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Abstract: The radial velocity formula and the Planck-Einstein relation give us the zbw frequency 
(E = ħω = E/ħ) and zbw radius (a = c/ω = cħ/mc2 = ħ/mc) of  the electron. We interpret this by 
noting that the c = aω identity gives us the E = mc2 = ma2ω2 equation, which suggests we should 
combine the total energy (kinetic and potential) of two harmonic oscillators to explain the electron 
mass. We do so by interpreting the elementary wavefunction as a two-dimensional (harmonic) 
electromagnetic oscillation in real space which drives the pointlike charge along the zbw current 
ring. This implies a dual view of the reality of the real and imaginary part of the wavefunction: 

1. The x = a·cos(ωt) and y = a·sin(ωt) equations describe the motion of the pointlike charge. 
2. As an electromagnetic oscillation, we write it as E0 = E0·cos(ωt+π/2) + i·E0·sin(ωt+π/2).   

The magnitudes of the oscillation a and E0 are expressed in distance (m) and force per unit charge 
(N/C) respectively and are related because the energy of both oscillations is one and the same. The 
model – which implies the energy of the oscillation and, therefore, the effective mass of the electron 
is spread over the zbw disk – offers an equally intuitive explanation for the angular momentum, 
magnetic moment and the g-factor of charged spin-1/2 particles. Most importantly, the model also 
offers us an intuitive interpretation of Einstein’s enigmatic mass-energy equivalence relation. Going 
from the stationary to the moving reference frame, we argue that the plane of the zbw oscillation 
should be parallel to the direction of motion so as to be consistent with the results of the Stern-
Gerlach experiment.  
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1 Introduction 

The Zitterbewegung model of an electron is attractive because it offers a physical explanation for properties 
of matter which, in the mainstream interpretation of quantum mechanics, remain largely unexplained. 
Think, for example, of the angular momentum and the (related) magnetic moment of an electron. These just 
pop up as mathematical quantities in the mainstream Copenhagen interpretation of quantum physics, which 
basically tells us to not ask the question: what could they possible be? As such, the Zitterbewegung 
interpretation of quantum mechanics does hark back to Einstein’s and Schrödinger’s original intuition: if 
Nature is probabilistic, then something must explain the probabilities. 

A related reason for the intuitive appeal of the zbw theory is its effortless integration of the idea of wave-
particle duality: the zbw presents the electron as a pointlike electric charge which oscillates around some 
center. The charge itself is pointlike1 and has no rest mass (it moves at the velocity of light). As such, the 
idea of a pointlike or dimensionless charge is separated from the concept of the particle, which does take up 
some space (the oscillation has a radius) and, because of the energy in the oscillation, acquires some inertia 
to motion. It must, therefore, have some (rest) mass.  

The next step is to explain the physical nature of the oscillation and to explain the energy (or the rest mass) 
of the electron in terms of the energy of the oscillation. The oscillation in this model must be 
electromagnetic (as opposed to, say, gravitational) because the force can only grab onto an electric charge. 
However, we should not get ahead of ourselves here. Before we fully develop the model, we will review some 
math.  

2 The basics of the model 

Let us consider an electron traveling in the positive x-direction at constant speed v. Hence, its position, in 
our reference frame, as a function of time, is equal to x(t) = v·t. Let us denote the position and time in the 
reference frame of the electron itself by x’ and t’. The position of the electron in its own reference frame, , is 
x’(t’) = 0 for all t’, and the position and time in the two reference frames are related as follows: 

𝑥ᇱ =
𝑥 − 𝑣𝑡

ට1 −
𝑣ଶ

𝑐ଶ

=
𝑣𝑡 − 𝑣𝑡

ට1 −
𝑣ଶ

𝑐ଶ

= 0 

𝑡ᇱ =
𝑡 −

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ

 

If we denote the energy and the momentum of the electron in our reference frame as Ev and p = m0v, then 
the argument of the (elementary) wavefunction a·ei can be re-written as follows: 

                                            
1 The idea of a pointlike charge – or an elementary particle – is that there is no underlying internal 
structure. We will not worry here about the question of whether or not its spatial dimension might actually 
be zero because the idea of the classical electron radius (re ≈ 2.82×10−15 m) might still make sense. In this 
context, we may remind the reader that the ratio of the classical electron radius (aka Thomson or Lorentz 
radius) and the zbw radius (i.e. the Compton radius rc ≈ 386×10−15 m)  is equal to the fine-structure 
constant α ≈ 1/137 ≈ 0.0073, and that we can use the α ratio once again to get the size of the electron 
orbital (the Bohr radius of the hydrogen atom): a0 = rBohr = (386/α)×10−15 m ≈ 53×10−12 m. This ratio (the 
fine-structure constant α) between these three radii is arguably the most intriguing geometric relation in all 
of physics.      
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θ =
1
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(E௩𝑡 − p𝑥) =

1

ℏ

⎝

⎛
E଴

ට1 −
𝑣ଶ

𝑐ଶ

𝑡 −
E଴𝑣

𝑐ଶට1 −
𝑣ଶ

𝑐ଶ

𝑥

⎠

⎞ =
1

ℏ
E଴

⎝

⎛
𝑡

ට1 −
𝑣ଶ

𝑐ଶ

−

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ ⎠

⎞ =
E଴

ℏ
𝑡′ 

This well-known relativistic invariance of the argument of the wavefunction2 makes one think that the 
wavefunction might be more real – in a physical sense, that is – than the various wave equations 
(Schrödinger, Dirac, Klein-Gordon) for which it is some solution.  

However, should we equate the x and t variables with what we think might be the actual position, in space 
and in time, of our electron? It is surely not the standard interpretation of the wavefunction. In the 
standard interpretation, we will think of the (elementary) wavefunction a·ei = a·cos + i·a·sin as a 
function from some domain (Δx, Δt) to an associated range of values a·ei.  

For example, if we limit Δt to one value only and, for simplicity, we reduce space to some line, then the 
domain reduces to Δx = [x1, x2] and Δt = t0) and we will think of the absolute square of the wavefunction 
ǀa·eiǀ2 = a2 as the probability density to find our particle at some point x in the Δx = [x1, x2] interval, as 
illustrated below.    

 

Figure 1: The standard interpretation of the elementary wavefunction 

The interpretation assumes a normalization of the wavefunction. Normalization is a mathematical operation: 
it ensures the probabilities add up to one.3 It does not answer Einstein’s (or Schrödinger’s) question to Born 
and Heisenberg: if Nature is probabilistic, what explains the probabilities? Any attempt to answer that 
question would probably want to relate the probability of actually finding the particle in some volume to 
the energy density in the volume. The energy of an oscillation is always proportional to the square of its 
amplitude. It, therefore, makes sense to write:  

𝑃 ∝ |ψ|ଶ  =  |𝑎𝑒ି௜ఏ|ଶ = |𝑎|ଶ|cosθ − 𝑖sinθ|ଶ = 𝑎ଶ(cosଶθ + sinଶθ) = 𝑎ଶ 

Note that we took care to not write P = ǀψ2ǀ. There must a proportionality factor. What could it be? The 
energy will also be proportional to the square of the frequency. We write:  

E ∝ 𝑎ଶ ∙ ωଶ 

What else could enter the equation? As we cannot think of anything else, we may write the proportionality 
relation as:  

                                            
2 E0 is, obviously, the rest energy and, because p’ =  0 in the reference frame of the electron, the argument 
of the wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself. 
3 The language is sometimes somewhat sloppy. Probabilities and probability densities are two different 
mathematical concepts. A probability is related to an interval. In contrast, the probability density is, 
effectively related to a specific point in spacetime. To calculate a probability, one should integrate 
probability densities over some larger or smaller interval. Hence, we should write the probability of finding a 
particle in some interval dx as P·dx.  
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E = 𝑚 ∙ 𝑎ଶ ∙ ωଶ 

The m in this equation is just a proportionality coefficient. It is not a mass concept. Not yet, that is. 
Indeed, the structural equivalence between the formula above and Einstein’s E = mc2 equation makes us 
wonder: could m and m the same? An obvious implication of the Einstein’s E = mc2 equation is that the 
ratio between the energy and the mass of any particle is always equal to c2: 

𝐸௘௟௘௖௧௥௢௡

𝑚௘௟௘௖௧௥௢௡

=
𝐸௣௥௢௧௢௡

𝑚௣௥௢௧௢௡

=
𝐸௣௛௢௧௢௡

𝑚௣௛௢௧௢

=
𝐸௔௡௬ ௣௔௥௧௜௖௟௘

𝑚௔௡௬ ௣௔௥௧௜௖௟௘

= 𝑐ଶ 

Would it make sense to equate c2 and a2ω2? The physical dimensions are the same: [a2ω2] = [a2ω2] = m2/s2. 
Mass is a measure of inertia and, hence, the [E/m] dimensions works out too: [E/m] = (Nm)/(Ns2/m) = 
m2/s2. This is interesting. If the m in the E = mc2 and E = ma2ω2 are not the same, then they should only 
differ because of some scaling constant. Some absolute number – a number like the fine-structure constant, 
for example. Of course, we think m and m are, effectively, one and the same thing, but we will rest our case 
for the time being and first re-explore elementary wavefunction math. 

Let us forget the standard interpretation of the elementary wavefunction for a while to explore the idea that 
the real and imaginary part of the elementary wavefunction a·ei might, perhaps, represent a real 
oscillation in space. To be precise, we will want to think of them as two orthogonal oscillations driven by 
the same function but with a phase difference of 90 degrees, as visualized below: the combination of the 
sinuisoidal and cosinusoidal motion makes the green dot go around in a circle.4  

 

Figure 2: Euler’s ei = cos + i·sin formula 

In the Zitterbewegung model of an electron, we will be thinking of the green dot as a pointlike charge. 
However, if this two-dimensional oscillation is driven by an actual force on our charge, then we need to 
develop a dual view of what might be happening here. On the one hand, we can use the complex exponential 
(the elementary wavefunction, that is) to describe the motion of the green dot, which is the pointlike charge 
in the zbw model. In that case, we have two position variables x and y, whose physical dimension is just the 
distance unit (meter), and we write:  

a·ei = x + i·y with x = a·cos(ωt) and y = a·sin(ωt) 

Of course, we can also think of a position vector r = x + y here. Hence, we can represent a·ei as a point 
or as a vector.5 We write: 

𝒓 ≡ 𝒙 + 𝒚 ≡ 𝑎 ∙ 𝑒௜ఏ ≡ (𝑥, 𝑦) ≡ 𝑥 + 𝑖 ∙ 𝑦 

                                            
4 Papers do not do animations, unfortunately. For the animation, see 
https://en.wikipedia.org/wiki/Sine#/media/File:Circle_cos_sin.gif. For its source, see: 
https://commons.wikimedia.org/wiki/User:LucasVB. 
5 Boldface notation (e.g. r = x + y) denotes a vector, i.e. an object with a magnitude r = ǀ r ǀ and, 
importantly, a direction in three-dimensional space. 
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But, as mentioned, if we think the oscillation is driven by some real force, then there is a dual view. Indeed, 
if the motion driven by two orthogonal (oscillating) fields, then we should associate some force with these 
fields. We have two obvious candidates for the physical dimension of the field here: force per unit mass 
(N/kg), or force per unit charge (N/C). The zbw model assumes a pointlike charge with no internal 
structure and, therefore, no mechanical mass. Hence, the force can only grab onto the charge and must, 
therefore, be electromagnetic in nature. We should, therefore, write something like this: 

E0 = Ex + Ey = E0·ei = E0·cos(ωt) + i·E0·sin(ωt) = Ex + i·Ey 

This is familiar to us because it is the geometric representation of a circularly polarized electromagnetic: a 
rotating electric field vector (E) which is analyzed as the sum of two orthogonal components: E = Ex + Ey.6   

 

Figure 3: Left- and right-handed polarization7 

However, there are a few issues here, which may or may not be difficult to deal with. First, if the motion is 
driven by an oscillating field, then the position and field vectors r and E0 should be orthogonal to one 
another. To be specific, and exploiting the convention that a multiplication by the imaginary unit amounts 
to a rotation of 90 degrees in the counterclockwise direction, we write: E0 = i·r.8 This is illustrated below. 
It should be noted that the mentioned convention establishes some absolute space: the notion of clockwise 
and counterclockwise implies a viewpoint – a line of sight between the subject and the object.9   

 

 

 

 

 

                                            
6 One should not confuse the electric field vector E with the energy E. Boldface is used to denote a vector. 
Of course, there is scope for confusion because we write E to denote the magnitude of the electric field. We 
cannot use the subscript (E0 or E0) to distinguish these concepts because we will use the subscript to (also) 
denote the rest energy (E0). However, we will try to consistently use italics (or not). In any case, the context 
should make clear what we are talking about. 
7 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 
8 We make abstraction of the fact that E and r are measured in very different physical units here: force per 
unit charge (N/C) versus distance.  
9 It is a true two-dimensional line of sight because it has two directions: the observer is either in front of 
what is being observed or, else, he or she is looking at the object from behind. In the latter case, a clockwise 
rotation becomes a counterclockwise rotation, and vice versa. The reader may wonder why we would bother 
to mention this, but it is not a minor point: it resolves the issue of the weird 720-degree symmetry of the 
wavefunction – which we will discuss in a later section of this paper. 
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Figure 4: Orthogonal field and position vectors 

Hence, the field vector E0 = i·r can be written as10: 

E0 = a·i·cos(ωt) + a· i2·sin(ωt) = a·cos(ωt+π/2)  a·i sin(π/2ωt)  

= a·cos(ωt+π/2) + i·a· sin(ωt+π/2) 

The attentive reader should immediately note a mistake here: for no reason whatsoever, we assumed that 
the numerical value of the (maximum) amplitude of the field (E0) would be equal to the (maximum) 
amplitude of the physical oscillation (a). There is no obvious reason for that and we should, therefore, 
correct the mistake and write our field vector E0 as: 

E0 = E0·cos(ωt+π/2) + i·E0·sin(ωt+π/2) 

Of course, we will want to relate the two amplitudes (note that E0 is expressed in N/C units, while a is just 
a simple distance). In Section 5, we will show we can do this because the energy in the two oscillations 
should, obviously, be the same. We will show there that we get the following elegant formula for the force 
(F) on the charge (qe):  

𝐹 = 𝑞௘𝐸଴ =
𝑚𝑐ଶ

2𝜋𝑎
=

E

λୣ

 

This is a very elegant formula which we should probably relate to the results of the Compton scattering 
experiments, which use light of a similar wavelength. We will come back to this. As for now, we should note 
that we associate one wavefunction with two very different things: the motion of the charge, and the 
oscillation of the field. However, their frequency is the same. It is given by the Planck-Einstein relation: ω = 
E/ħ.  

This solves our problem in regard to m and m. The c2 = a2ω2 identity suggests we can, somehow, distribute 
the energy over the amplitude and the frequency. It suggests, for example, that we could have an oscillation 
with twice the frequency but half of the amplitude (which would give it the same energy), but we cannot. 
The Planck-Einstein relation gives us the frequency. The obvious question is: why can we use the Planck-
Einstein relation in this context? The answer is equally obvious: because the fundamental nature of the 
oscillation is electromagnetic. We may, therefore, propose a very elegant derivation of the Zitterbewegung 
radius: 

E = ℏω = 𝑚𝑎ଶωଶ ⟺ 𝑎ଶ =
ℏ

𝑚𝜔
=

ℏଶ

𝑚 ∙ 𝑚𝑐ଶ
⟺ 𝑎 =

ℏ

𝑚𝑐
 

                                            
10 See: http://mathonweb.com/help_ebook/html/trigids.htm.  
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The derivation answers a typical question of a freshman in physics: the energy of an oscillation is always 
proportional to the square of its amplitude, so why is there no square in the E = ħω formula? The answer 
is: the energy of an electromagnetic oscillation is proportional to both ω and ω2. We just have a different 
proportionality constant in the two formulas: ħ versus ma2. 

We have presented the basics of the model, but the skeptical reader will probably need more convincing. 
The next sections are intended to walk him or her through the model at a much more leisurely pace. They 
will also explore some conceptual issues which we have not dealt with. These issues include the following: 

1. The model assumes a force field, but the line of action of the force is the oscillating charge. Hence, 
there is no real center for the oscillation. 

2. What about the magnetic force? The moving charge should generate a magnetic field. 
3. More generally, the moving charge should radiate the energy away. 

These questions are valid concerns, and we do not have any definite answer to them. However, the remarks 
below may help the reader to develop his or her own view on them. Before getting into the nitty-gritty of it 
all, we will first remind the reader of the history of the Zitterbewegung hypothesis. 

3 Schrödinger’s Zitterbewegung 

The equations for the relativistic transformation of the space and time coordinates in the argument of the 
wavefunction – which show its argument is invariant – assume the relativistically correct definition of 
energy and momentum is used: E = mc2 = m0c2  and p = mv = m0v. Schrödinger’s (non-relativistic) wave 
equation does not use the relativistically correct energy equation. Instead, it incorporates kinetic energy 
only11 and, therefore, excludes most of the energy of our electron, which is the rest mass. However, 
Schrödinger also explored solutions to Dirac’s wave equation for free electrons, whose energy operator does 
include the rest energy. These explorations led to the discovery of the Zitterbewegung: a local very high-
frequency oscillatory motion of the electron.12 In 1933, he shared the Nobel Prize for Physics with Paul 
Dirac for “the discovery of new productive forms of atomic theory”, and it is worth quoting Dirac’s 
summary of Schrödinger’s discovery: 

“The variables [in Dirac’s wave equation] give rise to some rather unexpected phenomena 
concerning the motion of the electron. These have been fully worked out by Schrödinger. It is found 
that an electron which seems to us to be moving slowly, must actually have a very high frequency 
oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a 
result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. 
This is a prediction which cannot be directly verified by experiment, since the frequency of the 
oscillatory motion is so high and its amplitude is so small. But one must believe in this consequence 
of the theory, since other consequences of the theory which are inseparably bound up with this one, 
such as the law of scattering of light by an electron, are confirmed by experiment.”13 

Hestenes (1990, 2008) and Celani et al. (2017) may be credited with a revival of what is sometimes referred 
as the Zitterbewegung interpretation of quantum mechanics. The idea is visualized in the illustration below , 
which depicts an accelerating electron reaching relativistic speeds: as it is assumed that the velocity of the 
pointlike charge cannot exceed the speed of light, the radius of the circulatory motion must effectively 
diminish as the electron gains speed.  

                                            
11 Of course, it may also include potential energy because of the presence of a positively charged nucleus, 
but we will not consider this for the moment. 
12 The term can be translated as a shaking or trembling motion. It is often abbreviated as zbw or just Zitter.   
13 See: Paul A.M. Dirac, 12 December 1933, Nobel Lecture, Theory of Electrons and Positrons, 
https://www.nobelprize.org/uploads/2018/06/dirac-lecture.pdf. 
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Figure 5: The presumed Zitterbewegung (zbw) of an electron14 

The rather peculiar length scale (1/eV) in the illustration above is based on the E = hf = hc/λ formula for 
electromagnetic radiation. As such, it is a natural distance unit. However, one might – and probably should 
– make the case for considering the radius of the circulatory motion itself as a natural unit, as it is equal to 
the reduced Compton wavelength ħ/mc ≈ 386×10−15 m = 0.386 pm (picometer). Hence, the circumference of 
the loop corresponds to the non-reduced Compton wavelength, which is equal to λe = h/mc ≈ 2.452 pm. 
This is an extremely small distance: it is the order of magnitude of the wavelength of hard gamma rays. 
Also, because the angular velocity of the pointlike charge is equal to the speed of light, the angular 
frequency of the rotation is an equally astronomic number: ωe = E/ħ ≈ 0.776×10−21 rad/s. These are, 
effectively, values that cannot be measured. The model is, therefore, theoretical only. Why, then, is there so 
much interest in the model?  

As Dirac already notes, the idea of the Zitterbewegung is very intuitive – and, therefore, very attractive – 
because it seems to give us a geometric (or, we might say, physical) explanation of the (reduced) Compton 
wavelength as the Compton scattering radius of an electron (a = ħ/mc).15 However, if we think of an actual 
physical interpretation, then it is quite obvious that the suggested plane of circulatory motion is not 
consistent with the measured direction of the magnetic moment – which, as the Stern-Gerlach experiment 
has shown us, is either up or down. Hence, we may want to think the plane of oscillation might be parallel 
to the direction of propagation, as drawn below. 

 

Figure 6: The actual Zitterbewegung of an electron? 

                                            
14 Source: Francesco Celani et al., The Electron and Occam’s Razor, November 2017, 
https://www.researchgate.net/publication/320274514_The_Electron_and_Occam's_Razor.  
15 The term physical (or geometric) explanation is used here as a contrast to the merely mathematical proof 
(based on the principles of the conservation of energy and momentum) of the Compton scattering formula 
which, we may remind the reader, is equal to λ'-λ=h/mc (1-cosθ). 
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We should add that the derivation of the presumed Zitterbewegung as a mathematical solution to a wave 
equation is also not very intuitive: it does not give us an explanation for its nature. This paper aims to 
present a simpler and more intuitive model.  

4.  E = mc2 = ma2ω2 = ħ 

Combining (1) the idea of a pointlike charge and (2) the idea of an oscillation in two orthogonal directions – 
resulting in circular or rotational motion – one might be tempted to bluntly equate the E = m·c2 and E = 
m·a2·ω2 equations, also using the ω = E/ħ = m·c2/ħ equation. If we do so, we immediately get the radius 
for our Zitterbewegung, which – as mentioned above – is equal to the (reduced) Compton wavelength: 

E = m·c2 = m·a2·ω2 = m·a2·(E/ħ)2  a = ħ/mc 

The m·a2·ω2 adds the kinetic and potential energy of two oscillators working in tandem as a perpetuum 
mobile.16 The E = m·a2·ω2 = ħω equation follows naturally from the c2 = a2·ω2 identity. Thinking of the 
Zitterbewegung as being caused by some real oscillation in two dimensions, we also get an intuitive 
explanation of why the effective mass of our electron (me) will be spread over a disk, as opposed to viewing 
the electron as a current ring only. To be precise, the effective mass of our electron is explained here as the 
equivalent mass of the energy in this two-dimensional oscillation.  

We can now use the correct form factor for the angular momentum formula. It must be 1/2, because we do 
think of the effective mass of our electron as being spread over a disk. Hence, we get the value we would 
want to get for a spin-1/2 particle: 

L = I ∙ ω =
𝑚𝑎ଶ

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

Of course, the model also yields the correct value for the magnetic moment. Indeed, if our pointlike charge 
is, effectively, going around in a loop, the effective current will be equal to the charge (qe) divided by the 
period (T) of the orbital revolution: I = qe/T. The period of the orbit is the time that is needed for the 
electron to complete one loop, so T is equal to the circumference of the loop (2π·a) divided by the 
tangential velocity (v). Using our results, we should substitute v for c and a for the Compton radius a = 
ħ/(m·c). The formula for the area is A = π·a2 and, hence, we get: 

μ = I·A = (qe /T)·(π·a2) = [(qe·c)/(2π·a)]·(π·a2) = [(qe·c)/2]·a = [(qe·c)/2]·[ħ/(m·c)]  

= (qe/2m)·ħ 

This is great, because we explained the mysterious g-factor for the pure spin moment of an electron: 2. 
Moreover, we did so without having to invoke the notion of (Larmor) precession.17   

Last but not least, the explanation above offers an intuitive understanding of Einstein’s enigmatic mass-
energy equivalence relation (E = m·c2) which – in our humble view – is the single biggest advantage of this 
rather simplistic model. Of course, we have used the rest mass of the electron. This is where the exact 
wording of Dirac’s description of the Zitterbewegung becomes very relevant: a very high frequency motion 
(of small amplitude) which is superposed on the regular motion. The regular motion is given by the kinetic 

                                            
16 We presented the metaphor of a V-2 engine, or springs that are connected to a crankshaft in a 90-degree 
angle in previous papers and, hence, we will not repeat ourselves here. See: 
http://vixra.org/author/jean_louis_van_belle.  
17 See Feynman (Lectures, II-34-2) for a good conceptual discussion of the g-factor in classical and quantum 
mechanics. The reader will know quantum physicists calculate a slightly different g-factor (about 2.0023193) 
but that is because they use a formula based on the fine-structure constant. In other words, their model is 
“deep down in relativistic quantum mechanics”, as Feynman would put it, and, therefore, not relevant in 
the context of the discussion here. 
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energy and/or the momentum of the electron. Can we combine them in a single wavefunction – or a single 
wave equation? 

5.  Spacetime elasticity: c2 as the defining property of spacetime 

The E = m·a2·ω2 is intuitive: the energy of any oscillation will be proportional to the square of (1) the 
(maximum) amplitude of the oscillation and (2) the frequency of the oscillation, and the mass appears as 
the proportionality coefficient. But what does it mean?  

When everything is said and done, we should admit that the bold c2 = a2·ω2  assumption interprets 
spacetime as a relativistic aether – a term that is taboo but that is advocated by Nobel Prize Laureate 
Robert Laughlin18. It is inspired by the most obvious implication of Einstein’s E = mc2 equation, and that is 
that the ratio between the energy and the mass of any particle is always equal to c2: 

𝐸௘௟௘௖௧௥௢௡

𝑚௘௟௘௖௧௥௢௡

=
𝐸௣௥௢௧௢௡

𝑚௣௥௢௧௢௡

=
𝐸௣௛௢௧௢

𝑚௣௛௢௧௢

=
𝐸௔௡௬ ௣௔௥௧௜௖௟௘

𝑚௔௡௬ ௣௔௥௧௜௖௟௘

= 𝑐ଶ 

This reminds us of the ω2 = C1/L or ω2 = k/m of harmonic oscillators19 – with one key difference, however: 
the ω2= C1/L and ω2 = k/m formulas introduce two (or more20) degrees of freedom. In contrast, c2= E/m 
for any particle, always. The reader will probably say: so what? However, this is the point that we are 
making here: we can modulate the resistance, inductance and capacitance of electric circuits, and the 
stiffness of springs and the masses we put on them, but we live in one physical space only: our spacetime. 
Hence, the speed of light c emerges here as the defining property of spacetime. It is, in fact, tempting to 
think of it as some kind of resonant frequency but the c2 = a2·ω2 hypothesis tells us it defines both the 
frequency as well as the amplitude of what we will now refer to as the rest matter oscillation.21 The energy 
state of the particle gives us the frequency through the ω = E/ħ = m·c2/ħ equation, and then we get the 
amplitude (or the radius of the oscillation, we should say) from the a = c/ω identity, which is just the 
formula for the angular velocity (c = a·ω). 

The obvious question is: what is the nature of this two-dimensional oscillation? If the two perpendicular 
(and, therefore, independent) oscillations are real, then they should be driven by some real field. What field? 
What physical dimension would it have? There are two obvious candidates: 

1. Force per unit charge (coulomb), which is the physical dimension of the electric field. 
2. Force (newton) per unit mass (kg), which is the physical dimension of a gravitational field – which 

reduces to the physical dimension of an acceleration (N/kg = m/s2). 

When we first started thinking about this model, we briefly entertained the latter idea.22 However, it does 
not seem to be compatible with the Zitterbewegung model: the force needs something to grab onto and, in 

                                            
18 Robert Laughlin (2005), as quoted in the Wikipedia article on aether theories 
(https://en.wikipedia.org/wiki/Aether_theories).   
19 The ω2= 1/LC formula gives us the natural or resonant frequency for an electric circuit consisting of a 
resistor (R), an inductor (L), and a capacitor (C). Writing the formula as ω2= C1/L introduces the concept 
of elastance, which is the equivalent of the mechanical stiffness (k) of a spring. Needless to say, the k in the 
ω2 = k/m equation is the mechanical stiffness which has, obviously, nothing to do with wavenumber k = 
p/ħ in the wavefunction.  
20 We will usually include a resistance in an electric circuit to introduce a damping factor. Also, when 
analyzing a mechanical spring, one may also want to introduce a drag coefficient. Both are usually defined 
as a fraction of the inertia, which is the mass for a spring and the inductance for an electric circuit. Hence, 
we would write the resistance for a spring as γm and as R = γL respectively.  
21 It is, of course, the Zitterbewegung idea but, importantly, complemented with the idea of a two-
dimensional oscillation. 
22 See: Jean Louis Van Belle, 22 October 2017, The Quantum-Mechanical Wavefunction as a Gravitational 
Wave, http://vixra.org/abs/1709.0390. 
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this model, the only thing it can grab onto is a pointlike charge which has no internal structure and, 
therefore, no mechanical mass whatsoever. Hence, the remaining option is to think that our pointlike charge 
is effectively being driven by some weird two-dimensional electromagnetic field. In fact, that is not too 
difficult, because the geometric representation of a circularly polarized electromagnetic wave already offers 
us such picture: the rotating electric field vector E can be analyzed as the sum of two orthogonal 
components: E = Ex + Ey.23   

 

Figure 7: Left- and right-handed polarization24 

If the motion is driven by an electromagnetic oscillation, then we should be able to relate the radius a to the 
amplitude of the electric field. How can we do that? The angular frequencies of the electromagnetic 
oscillation and the circular motion of our pointlike charge should be the same. Fortunately, we know that is 
the case. Referring to the results obtained in section 1, we write: 

ǀExǀ = Ex = E0·cos(ωt+π/2) and ǀEyǀ = Ey = E0·sin(ωt+π/2), with ω = E/ħ 

However, the numerical value of the amplitudes may differ. In fact, they are very likely to differ because we 
describe the Zitterbewegung in actual distance units: 

x = a·cos(ωt) and y = a·sin(ωt), with a = ħ/mc ≈ 386×10−15 m 

In contrast, the magnitude (or amplitude) of the electric field (E0, Ex or Ey) is measured in force per unit 
charge (N/C) units. How can we relate the two? We have a dual view of the reality of the wavefunction 
here: 

1. The x = a·cos(ωt) and y = a·sin(ωt) equations describe the motion of our pointlike charge. 
2. As electromagnetic oscillation, we write it as E0 = Ex + i·Ey = E0·cos(ωt+π/2) + i·E0·sin(ωt+π/2).   

The magnitudes of the oscillation a and E0 are expressed in distance (m) and force per unit charge (N/C) 
respectively and must be related because the energy of both oscillations is one and the same (E = ħω). Now, 
we know the energy density in an electromagnetic oscillation is given by: 

𝑢 =
𝜖଴

2
𝑬 ∙ 𝑬 +

𝜖଴ ∙ 𝑐ଶ

2
𝑩 ∙ 𝑩 =

𝜖଴

2
𝐸𝟐 +

𝜖଴ ∙ 𝑐ଶ

2
𝐵𝟐 =

𝜖଴

2
𝐸𝟐 +

𝜖଴ ∙ 𝑐ଶ

2

𝐸ଶ

𝑐ଶ
= 𝜖଴ ∙ 𝐸ଶ 

It might be useful to remind ourselves of the energy density unit: E2 – which we will write as E0
2 to avoid 

confusion with the E for energy – is expressed in N2/C2, while ε0 is expressed in C2/ N·m2. Hence, we get 
the expected force per unit area unit (N/m2).25 To get the total energy, we need to integrate this – but over 
what? A point, a line, a volume?  

                                            
23 One should not confuse the electric field vector E with the energy E. Boldface is used to denote a vector. 
Of course, there is more scope for confusion when we will use E to denote the magnitude of the electric field, 
which we will do shortly. The context should make clear what we are talking about. 
24 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 
25 Multiplication by m/m gives us joule (or energy) per unit volume. 
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This is where the above-mentioned conceptual issue arises: the model assumes a force field, but the line of 
action of the force is the oscillating charge. Hence, there is no real center for the oscillation. It is not easy to 
answer this question. In fact, perhaps we cannot. But we can make some remarks which may or may not 
help us to think it through.  

First, we should note the concept of an energy density itself is somewhat ambiguous: we define the energy 
density at a zero-dimensional point, but its physical dimension is force per unit area. As such, it resembles 
the concept of a probability density: we need to integrate it over a line, or over some volume, in order to get 
the more meaningful concept of a probability.26 Hence, the following may or may not make sense. If the 
force needs to grab onto the charge and, hence, the line of action of the force is the current loop. Now, the 
force is the field times the charge (F = qe·E0), and the circumference is 2π·a. Hence, the work done (or the 
energy) over one cycle is equal to:  

W = F·2π·a = 2π·qe·E0·a 

We know need to think about the energy concepts (kinetic and potential) that are associated with a 
harmonic oscillator. We know the energy in such oscillator is constant. However, we also know that it is the 
sum of the kinetic and potential energy that is constant: over one cycle, the kinetic energy will go from 0 to 
its maximum and then back to zero, while the potential energy will go from its maximum value to zero, and 
the back to its maximum value, as shown below. 

 

Figure 8: Kinetic (T) and potential energy (U) in a harmonic oscillator27 

Now, we also know that the kinetic energy and potential energy will vary with the square of the sine or 
cosine function that describes the motion28, and that the average value of the squared sine (or cosine) is 
equal to 1/2.29 To make a long story short, one can show that the energy that will be expended over one 
cycle will be equal to the energy of the oscillator. We can, therefore, equate W and E = mc2 to get the 
following value for E0: 

2𝜋𝑎𝑞௘𝐸଴ = 𝑚𝑐ଶ ⟺ 𝐸଴ =
𝑚𝑐ଶ

𝑞௘

𝑚𝑐

2𝜋ℏ
=

𝑚ଶ𝑐ଷ

2𝜋𝑞௘ℏ
 

                                            
26 The probability of finding a particle at a point is zero because the volume of a point (dx) is zero. This is 
why we say the concept of a probability is more meaningful than the concept of a probability density.  
27  
28 In case the reader would want to see some proof here, we can refer him to section 6, where we develop the 
math associated with a two-dimensional oscillator. 
29 One can easily show this by taking the average value of the cos2(ωt) + sin2(ωt) = 1 identity, as the 
average value of both functions over a full cycle should be the same. 
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The reader will be able to verify that a dimensional analysis of this formula makes sense, and that we also 
get the same formula when using the E = ma2ω2 formula. The formula looks rather horrible but makes more 
sense if we write it in terms of the (constant) force that is acting on the pointlike charge: 

𝐹 = 𝑞௘𝐸଴ =
𝑚ଶ𝑐ଷ

2𝜋ℏ
=

𝑚𝑐

ℏ

𝑚𝑐ଶ

2𝜋
=

𝑚𝑐ଶ

2𝜋𝑎
=

E

λୣ

 

It is an elegant formula: the force is the ratio of the energy and the Compton wavelength of the electron, 
but what does it mean? We are not so sure. It must, somehow, explain the nitty-gritty of the Compton 
scattering experiments – which use light of a similar wavelength – but we need to work this out. It is 
interesting to calculate its actual value: 

𝐹 = 𝑞௘𝐸଴ =
E

λୣ

≈
8.187 × 10ିଵସ J

2.246 × 10ିଵଶ m
≈ 3.3743 × 10ିଶN 

This force is equivalent to a force that gives a mass of about 37.5 gram (1 g = 10-3 kg) an acceleration of 1 
m/s per second. In light of the distance scale, this force is huge and, as such, we would need to think 
through the implications in terms of the distortion of spacetime caused by the presence of such energy in 
such tiny volume. However, this would require a study of general relativity theory and is, therefore, outside 
of the scope of this introductory paper. 

6.  Occam’s Razor and the wavefunction 

We will make a small but necessary digression in this section. We wrote the elementary wavefunction as 
a·ei = a·(cos + i·sin) = a·cos + i·a·cos(π/2  ) = a·cos + i·a·cos(  π/2) above. A minus 
sign in front of our exp(i) function – or, what amounts to the same, taking the complex conjugate – 
reverses the direction of the oscillation: 

 = exp(i) = (cos + i·sin) = cos() + i·sin() = exp(i) = * 

This is obvious. However, we would like to note that we started out with a wavefunction that does not 
respect the usual convention: physicists usually write  as a·ei. Just like Celani et al., we would like to 
invoke Occam’s Razor, which tells us that we should not have any redundancy in a theoretical explanation, 
and the above-mentioned convention may, effectively, be analyzed as a redundancy. Indeed, most 
introductory courses in quantum mechanics will show that only  = exp(i) = exp[i(kxt)] or  = 
exp(i) = exp[i(kxt)] = exp[i(tkx)] would be acceptable waveforms for a particle that is propagating 
in the x-direction – as opposed to, say, some real-valued sinusoid. We would then think some proof should 
follow of why one would be better than the other, or some discussion on why they might be different, but 
that is not the case. The professor usually concludes that “the choice is a matter of convention” and, that 
“happily, most physicists use the same convention.”30 

This is very surprising because we know, from experience, that theoretical or mathematical possibilities in 
quantum mechanics often turn out to represent real things. Here we should think of the experimental 
verification of the existence of the positron (or of anti-matter in general) after Dirac had predicted its 
existence based on the mathematical possibility only. So why would that not be the case here? Occam’s 
Razor tells us that we should not have any redundancy in the description. Hence, if there is a physical 
interpretation of the wavefunction, then we should not have to choose between the two mathematical 
possibilities: they would represent two different physical situations. Of course, the only characteristic that 
can make the difference here would be spin. Hence, we would not agree with the mainstream view that “the 
choice is a matter of convention” and that “happily, most physicists use the same convention”31 but, 
instead, dare to suggest that the two mathematical possibilities may represent identical particles with 

                                            
30 See, for example, the MIT’s edX Course 8.04.1x, Lecture Notes, Chapter 4, Section 3.  
31 See the reference above.  
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opposite spin (i.e. real spin-1/2 particles as opposed to non-existing spin-zero particles), in which case we 
get the following table. 

Spin and direction of travel Spin up (J = +ħ/2) Spin down (J = ħ/2) 
Positive x-direction  = exp[i(kxt)] * = exp[i(kxt)] = exp[i(tkx)] 
Negative x-direction χ = exp[i(kx+t)] = exp[i(tkx)] χ* = exp[i(kx+t)]  

Figure 9: Occam’s Razor: mathematical possibilities versus physical realities 

Of course, the reader will wonder why this point should matter. The answer is that the redundancy in the 
description is directly related to the logic which leads us to the rather uncomfortable conclusion that the 
wavefunction of spin-1/2 particles have a 720-degree symmetry in space. This conclusion is uncomfortable 
because we cannot imagine such objects in space without invoking the idea of some kind of relation between 
the subject and the object (the reader should think of the Dirac belt trick here), which we want to avoid. 
We have written at length about this and other objections to a geometric interpretation of the wavefunction 
before, so we will just refer the reader there.32  

To wrap up the paper, we will present the reader with a metaphor that may help him or her to consider this 
particular physical interpretation of the (elementary) wavefunction. 

7. The metaphor: two-dimensional oscillators 

The reader will be familiar with the formulas for the kinetic and potential energy for one oscillator: these 
energies add up to ma2ω2/2. The visualization of Euler’s formula shows that we can get rid of the 1/2 factor 
by thinking of an oscillation in two dimensions – provided we ensure a phase difference of 90 degrees 
between the two oscillators. Let us quickly go over the math. 

If we refer to the two orthogonal dimensions as the x and y direction33, then we can add the energies of both 
oscillations: 

Etotal = Ekinetic + Epotential = T + U = Ey + Ez = (Ty + Uy) + ( Tz + Uz) 
= m·ω2·a2·[sin2(ω·t + Δ) + cos2(ω·t + Δ)]/2 + m·ω2·a2·[cos2(ω·t + Δ) + sin2(ω·t + Δ)]/2 

= m·a2·ω2/2 + m·a2·ω2/2 = m·a2·ω2 

To focus the mind, we may think of a metaphor: some mechanism which illustrates the principle of energy 
conservation. For example, we can think of a V-2 engine with the pistons at a 90-degree angle, as illustrated 
below. The 90° angle makes it possible to perfectly balance the counterweight and the pistons, thereby 
ensuring smooth travel  always.34 With permanently closed valves, the air inside the cylinder compresses 
and decompresses as the pistons move up and down. It provides, therefore, a restoring force. As such, it will 
store potential energy, just like a spring. In fact, the motion of the pistons will also reflect that of a mass on 

                                            
32 Such objections usually also include the idea that the coefficient (a) of the wavefunction a·ei may be 
complex-valued, whereas in any real interpretation this (maximum) amplitude should be real-valued. This 
objection is also rejected. See: Jean Louis Van Belle, 30 October 2018, Euler’s wavefunction: the double life 
of 1, http://vixra.org/abs/1810.0339.   
33 The x-direction would then be the direction of propagation of the wave. This follows the usual convention 
in quantum mechanics, according to which we will measure something (e.g. angular momentum) along the z-
direction, which is perpendicular to the direction of propagation, i.e. the x-direction. The y-direction is then 
determined by the right-hand rule. We may say this establishes a reference frame that combines the object 
and the subject (the measurement apparatus).   
34 Motorbike lovers will know this is why a Ducati engine (which has the cylinders in a 90-degree angle) is 
more efficient than the 45-degree set-up of, say, a Harley-Davidson. In contrast, the irregular sound of a 
Harley is, obviously, less ordinary than that of an engine designed for efficiency and speed. 
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a spring: it is described by a sinusoidal function, with the zero point at the center of each cylinder. We can, 
therefore, think of the moving pistons as harmonic oscillators, just like mechanical springs.35  

 

Figure 10: Propagation and energy conservation: the V-2 metaphor 

Of course, instead of two cylinders with pistons, one may also think of connecting two springs with a 
crankshaft, and the analogy can also be extended to include two pairs of springs or pistons, in which case 
the springs or pistons in each pair would help drive each other. Making abstraction of friction and other 
worldy imperfections (such as the evacuation of heat), we have a perpetuum mobile. Somehow, in this 
beautiful interplay between linear and circular motion, energy is borrowed from one place and then returns 
to the other, cycle after cycle. While transferring kinetic energy from one piston to the other, the crankshaft 
will rotate with a constant angular velocity: linear motion becomes circular motion, and vice versa. Let us 
briefly review the math. 

Because of the 90-degree angle between the two oscillators, their motion is given by a∙cos(ω∙t + Δ) and 
a∙sin(ω∙t + Δ) = a∙cos(ω∙t + Δ – π/2) respectively.36 The kinetic and potential energy of the first 
oscillator can be calculated as:  

K.E. = T = m∙v2/2 = (1/2)∙m∙ω2∙a2∙sin2(ω∙t) = (1/2)∙m∙ω2∙a2∙sin2 
P.E. = U = k∙x2/2 = (1/2)∙k∙a2∙cos2(ω∙t) = (1/2)∙m∙ω2∙a2∙cos2 

The coefficient k in the potential energy formula characterizes the restoring force: F = −k∙x. From the 
dynamics involved, it is obvious that k must be equal to m∙ω2, which is a fact we use in the formula. Hence, 
the total energy is equal to: E = T + U = (1/2)∙ m∙ω2∙a2∙(sin2 + cos2) = m∙a2∙ω2/2.  

For the second oscillator, we just switch sin for cos in the formulas, and vice versa. However, we get the 
same result when adding kinetic and potential energy. Hence, adding the total energy of the two oscillators, 
we have a perpetuum mobile storing an energy that is equal to twice this amount: E = m∙a2∙ω2. Indeed, it 
is easy to show this engine is, effectively, a perpetuum mobile. The (instantaneous) change of the kinetic 
energy of the first oscillator, as a function of the phase angle θ, will be equal to:  

d(T1)/dθ = d[(1/2)∙m∙ω2∙a2∙sin2θ]/dθ = (1/2)∙2∙m∙ω2∙a2∙sinθ∙[d(sinθ)/dθ] = m∙ω2∙a2∙sinθ∙cosθ 

The motion of the second oscillator is given by the a∙sinθ function, and its kinetic energy is equal to 
(1/2)∙m∙ω2∙a2∙cos2θ. Hence, how it changes – as a function of θ – will be equal to:  

d(T2)/dθ = d[(1/2)∙m∙ω2∙a2∙cos2θ]/dθ = (1/2)∙2∙m∙ω2∙a2∙cosθ∙[d(cosθ)/dθ] = m∙ω2∙a2∙sinθ∙cosθ 

We can calculate the same energy conservation equation for the potential energies of both oscillators. 

Of course, the attentive reader will immediately object we should use relativistically correct equations, but 
that can be done easily. The relativistically correct force equation for one oscillator is: F = dp/dt = F = –

                                            
35 Instead of two cylinders with pistons, one may also think of connecting two springs with a crankshaft. 
The analogy can also be extended to include two pairs of springs or pistons. The two springs or pistons in 
each pair 
36 The phase factor Δ only depends on our zero point for time. We will assume our zero point is chosen such 
that Δ = 0 and, hence,  = ω·t.  
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kx with p = mv = γm0v. Multiplying both sides with v = dx/dt yields the following energy conservation 
expression:  

𝑣
𝑑(𝛾𝑚଴𝑣)

𝑑𝑡
= −𝑘𝑥𝑣 ⟺

𝑑(𝑚௩𝑐ଶ)

𝑑𝑡
= −

𝑑

𝑑𝑡
൤
1

2
𝑘𝑥ଶ൨ ⟺

𝑑𝐸

𝑑𝑡
=

𝑑

𝑑𝑡
൤
1

2
𝑘𝑥ଶ + 𝑚௩𝑐ଶ൨ = 0 

We recognize the potential energy (it is the same kx2/2 formula). However, the m0v2/2 term that we would 
get when using the non-relativistic formulation of Newton’s Law is now replaced by the mc2 = γ·m0·c2 
term. 

8.  Electromagnetic mass: (not) the right concept? 

The gymnastics above may have annoyed the reader. The blunt equation of the E = m·c2 and E = 
m·a2·ω2 equations lead to wonderful results, but are we actually using the same mass concept in both? 
The mass concept in the E = m·c2 is, obviously, the effective mass of an electron. Hence, that is a measure 
of inertia to motion, and it has been measured to be equal to about 9.1×10−31 kg or – a more familiar 
measure –  about 0.511 MeV/c2.37 In contrast, when using the E = m·a2·ω2 formula, we think of some 
mass on a spring. Of course, the oscillator metaphor is just what it is, but we still need to answer the 
question: what is the mass concept here?  

According to current Zitterbewegung theorists38, it is an electromagnetic mass – which is also a measure of 
inertia, because an electric charge – with zero mechanical mass – will also resist motion. However, if so, then 
the electromagnetic mass should also increase with velocity, shouldn’t it? As Feynman writes: “No matter 
what the origin of the mass, it all should vary as 𝑚଴/ඥ1 − 𝑣ଶ/𝑐ଶ.”39 Hence, it should, therefore, be 
impossible for our pointlike charge to whizz around at the speed of light – which is what it does according 
to our model. 

The objection is everything but philosophical. Can we say anything about it? We are not sure. Of course, 
we could – and should – note that the classical calculations of electromagnetic mass are based on the idea of 
assembling the elementary charge from an infinite number of infinitesimally small charges, which is an 
inconsistent idea. Why? Because the calculations blow up when we try to calculate the energy that is 
needed to assemble a true pointlike elementary charge – a charge with zero dimension, that is: our integral 
blows up, showing an infinite amount of energy would be needed for that. The easiest way to illustrate that 
is to just remind the reader of the formula for the energy of a charged sphere with some finite charge q and 
some radius r, which is equal to U = (1/2)·q2/4πε0r. It is clear that U goes to infinity as r goes to 0.40 This 
problem is solved by assuming we do not have a true pointlike charge: if we compress all charge into a very 
tiny ball, whose radius is equal to the classical electron radius, then we get a more sensible result: U = 
(1/2)·qe

2/4πε0r = (1/2)·e2/r.41 Equating the energy U to the total energy E = mec2, gives us the following 
radius: 

mୣ𝑐ଶ =
1

2

eଶ

𝑟
⟺ 𝑟 =

1

2

eଶ

mୣ𝑐ଶ
 

This radius is half of what is known as the Lorentz radius of an electron, which is also known as the 
Thomson scattering length or classical electron radius. The 1/2 factor does bother (some) physicists. If we 

                                            
37 Mass and energy are equivalent but not the same. Hence, while the (rest) energy of an electron is equal to 
0.511 MeV, we should be carefully to use MeV/c2 units when expressing its mass. Mass and energy do have 
different physical dimensions – because they are equivalent but not the same: the mass and energy concept 
are different. 
38 See references above. 
39 See: Feynman, Lectures, II-28. The coefficient depends on the assumption with regard to the charge 
distribution. For a uniformly charged sphere, the coefficient will be equal to 3/5 (instead of 1/2). 
40 See: Feynman Lectures, II-28-3.  
41 The e2 in the formula here is equal to e2 = qe

2/4πε0.  
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assume the electron is a uniformly charged sphere, then the energy expression becomes U = (3/5)·q2/4πε0r 
and, hence, we find a radius that matches the classical electron radius somewhat better: 

mୣ𝑐ଶ =
3

5

eଶ

𝑟
⟺ 𝑟 =

3

5

eଶ

mୣ𝑐ଶ
 

As Feynman jokes, “rather than to argue over which distribution is correct, it was decided to define r0 = 
e2/mec2 as the ‘nominal’ radius. Then different theories can supply their pet coefficients.”42 However, the 
point is that we should not try to think of the mass (m) in the E = m·a2·ω2 as an electromagnetic mass – 
not in the classical sense, at least. Otherwise it cannot move at the speed of light, and the whole idea of the 
Zitterbewegung – seen as a current ring – collapses.  

There is another reason why the oft-invoked concept of electromagnetic mass – in the context of the 
Zitterbewegung model – should not be invoked: a classical oscillating charge radiates all of its energy away – 
and very rapidly so. As such, the Zitterbewegung models suffers from the same defect as the Rutherford-
Bohr model of an atom: a rotating charge, such as the electron classically orbiting around the nucleus, 
should radiate its energy away.43 However, one should admit that the quantum-mechanical picture of an 
electron does not really answer this question either: we may say the quantum-mechanical picture avoids the 
question altogether. 

The third conceptual issue that we have raised was about the magnetic force: Maxwell’s equations tell us 
that this moving charge must generous an incredibly strong magnetic field. In fact, if we would look at 
opposite ends of the current ring as parallel wires, then the current is in opposite directions and would, 
therefore, the force between the two would tend to push them away. We have no answer to this, but it is a 
burning question. We will try to address it in our next paper. 

9.  Conclusions: what does it all mean? 

We can only say what it means for us – which is, perhaps, not all that much. The results that come of our 
model – such as correct values for the g-factor (2), the angular momentum (ħ/2), and the Compton 
scattering radius (a = ħ/mc) – are very intuitive, but we find the idea of a disk-like electron itself quite 
artificial. If we can think of the structure of an electron – because that is what we are talking about – can 
effectively be described as some two-dimensional oscillation, then we should probably not assume these 
oscillations are perfectly linear. We would probably want to introduce some uncertainty here and think of 
the plane of oscillation as something that is rotating in space itself. Of course, once we measure the 
magnetic moment of an electron – or, when applying the model to a photon, the polarization state of a 
photon – we should probably think of it as sort of snapping into place again: a nice oscillation in a plane – 
rather than in 3D space – but something that will drift and rotate in space again when it leaves the Stern-
Gerlach apparatus.  

This is why – in our original paper44 – we also considered circular rather than linear oscillations. Indeed, we 
should, perhaps, think of a tiny ball, whose center of mass stays where it is: any rotation – around any axis 
– will then be some combination of a rotation around the two other axes. Hence, we may want to think of a 
two-dimensional oscillation as an oscillation of a polar and an azimuthal angle. Having said this, the 
Uncertainty Principle tells us we should probably not think of nice circular oscillations either: any direction 
– linear or circular – is bound to be imprecise. In short, the mystery remains deep. 

The most intriguing idea, in our humble view, is the idea of a superimposition of various motions – linear 
and circular, obviously – as opposed to the usual approach of superimposing wavefunctions. Indeed, we have 

                                            
42 See: Feynman Lectures, II-28-3. 
43 One should admit, however, that the quantum-mechanical picture of an electron does not really answer 
this question either.  
44 See: Jean Louis Van Belle, 22 October 2017, The Quantum-Mechanical Wavefunction as a Gravitational 
Wave, http://vixra.org/abs/1709.0390. 
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offered a model for the motion of a stationary electron. If we give it kinetic energy – momentum – then we 
should introduce some linear motion. How can we relate this to the c2 = a2·ω2 equation? For example, we 
may speed up an electron to, say, about one tenth of the speed of light, so the Lorentz factor is equal to  = 
1.005. This means we added 0.5% (about 2,500 eV) – to the rest energy E0: Ev =  Ev ≈ 0.5135 MeV. The 
relativistic momentum will then be equal to mvv = (0.5135 eV/c2)·(0.1·c) = 5.135 eV/c.   
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The v/c2 factor is equal to 0.1/c and, therefore, 1.005·v/c2 equals 0.335×109 s/m. We see what happens: 
we do get linear motion. How should we interpret this? If we look at the ψ = a·cos(p·x/ħ − E·t/ħ) − 
i·a·sin(p·x/ħ − E·t/ħ) once more, we can write p·x/ħ as Δ and think of it as a phase factor. We will, 
of course, be interested to know for what x this phase factor Δ = p·x/ħ will be equal to 2π. Hence, we 
write:  

Δ =p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ 

We now get a meaningful interpretation of the de Broglie wavelength. It is the distance between the crests 
(or the troughs) of the wave, so to speak, as illustrated below. 

 

Figure 11: The meaning of the de Broglie wavelength in the Zitterbewegung model45 

If this interpretation makes sense, then the challenge ahead is obvious: how should we think of potential 
energy, so as to add the missing layer to the motion of our electron motion: the electron orbitals in an 
atomic system? Here we should probably further explore Dirac’s suggestion that the real motion of a 
pointlike charge may be a superposition of motions related to its rest energy, its kinetic energy and its 
potential energy respectively. Hence, a focus on the superposition of motions – as opposed to a superposition 
of ill-understood wavefunctions – may help us to find the wave equation – as opposed to the various ad hoc 
equations (such as the Schrödinger equation) that are used to explain one aspect of the motion (electron 
orbitals for the Schrödinger equation) only. 

Finally, the next step would be to think about how the various diffraction and interference phenomena can 
be explained. The key to these in any Zitterbewegung interpretation would probably include an exploration 
of how we can build up and/or split the composite circularly polarized wave from/into linearly polarized 
waves.46  

Jean Louis Van Belle, 24 November 2018  

                                            
45 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. The author only added the wavelength, 
which can be interpreted as the de Broglie wavelength for a particle. For more details, see 
http://vixra.org/pdf/1709.0390v5.pdf.  
46 See, for example: Jean Louis Van Belle, 5 November 2018, Linear and Circular Polarization States in the 
Mach-Zehnder Interference Experiment, http://vixra.org/abs/1811.0056.  
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