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Abstract

Dempster-Shafer theory (D-S theory) has been widely used in many fields.
Recently, a new entropy called Deng entropy was proposed in D-S theory. As
an extension of Shannon entropy, it can deal with uncertainty problems in
D-S theory. Entropy originated in physics and was later widely used in many
fields. A natural question is what is the form of Deng entropy in physics? In
this paper, we proposed the Deng entropy in thermodynamics, and under the
conditions of a given system, deduced the Deng entropy in thermodynamics.
In addition, we discussed the properties of Deng entropy in thermodynamics.
First, the Deng entropy of thermodynamics is an extension of Gibbs entropy,
just as Deng entropy is an extension of Shannon’s entropy. Similarly, Deng
entropy in thermodynamics is also a measure of uncertainty. Given the state
distribution of particles in a system, we can describe the uncertainty of parti-
cle states through Deng entropy in thermodynamics. Then, by proof, we find
that Deng entropy in thermodynamics does not satisfy additivity. Finally, we
also derived the probability distribution corresponding to the system when
the Deng entropy in thermodynamics reaches its extreme value.
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1. Introduction

Recently, a new entropy called Deng entropy was proposed in D-S theory.
As an extension of Shannon entropy, it could handle uncertainty including
non-specificity and discord which are consisting in a basic probability assign-
ment (BPA). It has been widely used in many applications, such as, decision
making [1, 2, 3], uncertainty [4, 5, 6], and data fusion [7, 8, 9]. For ex-
ample, Wen et al. [10, 11, 12] use the dimension of information to identify
important nodes in complex networks, and used the dimension of informa-
tion to reduce the uncertainty of information. Entropy was firstly proposed
in physics. Various types of entropy have been developed including infor-
mation entropy [13, 14], Tsallis entropy [15], Rényi entropy [16] , and so on
[17, 18], which have many applications [19, 20, 21, 22]. Information entropy
was derived from the Boltzmann-Gibbs (BG) entropy [23]. The maximum
entropy is usually related to the uncertainty of the system [24]. Shannon
entropy is a measure of uncertainty in information theory. Some mathemat-
ics in information theory were developed for thermodynamics [25, 26, 27].
There are connections between information entropy and thermodynamic en-
tropy [28, 29, 30]. The measure defined in [31] is similar to Shannon entropy
[13].

Deng entropy is a generalization of Shannon entropy, when BPA degen-
erates into probability, Deng entropy [32] degenerates into Shannon entropy
[13]. Deng entropy is a tool can measure uncertainty of BPA in D-S theory.
Uncertainty has been an open issue [33, 34]. For example, Gao et al. [35] ex-
plained the relationship between Pseudo-Pascal triangle and maximum Deng
entropy. Pan et al. [36] used the information of entropy to study the proba-
bility conversion. Zhou et al. [37] used belief functions for medical diagnosis
applications and risk evaluation [38]. It plays an important role in real world.
Uncertainty usually comes from incomplete information, ignorance, etc. To
deal with uncertainty, a lot of theories have been developed, such as, fuzzy
sets [39], D-S theory [40, 41], quantum model [42], and entropy [13, 9, 43].
For example, as an extension of probability theory, D-S theory has flexibility
in handling uncertain information. This flexibility comes from the expansion
of the basic event space. Assuming that there are red balls and green balls
in two boxes A1 and A2, the number of balls in the two boxes is unknown,
we randomly select a ball from the two boxes, the probability of getting the
red ball is 0.6, and the probability of getting the green ball is 0.4. However,
when we change this situation and replace some of the green balls in A2 with
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red balls, it is difficult for us to model the current situation with probability
theory. We can use evidence theory to describe, at this time we can obtain
a BPA: m(R) = 0.6, m(R,G) = 0.4, this kind of expression of uncertainty
has become a reasonable way. In D-S theory, five types of uncertainty re-
quirements are defined in [44]: probability consistency, set consistency, range,
subadditive, additivity [44]. Not all the uncertain measurements satisfying
these five requirements. Abellán [4] points out that Deng entropy [32] does
not satisfy additivity and sub-additiveness and Tsallis entropy [15] does not
satisfy additivity [45].

The concept of entropy is derived from physics, usually in thermodynam-
ics, Gibbs entropy is usually involved. Shannon entropy was inspired by
Gibbs entropy and was mentioned in the information paper. However, Deng
entropy is an extension of Shannon entropy. A natural question was raised,
what is the form of Deng entropy in thermodynamics, as Deng entropy has
been widely used in various fields [46, 47]. If we can explore its meaning
in physics, it can help us better understand Deng entropy and expand its
applications. In this paper, we proposed the Deng entropy in thermodynam-
ics and discussed the Deng entropy in thermodynamics. To the best of our
knowledge, this is the first research involving the exploration of the physical
meaning of Deng entropy. Deng entropy in thermodynamics also has the role
of uncertainty measurement. We will discuss the properties of Deng entropy
in thermodynamics later.

The contributions of this paper are as follows:

• First, we propose the Deng entropy in thermodynamics, and derive
the Deng entropy in thermodynamics under the conditions of a given
system.

• Then, we discussed the properties of Deng entropy in thermodynamics.
Deng entropy in thermodynamics can be regarded as an extension of
Gibbs entropy, and it is pointed out that Deng entropy in thermody-
namics can measure the uncertainty of particles.

• We have discussed the additivity of Deng entropy in thermodynam-
ics, and found that Deng entropy in thermodynamics does not satisfy
additivity.

• Finally, we prove the probability distribution of particles when the
Deng entropy in thermodynamics reaches the extreme value.
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This paper is presented as follows. Some preliminaries are introduced in
Section 2. In section 3, we proposed the Deng entropy in thermodynam-
ics, and deduced the Deng entropy in thermodynamics under the conditions
of a given system. Section 4 discusses the properties of Deng entropy in
thermodynamics. and the final conclusion is given in Section 5.

2. Preliminaries

In this section, some preliminaries are briefly introduced including Deng
entropy [32], Shannon entropy [13], and Gibbs entropy [23].

2.1. Deng entropy

D-S theory was developed by Dempster and Shafer [40, 41]. It offers a
useful tool for uncertainty information. Deng entropy originated from D-S
theory [48, 49, 50]. Hence, it is necessary to study uncertainty of D-S theory.
Some basic knowledge in D-S theory is given as follows.

Definition 1. Frame of discernment
Let Ψ be a countable set of n elements called the frame of discernment

which denotes a finite nonempty set of mutually exclusive and exhaustive
hypotheses. Assume Ψ = {A1, A2, A3, · · · , An}, the power set of Ψ is denoted
with P (Ψ) which contains all the possible subsets of it and composed of 2n

elements.

Definition 2. Mass function
A basic probability assignment (BPA) is a mass function. The range is

from 0 to 1, which is defined by [40]

m : m(A) 7→ [0, 1] (1)

The mass m(A) indicates the strength of the BPAs support for A, while
m(Ψ) is represented as the uncertainty of BPA. If m(φ) = 0 , any useful
information can’t be got from the BPA.

where A ∈ P (Ψ) and it should satisfy the following conditions:∑
A∈P (Ψ)

m(A) = 1,m(φ) = 0 (2)
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Definition 3. Deng entropy in D-S theory
Deng entropy [32] is defined as follows.

Ed =
∑
i

m(Ai)log
m(Ai)

2|Ai| − 1
(3)

where Ai is a proposition of BPA, and |Ai| is the cordiality of Ai.
Another form of Deng entropy is as follows.

Ed =
∑
i

m(Ai) logm(Ai)−
∑
i

m(Ai) log(2|Ai| − 1) (4)

According to discuss in [32], the term
∑

im(Ai) logm(Ai) represents the
disorder of BPA among focal elements, and the term −

∑
im(Ai) log(2|Ai|−1)

is a measure of total non-specificity in the BPA.

2.2. Gibbs entropy

In thermodynamics, Gibbs entropy is usually involved. Given macro con-
straints, Gibbs entropy can be obtained from the probabilities of different
microscopic states of the system, and its form is as follows [23].

Definition 4.

SG = −k
W∑
s=1

ρs ln ρs (5)

Where k is Boltzmann’s constant, W is the number of all microscopic
states in the system, and ρs is the probability of the corresponding microscopic
state s.

2.3. Shannon entropy

In information theory, Shannon entropy is usually used as a measure of
information uncertainty in information systems based on entropy in physics,
the definition of Shannon entropy is as follows [13].

Definition 5.

ES = −
N∑
s=1

ρs ln ρs (6)

Where N is the number of all basic events and ρs is the probability of the
basic event s.
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3. Deng Entropy in Thermodynamics

Deng entropy can be used as a measure of the uncertainty of the belief
function in evidence theory. This measure of uncertainty is established in
the frame of discernment. The frame of discernment in evidence theory is
an extension of the basic events in probability theory. The Gibbs entropy is
derived from the probabilistic modeling of the different microscopic states of
the system. Inspired by this idea, can the different microscopic states of the
system be expanded to derive the Deng entropy in thermodynamics?

In this section, we will introduce Deng entropy in thermodynamics. As-
suming that the original set of micro-states in the system is S = {s1, s2, ·, sW},
now the micro-states are extended to the the new set Ω = P (S)/ {φ}, where
P (S) = {{φ} {s1} , · · · , {sW} , {s1, s2} , · · · , {s1, s2, · · · , si} , · · · , {S}} is the
power set of S.

In order to derive Deng entropy in thermodynamics, the measurement
function f(Y ) is defined as follows.

f(Y ) = |Y | = i, Y = {s1, s2, · · · , si } ∈ Ω (7)

Then the definition of Deng entropy in thermodynamics is as follows.

SD = −k
∑
s,s∈Ω

ρs ln
ρs

2|s| − 1
(8)

Next, we will try to derive Deng entropy from a system under given
conditions. Given a closed system, there are N particles in the system, and
the average number of particles in a quantum state s with energy εs is as
follows.

fs = (2|s| − 1) exp(−α− βεs) (9)

Therefore, the probability ρs that the particle is in the quantum state s
is

ρs =
fs
N

=
(2|s| − 1) exp(−α− βεs)

N
(10)

According to Appendix, we have 1
Z

= exp(−α)
N

, the variant form of Eq.
(10) six is as follows.

− ln(
ρs

2|s| − 1
) = lnZ + βεs (11)
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Obviously, the probability ρs that the particle is in the quantum state s
satisfies the normalization condition.∑

s,s∈Ω

ρs = 1 (12)

The average energy E of particles in the system can be expressed as

E =
∑
s,s∈Ω

ρsεs (13)

According to Appendix, the entropy of the system can be expressed as

S = Nk(lnZ − β ∂

∂β
lnZ)

= Nk(lnZ + βε̄)

(14)

Then the Deng entropy of the system in thermodynamics can be expressed
as follows.

SD = Nk(lnZ − β ∂

∂β
lnZ)

= Nk(lnZ + βE)

= Nk(lnZ + β
∑
s,s∈Ω

ρsεs)

= Nk(
∑
s,s∈Ω

ρs(lnZ + βεs))

= −Nk(
∑
s,s∈Ω

ρs ln(
ρs

2|s| − 1
))

(15)

Table 1 shows the comparison of Deng entropy [32], Gibbs entropy [23],
Deng entropy in thermodynamics, and Shannon entropy [13]. First of all, it
can be seen that Gibbs entropy and Shannon entropy are formally consistent
in mathematical form. Deng entropy and Deng entropy in thermodynamics
are also the same in mathematical form. Secondly, Deng entropy can be
regarded as an extension of Shannon entropy. Later we will prove that Deng
entropy in thermodynamics is also an extension of Gibbs entropy. Finally,
we can see that Shannon entropy is defined in the frame of discernment,
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Table 1: Comparison of Deng entropy in thermodynamics , Gibbs entropy, Deng entropy
and Shannon entropy

Name Formula Space

Gibbs entropy [23] SG = −k
∑W

s=1 ρs ln ρs S

Shannon entropy [13] ES = −
∑N

s=1 ρs ln ρs Ψ
Deng entropy in thermodynamics SD = −k

∑
s,s∈Ω ρs ln ρs

2|s|−1
Ω

Deng entropy [32] Ed = −
∑

im(Ai)log
m(Ai)

2|Ai|−1
P (Ψ)

and Deng entropy is defined in the power set of the frame of discernment.
However, Gibbs entropy is defined on the set of all microscopic states of the
system, and Deng entropy in thermodynamics is defined on the extended set
of microscopic states.

4. The Properties of Deng Entropy in Thermodynamics

In this section, we will discuss the properties of Deng entropy in thermo-
dynamics and analyze its potential applications.

Proposition 1. When the microscopic state Ω of the system degenerates
into the microscopic state S, the Deng entropy in thermodynamics degener-
ates into Gibbs entropy.

Proof 1. Obviously, when the system satisfies the state S, there is

SD = −k
∑
s,s∈S

ρs ln
ρs

2|s| − 1

= −k
∑
s,s∈S

ρs ln ρs

= SG

(16)

Example 1. Eq. (15) shows that the Deng entropy in thermodynamics of a
particle in the system is SD = −k

∑
s,s∈Ω ρs ln ρs

2|s|−1
, which depends on the

probability ρ that the particle is in each possible state Ω. It may be assumed
that the particle is in a specific state s1 at this time, and |s1| = 1, then the
Deng entropy in thermodynamics of the particle at this time is zero and the
Gibbs entropy of the particle is also zero. In contrast. If the particle may be
in a different state, the Deng entropy of the particle is not zero, which shows

8



that Deng entropy in thermodynamics can be used as a measure of uncertain
information. When we know less about the known information, the greater
the Deng entropy in thermodynamics.

Abellán analyzed in [4] that Deng entropy is not additivity, so does Deng
entropy in thermodynamics satisfy additivity? Next we will prove that the
Deng entropy in thermodynamics does not satisfy additivity.

Proposition 2. Suppose a given system (M + N) is composed of two sub-
systems M and N (the interaction between the systems is ignored). The
probability distribution ρM+N of the system M + N is equal to the product
ρM ·ρN of the probabilities of the two subsystems M and N . If there is the en-
tropy SM+N of the system (M+N) is equal to the sum of the entropy SM+SN
of the two subsystems M and N ,then we call the entropy S to be additive. It
can be proved that Deng entropy in thermodynamics is not additive, that is
SM+N 6= SM + SN .

Proof 2. Obviously we have ∑
sM

ρsM = 1 (17)

∑
sN

ρsN = 1 (18)

Therefore,∑
sM

∑
sN

ρsM+N
=
∑
sM

∑
sN

ρsM · ρsN =
∑
sM

ρsM ·
∑
sN

ρsN = 1 (19)

The thermodynamic Deng entropy of the system (M +N) is

SM+N = −k
∑
sM

∑
sN

ρM+N ln
ρsM+N

2|sM+N | − 1

= −k
∑
sM

∑
sN

ρM · ρN ln
ρM · ρN

2|sM+N | − 1

6= −k
∑
sM

∑
sN

ρM · ρN ln
ρM · ρN

(2|sM | − 1) · (2|sN | − 1)

= −k
∑
sM

ρM ln
ρM

(2|sM | − 1)
− k

∑
sN

ρN ln
ρN

(2|sN | − 1)

= SM + SN

(20)

9



Proposition 3. If the number of particles N and the volume V of the system,
and the energy E are constant, the probability distribution when the Deng
entropy in the thermodynamics of the system reaches the extremum value is

ρs = (2|s| − 1) exp(
γ

k
− (2|s| − 1)) (21)

Where γ is a constant and k is Boltzmann’s constant.

Proof 3. Assuming that Ns and Es respectively represent the number and
energy of the system when the system is in state s, the average value of the
number and energy is

N̄ =
∑
s

Nsρs (22)

Ē =
∑
s

Esρs (23)

Lets suppose that ρs has a change in δ, then in Eq. (8), the change in SD
is

δSD = −k
∑
s

(ln
ρs

2|s| − 1
+ 2|s| − 1)δρs (24)

There are conditions.

Ns = N

Es = E∑
s

δρs = 0
(25)

Introduce the constant γ , so there is∑
s

[
−k(ln

ρs
2|s| − 1

+ 2|s| − 1) + γ

]
δρs = 0 (26)

So we have
ρs = (2|s| − 1) exp(

γ

k
− (2|s| − 1)) (27)
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5. Conclusion

Deng entropy is an extension of Shannon entropy that was proposed in
D-S theory. The concept of entropy originated from physics. In thermody-
namics, Gibbs entropy is often mentioned. It is worth noting that Shannon
entropy in information theory was inspired by Gibbs entropy. Recently, Deng
entropy has been widely used in the measurement of uncertainty of informa-
tion. With the gradual exploration, researches on Deng entropy’s divergence
and maximum Deng entropy have been involved. Thinking further, what is
the significance of Deng entropy in physics? These studies can help us better
understand Deng Entropy and apply it in a wider range of fields.

To the best of our knowledge, the research of this paper is the first time
to explore the physical meaning of Deng entropy. First of all, the Deng
entropy in thermodynamics has been proposed. Given certain conditions of
the system, the Deng entropy in thermodynamics has been derived. Then,
we also discussed the properties of Deng entropy in thermodynamics and
its potential applications. The Deng entropy in thermodynamics can be
regarded as the expansion of Gibbs entropy, and the uncertainty of particles
can be measured. The additivity of entropy is an important study for entropy.
It is worth noting that not all entropy satisfies additivity. We discussed
the additivity of Deng entropy in thermodynamics, and proved that Deng
entropy in thermodynamics does not satisfy additivity. Finally, we discuss
the distribution of the microscopic state of the system when the Deng entropy
in thermodynamics reaches its extreme value.
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Appendix

This section shows the derivation process of entropy in thermodynamics.
Some basic physical symbols are shown in Table 2.

Table 2: Basic physical symbols

Symbol Physical meaning
Ω The number of microstates.
ε The energy of a system with discrete energy levels.
ω The number of different states corresponding to a particular energy level.
a The number of partivles at the energy level ε.
U The total energy in a system.
Z Partition functions in physics can describe the statistical of a system.
W Work done on a system by an external force.
S Entropy is an extensive property in a system.

Given a system, the definition of entropy is as follows.

S =
dQ

T
(28)

Where dQ is the change of heat in the system and T is the temperature
of the system.

In the Boltzmann system [51], the number of microscopic states of a
particle can be expressed as :

ΩM.B =
N !∏
l al!

∏
l

(ωl)
al (29)
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Where ΩM.B is the total number of microscopic states of the particle, al
is the number of particles at the energy level εl, and ωl is the degeneracy at
the energy level εl.

The logarithm of both sides has

lnΩ = lnN !−
∑
l

lnal! +
∑
l

alln(ωl) (30)

Eq. 30 can be simplified to

lnΩ = N(lnN − 1)−
∑
l

al(lnal − 1) +
∑
l

alln(ωl)

= NlnN −
∑
l

allnal +
∑
l

alln(ωl)
(31)

Suppose that al has δal changes. Then ln Ω has the following changes

δ ln Ω = −
∑
l

ln(
al
ωl

)δal (32)

In order to make ln Ω have large distribution, let δlnΩ be equal to 0, then
there is

δlnΩ = −
∑
l

ln(
al
ωl

)δal = 0 (33)

But these δal are not independent, they must meet the following condi-
tions

δN =
∑
l

δal = 0 δE =
∑
l

εlδal = 0 (34)

In the case where the constraint Eq. 34 is satisfied, Eq. 32 is equivalent
to the following Eq. 35 regardless of the values of the parameters α and β.

−
∑
l

(ln(
al
ωl

) + α + βεl)δal = 0 (35)

Under the conditions given by Eq. 34, it makes the two δal cannot take
any value. It is possible to set the two to determine δa1 and δa2. Then α
and β can be determined by the following equation.

ln
a1

ω1

+ α + βε1 ln
a2

ω2

+ α + βε2 (36)

Simply Eq. 35 to
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∑
l=3

(ln(
al
ωl

) + α + βεl)δal = 0 (37)

Since each δal in Eq. 37 can take values independently, the coefficient of
δal in Eq. 37 is required to be equal to 0, that is :∑

l=3

(ln(
al
ωl

) + α + βεl) = 0 l = 1, 2, 3, . . .W (38)

Eq. 39 can be derived from Eq. 38 and 36.

al = (ωl)e
−α−βεl (39)

In summary, the total number of particles is:

N =
∑
l

(ωl)e
−α−βεl (40)

Internal energy is the statistical average of the total energy of the irregular
motion of particles in the system. So internal energy can be expressed as

U =
∑
l

alεl =
∑
l

εl(ωl)e
−α−βεl (41)

Introduce a partition function whose expression is as follows:

Z =
∑
l

(ωl)e
−βεl (42)

Eq. 43 can be derived from Eq. 40 and 42.

N = e−αZ (43)

Substituting Eq. 43 into Eq. 41, then eliminating α, Eq. 44 can be ob-
tained as fllows:

U = −N ∂

∂β
lnZ (44)

The change of the system’s internal energy dU in the process is equal to
the sum of the work dW done by the outside world on the system and the
heat dQ absorbed by the system from the outside.

dU = dQ+ dW (45)
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The force applied to a particle at the entropy of the energy level εl is ∂εl
∂y

.
Therefore, the generalized force exerted by the outside world on the system
is:

Y =
∑
l

∂εl
∂y

al

=
∑
l

∂εl
∂y

(ωl)e
−α−βεl

= e−α(− 1

β

∂

∂y
)
∑
l

∂εl
∂y

(ωl)e
−βεl

=
N

Z
(− 1

β

∂

∂y
)Z

= −N
β

∂

∂y
lnZ

(46)

Where Y is the generalized force of the external system corresponding to
the external parameter y.

The heat absorbed by the system from the outside during the process is
related to the process, so dQ is not a full differential but an infinitesimal
amount. It is proved by the second law of thermodynamics that dQ has
integral factor 1

T
, and multiplying 1

T
by dQ gives the complete differential

dS:
1

T
dQ =

1

T
(dU − Y dy) = dS (47)

Eq. 48 can be derived from Eq. 44, Eq. 44 and Eq. 47.

dQ = dU − Y dy

= −Nd(
∂ lnZ

∂β
) +

N

β

∂ lnZ

∂y
dy

(48)

Eq. 48 is simultaneously multiplied by β :

β(dU − Y dy) = −Nβ(
∂Z

∂β
) +N

∂ lnZ

∂y
dy (49)

Because the partition function Z is a function of β and y, the full differ-
ential of lnZ :

d lnZ =
∂ lnZ

∂β
dβ +

∂ lnZ

∂y
dy (50)
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Eq. 51 can be derived from Eq. 49 and Eq. 50.

β(dU − Y dy) = Nd(lnZ − β ∂

∂β
lnZ) (51)

Then the expression of S can be derived from Eq. 28 and 51. Let β = 1
kT

S = Nk(lnZ − β ∂

∂β
lnZ) (52)
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