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Abstract

We derive the index of refraction of light from quantum theory of atoms and from the

Dirac equation with the plane wave. The result is the integral a part of the mainstream

of the quantum optics. The article involves also discussion on the possibility to create the

electron-positron pairs during the Čerenkov process with the adequate intex of refraction.

1 Introduction

The refractive index of materials varies with the frequency of light. This is called dispersion and

causes prisms and rainbows to divide white light into its constituent spectral colors. This effect

was described by Jan Marcus Marci (1668) and Newton (1686) in the old age of optics.

The contemporary explanation of this effect is as follows. An electromagnetic wave phase

velocity is slowed in a medium because the electric field creates a disturbance in the charges

of each atom (primarily the electrons). As the electromagnetic fields oscillate in the wave, the

charges in the material will be oscillating at the same frequency.

The charges thus radiate their own electromagnetic wave at the same frequency, but usually

with a phase delay, as the charges may move out of phase with the force driving them. The

light wave traveling in the medium is the macroscopic superposition of the original wave plus the

waves radiated by all the moving charges. This wave is typically a wave with the same frequency

but shorter wavelength than the original, leading to a slowing of the wave phase velocity. Most

of the radiation from oscillating material charges will modify the incoming wave, changing its

velocity.
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2 The quantum theory dispersion

We suppose that electrons in atoms are in the same quantum state. The perturbation method

is adequate for the application in a medium because the interaction energy of atoms with the

external field is very small in comparison with the energy of electrons in atoms.

The impinging wave of electromagnetic field is of the form E = E0 cos(ωt − 2πx/λ). With

regard to the fact that λ ∼ 10−5cm and atom is of the size a ∼ 10−8cm, the quantity x/λ can

be neglected in the electromagnetic wave and we write

E = E0 cos(ωt− 2πx/λ) → E = E0 cos(ωt) (1)

.

So, the quantum theory of dispersion can be derived in the framework of the nonrelativistic

Schrödinger equation (Sokolov et al., 1962) for an electron moving in dielectric medium and in

the field with the periodic force

Fx = −eE0 cosωt, Fy = Fz = 0. (2)

Then, the corresponding potential energy is

V ′ = exE0 cosωt (3)

and this potential energy is the perturbation energy in the Schrödinger equation

(
ih̄
∂

∂t
−H0 − V ′

)
ψk(t) = 0, (4)

where for V ′ = 0 it is ψk(t) → ψ0
k(t) and

ψ0
k(t) = ψ0

ke
− i

h̄
Ekt = ψ0

ke
−iωkt, (5)

where ψ0
k is the solution of the Schrödinger equation without perturbation, or,

(
ih̄
∂

∂t
−H0

)
ψ0
k(t) = 0. (6)

We are looking for the solution of the Schrödinger equation involving the perturbation

potential in the form

ψk(t) = ψ0
k(t) + ψ1

k(t), (7)

where ψ1
k(t), is the perturbation wave function correction to the non-perturbation wave function.

After insertion of formula (7) to eq. (4), we get

(
ih̄
∂

∂t
−H0

)
ψ1
k(t) =

1

2
exE0ψ

0
k

(
e−it(ωk−ω) + e−it(ωk+ω)

)
. (8)

Let us look for the solution of eq. (8) in the form:
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ψ1
k(t) = ue−it(ωk−ω) + ve−it(ωk+ω). (9)

After insertion of (9) into (8), we get two equations for u and v:

(h̄(ωk − ω)−H0)u =
1

2
exE0ψ

0
k, (10)

(h̄(ωk + ω)−H0) v =
1

2
exE0ψ

0
k. (11)

Then, using the formal expansion

u =
∑
k′′

Ck′′ψ
0
k′′ , (12)

we get from eq.

(Ek′′ −H0)ψ
0
k′′ = 0 (13)

the following equation

h̄
∑
k′′

Ck′′ (ωkk′′ − ω)ψ0
k′′ =

exE0

2
ψ0
k (14)

with

ωkk′′ =
Ek − Ek′′

h̄
. (15)

Using the orthogonal relation

∫
ψ0∗
k′ ψ

0
k′′d

3x = δk′k′′ , (16)

we get the following relation for Ck and u as follows:

Ck = −eE0

2h̄
· xk′k
ωk′k + ω

, (17)

u =
∑
k′

(
−eE0

2h̄

)
· xk′k
ωk′k + ω

ψ0
k′ (18)

and v = u(−ω), or

v =
∑
k′

(
−eE0

2h̄

)
· xk′k
ωk′k − ω

ψ0
k′ (19)

and

xk′k =

∫
ψ0∗
k′ xψ

0
kd

3x. (20)

The general wave function can be obtained from eqs. (7), (9), (18) and (19) in the form:
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ψk(t) = e−iωkt ×

{
ψ0
k −

eE0

h̄

∑
k′

xk′k
ω2
k′k − ω2

ψ0
k′ [ωk′k cosωt− iω sinωt]

}
. (21)

The classical polarization of a medium is given by the well known formula

P = Np = −Nex, (22)

where N is the number of atom in the unite volume of dielectric medium. So we are able to

define the quantum analogue form of the polarization as it follows:

P = Np̄ = −Ne
∫
ψ∗
k(t)xψk(t)d

3x, (23)

or, with

∫
ψ0∗
k xψ

0
kd

3x = 0, (24)

we have

P =
∑
k′

(
2
Ne2E0

h̄

)
· ωk′k|xk′k|2

ω2
k′k − ω2

cosωt. (25)

Using the classical formula for polarization P ,

P =
n2 − 1

4π
E, (26)

we get for the quantum model of polarization

n2 − 1

4π
=
∑
k′

(
2
Ne2

h̄

)
· ωk′k|xk′k|2

ω2
k′k − ω2

. (27)

Using the definition of the coefficients fk′k by relation

fk′k =
2m

h̄
ωk′k|xk′k|2, (28)

we get the modified equation (27) as follows:

n2 − 1

4π
=
Ne2

m

∑
k′

fk′k
ω2
k′k − ω2

. (29)

The last formula should be compared with the classical one:

n2 − 1

4π
=
e2

m

∑
k

Nk

ω2
k − ω2

, (30)

where Nk is number of electrons moving with frequency ωk in the unit volume.

Let us renark that the oscillator coeficients fk′k in eq. (29) can have also the negative values.

It leads to the special behaviour of the dispersion. Namely, dispersion is negative. The negative

dispersion was discovered by Ladenburg (1921; 1930).
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3 Volkov solution of the Dirac equation

We follow the method of derivation and metric convention of (Berestetsky et al., 1989):

(γ(p− eA)−m)ψ = 0. (31)

where

Aµ = Aµ(φ); φ = kx = ωt− kx (32)

We suppose that the four-potential satisfies the Lorentz gauge condition

∂µA
µ = kµ (A

µ)′ = (kµA
µ)′ = 0, (33)

where the prime denotes derivative with regard to φ. From the last equation follows

kA = const = 0, (34)

because we can put the constant to zero. The tensor of electromagnetic field is

Fµν = kµA
′
ν − kνA

′
µ. (35)

Instead of the linear Dirac equation (31), we consider the quadratic equation, which we get

by multiplication of the linear equation by operator (γ(p− eA) +m) (Berestetzkii et al., 1989).

We get:

[
(p− eA)2 −m2 − i

2
eFµνσ

µν
]
ψ = 0. (36)

Using ∂µ(A
µψ) = Aµ∂µψ, which follows from eq. (34), and ∂µ∂

µ = ∂2 = −p2, with

pµ = i(∂/∂xµ) = i∂µ, we get the quadratic Dirac equation for the four potential of the plane

wave:

[−∂2 − 2ie(A∂) + e2A2 −m2 − ie(γk)(γA′)]ψ = 0. (37)

We are looking for the solution of the last equation in the form:

ψ = e−ipxF (φ). (38)

After insertion of eq. (33) into eq. (32), we get with (k2 = 0)

∂µF = kµF ′, ∂µ∂
µF = k2F ′′ = 0, (39)

the following equation for F (φ)

2i(kp)F ′ + [−2e(pA) + e2A2 − ie(γk)(γA′)]F = 0. (40)

The integral of the last equation is of the form (Berestetzkii et al., 1989):
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F = exp

{
−i
∫ kx

0

[
e(pA)

(kp)
− e2

2(kp)
A2

]
dφ+

e(γk)(γA)

2(kp)

}
u√
2p0

, (41)

where u/
√
2p0 is the arbitrary constant bispinor.

Al powers of (γk)(γA) above the first are equal to zero, since

(γk)(γA)(γk)(γA) =

−(γk)(γk)(γA)(γA) + 2(kA)(γk)(γA) = −k2A2 = 0. (42)

where we have used eq. (4) and relation k2 = 0. Then we can write:

exp

{
e
(γk)(γA)

2(kp)

}
= 1 +

e(γk)(γA)

2(kp)
. (43)

So, the solution is of the form:

ψp = R
u√
2p0

eiS =

[
1 +

e

2kp
(γk)(γA)

]
u√
2p0

eiS , (44)

where u is an electron bispinor of the corresponding Dirac equation

(γp−m)u = 0 (45)

and we shall take it to be normalized by condition ūu = 2m. The mathematical object S is the

classical Hamilton-Jacobi function, which was determined in the form:

S = −px−
∫ kx

0

e

(kp)

[
(pA)− e

2
A2
]
dφ. (46)

The current density is

jµ = ψ̄pγ
µψp, (47)

where Ψ̄ is defined as the transposition of (44), or,

ψ̄p =
ū√
2p0

[
1 +

e

2kp
(γA)(γk)

]
e−iS . (48)

After insertion of Ψp and Ψ̄p into the current density, we have:

jµ =
1

p0

{
pµ − eAµ + kµ

(
e(pA)

(kp)
− e2A2

2(kp)

)}
. (49)
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4 Index of refraction from the Volkov solution of the Dirac
equation

Let be ψa the wave function of the electron in the vector field potential in an atom (a) Aa, and

Ψw the wave function of the electron in the plane wave (w) potential Aw. The corresponding

Dirac equations of these two situations are as follows:

(γ(p− eAa)−m)ψa = 0. (50)

(γ(p− eAv)−m)ψw = 0. (51)

If we take the sum of eqs. (50) and (51), we get

(γ(p− eAa))ψa + (γ(p− eAw))ψw = m(ψa + ψw), (52)

which is not equation of the total system with potentials Aa +Aw.

It may be easy to see that the Dirac equation for the sum ψa+ψw is the following equation:

(γ(p− e(Aa +Aw))(ψa + ψw) = m(ψa + ψw)−Aaψw −Awψa, (53)

or, wave function (ψa + ψw) is not solution of the Dirac equation for the complex system

(Aa +Aw).

Nevertheless, we can use the wave function ψ = ψa + ψv as the first approximation in

determinantion of the index of refraction for the system, which is in the potential Aa and in the

wave potential Av.

With regard to eq. (26), we write for the polarization

P = Ne

∫
ψ̄xψ =

n2 − 1

4π
E =

n2 − 1

4π

{
−1

c

∂A

∂t
− gradφ

}
, (54)

where we used the definition of E according to the Landau et al. textbook (Landau et al., 1988).

So, we get the original formula for the intex of refraction of medium in case the signal

propagatiin throught the medium is the plane wave:

n2 − 1

4π
=

Ne
∫
ψ̄xψ

−1
c
∂A
∂t − gradφ

, (55)

where ψ = ψa + ψw.

5 Discussion

The last formula (55) is original and it is not excluded that it will play the crucial role in modern

optics. It is possible expect the application of it in the graphene physics (Novoselov et al., 2005)

where every new result in quantum optics is valuable. At the same time we hope that the derived

formula will be tested by the greatist laser system over the world, called ELI.
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The article is related also to the pair production by the Čerenkov process. Pair production

is the creation of a particle and its antiparticle from a neutral boson. Examples are - creating

an electron and a positron, a muon and an antimuon, a proton and an antiproton and so on.

In order for pair production to occur, the incoming energy of the interaction must be abovet he

total rest mass energy of the two particles. Both energy and momentum are conserved. However,

all other conserved quantum numbers (angular momentum, electric charge, lepton number) of

the produced particles must sum to zero.

The Čerenkov radiation is emitted by motion of fast charged particle in a medium when its

speed is faster than the speed of light in this medium This effect was observed experimentally

first by Čerenkov (1934; 1936) and theoretically interpreted by Frank and Tamm (1937) in the

framework of the of the clasical electrodynamics. The modern field theory explanation was given

by Schwinger et al. (1976) and the particle production by the Čerenkov mechanism including

temperature was discussed by Pardy (1983a; 1983b; 1989; 1994; 2002) and experts in particle

physics.

The spectrum of radiation is modified involving the radiation correction in the photon

propagator (Pardy, 1994). The experimental value for pair creation is (Pardy, 1994) for

ω2 >
4m2c2v2

h̄2(n2β2 − 1)
. (56)

It means that for n =
√
2 and v ≈ c, we get from eq. (56) h̄ω ≈ 2mc2, which can be

interpreted as the condition for creation of the electron-positron pair by the gamma quantum.

The condition (56) is related to the gamma photons rather than to the optical ones. The

possibility of the existence of the gamma Čerenkov radiation is discussed by Ion and Stocker

(1993) in nuclear physics. The so called nuclear gamma Čerenkov radiation requires a special

experimental technique in order to extract such radiation from the background produced by other

mechanism. Such techniques are well known in nuclear physics and we can expect that sooner

or later the existence of the gamma Čerenkov radiation in nuclear physics will be confirmed

together with the pair production.

The present theory can be generalized to the the string-like objects (Manoukian, 1991; 1992)

where the problems of particle production by strings are discussed.
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