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Abstract

Entropy as a measure of disorder can be widely used in many fields.In this
paper, based on the localized system, a new entropy Deng entropy is derived
assuming that the particles have superposition states.
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1. Introduction

The entropy in chemistry and thermodynamics is a measure of the total
amount of energy that does not work in terms of kinetics.When the overall
entropy increases, its ability to do work also decreases, and the measure of
entropy is the indicator of energy degradation.Entropy can also be used to
measure the degree of system chaos. It is a function that describes the state of
the system. It has important applications in probability theory, astrophysics,
life sciences, etc.

The concept of entropy was proposed by the German physicist Rudolf
Clausius [1]. Later, Boltzmann discovered that the entropy in a single system
is more related to the number of thermodynamic microstates. According to
Boltzmann’s definition, entropy is a function of state.

In this paper, based on the localized system, a new entropy Deng entropy
[2] is derived assuming that the particles have superposition states.
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This paper can be divided into the following sections: some simple pre-
liminaries are introduced in section 2, section 3 shows the whole process of
derivation, and section 4 simply discusses some properties of Deng entropy,
and the final conclusion is given.

2. Preliminaries

In this section,some preliminaries are briefly introduced.including : evi-
dence theory [3, 4], Deng Entropy [5] Entropy energy level .

Dempster-shafer evidence theory was firstly introduced by Dempster [3]
and had been developed by shafer [4]. D-S theory is abroad applied in many
fields of data fusion.Here we give some basic definitions.

Let Ω be a countable set of n elements called the frame of discernment
which denote a finite nonempty set of mutually exclusive and exhaustive
hypotheses.Assume that it contains Ω = {A1, A2, A3, · · · , An} .The power
set of Ω which we denote with P (Ω) contains all the possible subsets of
it,which is composed of 2n elements of Ω. Each element of 2nrepresents a
proposition.

Definition 1 A basic probability assignment (BPA) is a function. The
range is from P (Ω) to [0, 1], which is defined by [3]

m : P (Ω) 7→ [0, 1], A 7→ m(A) (1)

and it should satisfy the following conditions:∑
AεP (Ω))

m(A) = 1,m(Φ) = 0 (2)

The mass m(A) indicates the strength of the evidences support for A, while
m(Ω) is represented as the uncertainty of evidence. If m(Φ) = 0 , any useful
information can’t be got from the evidence.

Definition 2 the Deng entropy [2] is defined as follows:

Ed =
∑
i

m(Ai)log
m(Ai)

2|Ai| − 1
(3)

where Ai is a proposition of BPA,and |Ai| is the cordiality of Ai.the Deng
entropy is the generalization of Shannon entropy.
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Definition 3 Entropy was first proposed by Rudolf Clausius. It can be
expresssed as fllows:

S =
dQ

T
(4)

Where S is the entropy, dQ is the change in heat in the system, and T is
the temperature of the system.

Definition 4 In quantum mechanics, the energy of a particle is quantized,
and particles in different states have different energies. So the quantized
energy is called the energy level : ε1, ε2, . . . , εl, . . .

3. Physical derivation

In this session, it is assumed that particles of different states can coexist
at the same time, and a new entropy is derived.

In the Boltzmann system, the number of microscopic states of a particle
can be expressed as :

ΩM.B =
N !∏
l al!

∏
l

(ωl)
al (5)

Where ΩM.B is the total number of microscopic states of the particle, al is
the number of particles at the energy level εl, and ωl is the degeneracy at the
energy level εl.When the particles have no coexisting state, the degeneracy
is Nl, and in the coexisting state, the degeneracy of the particles is 2Nl − 1,
so the microscopic state of the particles can be expressed as:

ΩM.B =
N !∏
l al!

∏
l

(2Nl − 1)al (6)

For the Boltzmann distribution

ΩM.B =
N !∏
l al!

∏
l

(2Nl − 1)al (7)

The logarithm of both sides has

lnΩ = lnN !−
∑
l

lnal! +
∑
l

alln(2Nl − 1) (8)

Assume that a particle beam is very much in the syste. Eq. 8 can be simplified
to
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lnΩ = N(lnN − 1)−
∑
l

al(lnal − 1) +
∑
l

alln(2Nl − 1)

= NlnN −
∑
l

allnal +
∑
l

alln(2Nl − 1)
(9)

Suppose that al has δal Then ln Ω has the following changes

δ ln Ω = −
∑
l

ln(
al

2Nl − 1
)δal (10)

In order to make ln Ω have large distribution, let δlnΩ be equal to 0, then
there is

δlnΩ = −
∑
l

ln(
al

2Nl − 1
)δal = 0 (11)

But these δal are not independent, they must meet the following condi-
tions

δN =
∑
l

δal = 0 δE =
∑
l

εlδal = 0 (12)

In the case where the constraint Eq. 12 is satisfied, Eq. 10 is equivalent
to the following Eq. 13 regardless of the values of the parameters α and β.

−
∑
l

(ln(
al

2Nl − 1
) + α + βεl)δal = 0 (13)

Under the conditions given by Eq. 12, it makes the two δal cannot take
any value. It is possible to set the two to determine δa1 and δa2. Then α
and β can be determined by the following equation.

ln
a1

2N1 − 1
+ α + βε1 ln

a2

2N2 − 1
+ α + βε2 (14)

Reduce Eq. 13 to∑
l=3

(ln(
al

2Nl − 1
) + α + βεl)δal = 0 (15)

Since each δal in Eq. 15 can take values independently, the coefficient of
δal in Eq. 15 is required to be equal to 0, that is :∑

l=3

(ln(
al

2Nl − 1
) + α + βεl) = 0 l = 1, 2, 3, . . . (16)
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Eq. 17 can be derived from Eq. 16 and 14.

al = (2N − 1)e−α−βεl (17)

In summary, the total number of particles is:

N =
∑
l

(2Nl − 1)e−α−βεl (18)

Internal energy is the statistical average of the total energy of the irregular
motion of particles in the system. So internal energy can be expressed as

U =
∑
l

alεl =
∑
l

εl(2
N − 1)e−α−βεl (19)

Introduce a partition function whose expression is as follows:

Z =
∑
l

(2N − 1)e−βεl (20)

Eq. 21 can be derived from Eq. 18 and 20.

N = e−αZ (21)

Substituting Eq. 21 into Eq. 19, eliminating α, Eq. 22 can be obtained
as fllows:

U = −N ∂

∂β
lnZ (22)

The change of the system’s internal energy dU in the process is equal to
the sum of the work dW done by the outside world on the system and the
heat dQ absorbed by the system from the outside.

dU = dQ+ dW (23)

The force applied to a particle at the entropy of the energy level εl is ∂εl
∂y

.
Therefore, the generalized force exerted by the outside world on the system
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is:

Y =
∑
l

∂εl
∂y

al

=
∑
l

∂εl
∂y

(2N − 1)e−α−βεl

= e−α(− 1

β

∂

∂y
)
∑
l

∂εl
∂y

(2N − 1)e−βεl

=
N

Z
(− 1

β

∂

∂y
)Z

= −N
β

∂

∂y
lnZ

(24)

Where Y is the generalized force of the external system corresponding to
the external parameter y.

The heat absorbed by the system from the outside during the process is
related to the process, so dQ is not a full differential but an infinitesimal
amount. It is proved by the second law of thermodynamics that dQ has
integral factor 1

T
, and multiplying 1

T
by dQ gives the complete differential

dS:
1

T
dQ =

1

T
(dU − Y dy) = dS (25)

Eq. 26 can be derived from Eq. 22, Eq. 22 and Eq. 25.

dQ = dU − Y dy

= −Nd(
∂ lnZ

∂β
) +

N

β

∂ lnZ

∂y
dy

(26)

Eq. 26 is simultaneously multiplied by β :

β(dU − Y dy) = −Nβ(
∂Z

∂β
) +N

∂ lnZ

∂y
dy (27)

Because the partition function Z is a function of β and y, the full differ-
ential of lnZ :

d lnZ =
∂ lnZ

∂β
dβ +

∂ lnZ

∂y
dy (28)
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Eq. 29 can be derived from Eq. 27 and Eq. 28.

β(dU − Y dy) = Nd(lnZ − β ∂

∂β
lnZ) (29)

Then the expression of S can be derived from Eq. 4 and 29. Let β = 1
kT

S = Nk(lnZ − β ∂

∂β
lnZ) (30)

Suppose the probability that the particle is on the quantum state l is Pl

Pl =
(2N − 1)e−α−βεl

N
(31)

Obviously Pl satisfies the normalization condition.∑
l

Pl = 1 (32)

Eq. 33 can be derived from Eq. 30 :

S = Nk(lnZ − β ∂

∂β
lnZ)

= Nk(lnZ + βε̄)

(33)

Where ε̄ is the average energy of the localized system , which can be
expressed as :

ε̄ =
∑
l

Plεl (34)

Bring Eq. 34 into Eq. 33 :

S = Nk(lnZ + βε̄)

= NkPl
∑
l

(lnZ + βεl)
(35)

Eq. 36 can be derived from Eq. 31.

− ln(
Pl

2N − 1
) = βεl + lnZ (36)

Bring the Eq. 36 into the Eq. 35

S = −Nk
∑
l

Pl ln(
Pl

2N − 1
) (37)

In the dempster-shafer evidence theory, S is called entropy which can be
regarded as the promotion of Shannon entropy.
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4. Discussion

In this section, Deng Entropy will be discussed briefly. Dempster-Shafer(D-
S) evidence theory is widely used in many theories, Deng Entropy as a tool
to measure basic probability assessment(BPA) in D-S evidence theory [3, 4].
Note that when BPA degenerates into probability, Deng entropy [2] degen-
erates into Shannon entropy [5].

In order to further demonstrate Deng Entropy, a concrete example is
shown Give a framework of discernment X = {a, b}, for a mass function
m(a) = m(b) = 1

2
, so the corresponding Shannon entropy H and Deng

entropy Ed are:
H = −1

2
× log 1

2
− 1

2
× log 1

2
= 1

Ed = −1
2
× log 1

2
− 1

2
× log 1

2
= 1

It can be clearly seen that when the belief is assigned to a single element,
the results of Deng entropy and Shannon entropy are consistent.

5. Conclusion

In this paper, based on the localized system, a new entropy Deng entropy
is derivedassuming that the particles have superposition states.
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