vector b into the prats parallel and orthogonal to the vector a, we can write 

          A a b a b b a b ab , 

whence, using sin  b b , we get the parallelogram area formula. Defining the reverse 

involution  

†

A b a , 

we have  

† 2 2

   AA ab b a a b , 

which we can interpret as the square of the area of the parallelogram defined by the vectors a and 

b, but we have to define the square of a vector to be a positive real number (metric) first. Here, we 

will proceed without a metric, in order to get formulae that are more general.  

Consider three orthogonal vectors a, b, and c (F.1) with the initial point O, whose end 

points span a triangle. We can write 

1 0  a d b , 

2 0  b d c , 

3 0  c d a , 

whence follows that 1 2 3 0  d d d . Now we can 

define the bivector 1 2 B d d  whose magnitude is 

double of the red triangle area. Therefore, † 4BB  gives 

the squared area of the red triangle. Ignoring the factor 

4, we can calculate 

 

   1 2                B d d b a c b b c c a b b a b bc ca ab , 

whence follows that 

  † 2 2 2 2 2 2         BB bc ca ab cb ac ba a b a c b c . 

The details of the calculation are left to the reader; however, note that the result follows from the 

fact that orthogonal vectors anti-commute.  

Finally, there are two important facts that we should stress here. First, note that the result is 

independent of a signature. Second, generalizations to higher dimension are straightforward; 

however, we should formulate a problem in terms of hyper-volumes.  
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