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Abstract
Plugging the closed-form expression of the associated Laguerre
polynomials into their orthogonality relation, the latter reduces to a
factorial identity that takes a simple, non-trivial form for even-degree

polynomials.
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1. Introduction

The associated Laguerre polynomials L, (x) are A-degree polynomial solutions to

the associated Laguerre differential equation

" (x)+(v+1-x)y'(x)+Ay(x)=0

for v,A=0,1,... [1, 2]. If v=0, the associated Laguerre polynomials reduce to the
Laguerre polynomials L, (x) [1, 2].

The polynomials L, (x) are given by the closed-form expression [1, 3]
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The polynomials L, (x) satisfy the orthogonality relation [1-3]
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for A= 1".

2. The factorial identity

Using the closed-form expression of the associated Laguerre polynomials, the

orthogonality integral takes the form
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The integral on the right-hand side is easily calculated using the Gamma function,

since
.[dxx””"” exp(—x)=T(m+n+v+l)=(m+n+v)!,

and then
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Then, since (4 +v)!(A'+v)!# 0, the orthogonality relation of the associated Laguerre
polynomials reduces to the following factorial identity
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where 4,4, v=0,1,... and A= 1.
If A’=0,then n=0 too, and (1) reads
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and since 1/v! is non-zero,
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The series in (2) has A+1 terms. If A4 is odd, the series has an even number of terms,
while m and A-m have different parity, i.e. if m is even/odd then A—m is

odd/even, and thus
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Then, the terms with m =0 and m =1 are opposite, as are the terms with m =1 and
m=A-1, as are the terms with m=2 and m=A-2, etc. Thus, in this case, the
series consists of (A+1)/2 pairs of opposite terms, and the identity (2) is rather
trivial. However, if A4 is even, mand A —m have the same parity, and also the series
has an odd number of terms, thus it does not consist of pairs of opposite terms.
Therefore, in the case where A is even, the identity (2) is not trivial. Moreover,

setting 4 — 24, with 4 =1,2,..., the series in (2) is written as
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and (2) takes the form
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with A=1,2,...
Let us verify (3) for 41 =1,2,3.

For A =1, we have
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For A =2, we have
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For A =3, we have
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