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                                               abstract 

The summation test consists of adding all numbers that begin with a 

particular first digit or first two digits and determining its distribution 

with respect to these first or first two digits numbers. Most people 

familiar with this test believe that the distribution is a uniform 

distribution for any distribution that conforms to Benford’s law i.e. the 

distribution of the mantissas of the logarithm of the data set is uniform 

U[0,1). The summation test that results in a uniform distribution is true  

for an exponential function (geometric progression) i.e. y = aᵏᵗ but not 

necessarily true for other data sets that conform exactly to Benford’s 

law. 

 

 

                                                Introduction  

 When the summation test is applied to real data such as population of 

cities, time intervals between earthquakes, and financial data, which all 



closely conforms to Benford’s law, the summation test results in a 

Benford like distribution and not a uniform distribution. Citing  

Benford’s Law, page 273, author Dr. Mark Nigrini, “ The analysis 

included the summation test. For this test the sums are expected to be 

equal, but we have seen results where the summation test shows a 

Benford- like pattern for the sums.” Citing Benford’s Law, page 141, 

author Alex Kossovski, “ Worse than the misapplication and confusion 

regarding the chi-sqr test, Summation Test stands out as one of the 

most misguided application in the whole field of Benford’s Law, 

attaining recently the infamous status of a fictitious dogma and leading 

many accounting departments and tax authorities astray.” He also 

states on page 145, “Indeed all summation tests on actual statistical 

and random data relating to accounting data and financial data, census 

data, single-issue physical data, and so forth, show a strong and 

consistent bias towards higher sums for low digits, typically by a factor 

of 5 to 12 approximately in the competition between digit 1 and digit 9, 

there is not a single exception!” 

The histograms of the logarithm of the aforementioned data tend to 

resemble a Normal distribution, which is the definition of a Log Normal 

distribution (the Central Limit theorem applied to random 

multiplications). It has been shown, both mathematically and 

empirically, that the summation test performed on data that conforms 

to a Log Normal distribution results in a Benford like distribution.  

 

If the probability density function of the logarithm of a data set begins 

and ends on the x –axis and the distance between each integral power 

of ten (IPOT) consists of a straight line then the data set will conform 



exactly to Benford's law (see appendix A). Figure 1 illustrates such a 

data set.  

 

 

Figure#1 

    

 

      The equation corresponding to figure#1 is expressed in line 1.  

1) pdf log x = log(x) 0 𝑡𝑜 1 + 2 1 to 2 – log(x) 1 to 2 

   The probability density function (pdf) of x is expressed in line 12. 

2) pdf y  0 𝑡𝑜 1   = log(x) 0 to 1 = 
ln (𝑥)

ln (10)
 

3) y =log(x) = 
ln (𝑥)

ln (10)
  

4) Pdfy  dy = pdfx dx 

5) Pdfx = pdf y 
dy

dx
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6) 
dy

dx
 = 

1

xln(10)
 

7) pdfx 1 to 10    =  pdf y 
dy

dx
 = 

ln (𝑥)

𝑥ln²(10)
 1 to 10 

8) pdf y  1 to 2  = 2 1 to 2 

9)  pdf x = Pdf y 
dy

dx
  = 

2

xln(10)
 10 to 100 

10)  pdf y  1 to 2   = - log(x) 1 to 2 = 
−ln (x)

ln (10)
 1 to 2 

11)  pdf x  = Pdf y 
dy

dx
 = -

ln (x)

xln²(10)
 10 to 100 

12)  pdf x  = 
ln (x)

xln²(10)
  1 to 10   + 

2

xln(10)
 10 to 100  - 

ln (𝑥)

xln²(10)
 10 to 100 

 

   

  The probability distribution function is expressed in line 13 and 

beyond. 

13) ∫ Pdf x  dx
100

1
 = 

1

ln² (10)
 ∫

ln (x)

x

10

1
 dx  + 

2

ln (10)
 ∫

dx

x

100

10
 dx  -  

1

ln² (10)
 

∫
ln (x)

x

100

10
 dx   

14) 
1

ln² (10)
 ∫

ln (x)

x

10

1
 dx  = 

ln² (10)

2ln²(10)
  =   

1

2
 

15) -  
1

ln² (10)
 ∫

ln (x)

x

100

10
 dx  = 

−1

2ln²(10)
   [ ln²(100) – ln²(10)] = 

16)  
−1

2ln²(10)
 [ln(100) + ln(10)][ln(100) – ln(10)]= 

17) 
−1

2ln²(10)
 [3ln²(10)] =  − 

3 

2
 

18) 
2

ln (10)
 ∫

dx

x

100

10
 dx  =    

19)  
2

ln (10)
 ln(10) = 2 

20) sum =  
1

2
−  

3 

2
+  2  =  1 



      The probability distribution function for 1- 2 and 10 - 20 is expressed  

      In lines 21 through 29. 

21) ∫ pdf
2

1
 x dx +∫ pdf 

20

10
x dx = 

1

ln² (10)
 ∫

ln (x)

x

2

1
 dx  + 

2

ln (10)
 ∫

dx

x

20

10
 dx - 

1

ln² (10)
 

∫
ln (x)

x

20

10
 dx = 

22)   
ln² (2)

2ln² (10)
 + 

2

ln (10)
ln(2)  -  

1

2ln² (10)
 [ ln²(20)  -  ln²(10)] =  

23)   
1

2ln² (10)
 [ln²(2) – [ln²(20 - ln²(10)]] + 

2

ln (10)
ln(2)= 

24)  
1

2ln² (10)
 [ln²(2) – [(ln(20) + ln(10))(ln(20) – ln(10))] + 

2

ln (10)
ln(2)= 

25)   
1

2ln² (10)
 [ln²(2) – [(ln(20) + ln(10))ln(2)] + 

2

ln (10)
ln(2)= 

26)  
1

2ln ²(10)
 [ln²(2) – [(ln(2) + 2ln(10))ln(2)] + 

2

ln (10)
ln(2)= 

27)   
1

2ln² (10)
 [ln²(2) – ln²(2) – 2ln(10)ln(2)] + 

2

ln (10)
ln(2)= 

28)     
1

2ln² (10)
 [ – 2ln(10)ln(2)] + 

2

ln (10)
ln(2)= 

ln (2)

ln (10)
 

29)   
ln (2)

ln(10)
 = log10 2, which conforms to Benford’s law 

 

 

 

 

 

 



   More generally (digits 1 … 9): 

30)  ∫ pdf x  dx
d+1

d
  + ∫ pdf x  dx

10(d+1)

10d
  =  

 

31) ∫
log (x)

xln(10)

𝑑+1

𝑑
 dx +  ∫

2

xln(10)

10(d+1))

10d
 dx  -  ∫

log (x)

xln(10)

10(d+1)

10d
 dx  

32)   ∫
log (x)

xln(10)

d+1

d
 dx = 

1

2ln² (10)
 [ (ln²(d + 1)  - ln²(d)] =  

33) 
1

2ln² (10)
 [(ln(d + 1)  + ln(d))(ln(d + 1) – ln(d))] = 

34) 
1

2ln² (10)
  (ln(d + 1)  + ln(d))ln(

d+1

d
)  

 

35)  ∫
2

xln(10)

10(d+1)

10d
 dx  = 2(ln(10(d + 1))  - ln(10d))/ln(10)  =  2 

ln (
d+1

d
)

ln (10)
 

 

36)  − ∫
log (x)

xln(10)

10(d+1)

10d
 dx   = 

−1

2ln² (10)
 [ ln²(10(d+1)) - ln²(10d)] = 

37)   
−1

2ln² (10)
 [(ln(10(d+1)) + ln(10d))(ln(10(d+1)) – ln(10d))] = 

38)  
−1

2ln² (10)
 (ln(10(d+1)) + ln(10d))ln(

d+1

d
) = 

39) 
−1

2ln² (10)
  ln(10 + ln(d+1) + ln(10) + ln(d))ln(

d+1

d
) 

 

 

 



Combining 34, 35, 39 and simplifying: 

40)  
2

ln (10)
 ln(

d+1

d
) + (

1

2ln² (10)
) ln(

d+1

d
) [ ln(d + 1) + ln(d) –ln(10)  - ln(d+1) 

– ln(10) -  ln(d)] = 

41) 
2

ln (10)
 ln(

d+1

d
) + 

1

2ln² (10)
 ln(

d+1

d
)(-2ln(10)) = 

ln (
d+1

d
)

ln (10)
 = log10(

d+1

d
), 

which conforms to Benford’s Law 

 

The following arguments illustrate the probability density and distribution 

function of the expected value (which is the sum divided by the number of 

samples. i.e. pdf expected value of x = x pdf(x) 

The expected value = 
∫ xpdf(x)dx

∞

−∞

∫ pdf(x)dx
∞

−∞

 , since ∫ pdf(x)dx
∞

−∞
 = 1 

     The expected value = ∫ xpdf(x)dx
∞

−∞
  

     The probability density function (pdf) of the expected value =  

      xpdf(x) 

42)  Pdf expected value = x
log (x)

xln(10)
 1 to 10  + x 

2

xln(10)
 10 to 100  -  x 

log (x)

xln(10)
 10 to 100 

43)  Pdf expected value =( log(x) 1 to 10 + 2 10 to 100 – log(x) 10 to 100 )/ln(10) 

44)  ∫ pdf(ev)dx
100

1
 =  

1

ln (10)
∫ log(x) dx + 

10

1

2

ln (10)
 ∫ dx

100

10
 - 

1

ln (10)
∫ log(x) dx 

100

10
=  

45)   
1

ln²(10)
 ∫ ln(x) dx

10

1
 + 

2

ln (10)
 ∫ dx

100

10
−  

1

ln² (10)
       ∫ ln(x) dx

100

10
 



46) 
1

ln² (10)
 ∫ ln(x) dx

10

1
 = 

1

ln ²(10)
 [10 ln(10) – 10 – (ln(1) – 1)] = 2.6454 

47) 
2

ln (10)
 ∫ dx

100

10
 = 78.173 

48) -
1

ln² (10)
 ∫ ln(x) dx

100

10
 = -

1

ln² (10)
100 [ln(100) – 100 – (10ln(10) – 

10)] = -65.5409 

 

49) combining 46, 47, 48 = 15.2775 

50) 
1

ln² (10)
 [∫ ln(x) dx 

d+1

d
 -  ∫ ln(x) dx 

10(d+1)

10d
] + 

2

ln (10)
∫ dx

10(d+1)

10d
  = 

51) 
1

ln ²(10)
 ∫ ln(x) dx 

d+1

d
= 

1

ln² (10)
[(d+1)ln(d+1) – (d+1) – (dln(d) – d)] = 

52)  
1

ln² (10)
[dln(d + 1) + ln(d+1) – (d+1) -  (dln(d) – d)] = 

53)  
1

ln² (10)
[dln(

d+1

d
) + ln(d+1)  -1] 

54)  - 
1

ln² (10)
 ∫ ln(x) dx 

10(d+1)

10d
] = 

−1

ln² (10)
[10(d+1)ln(10(d+1)) – 10(d+1) 

– (10dln(10d) – 10d )] = 

55) 
−1

ln² (10)
 [10dln(10(d+1)) + 10ln(10(d+1)) – 10d – 10 - 10dln(10d) + 

10d] = 

56) 
−1

ln² (10)
[10dln(

d+1

d
) + 10ln(10(d+1)) – 10d – 10   + 10d] = 

57) 
−1

ln² (10)
 [10dln(

d+1

d
)  + 10ln(10(d+1)) -10] 

58)  
2

ln (10)
∫ dx

10(d+1)

10d
 = 8.6859 



59) combining 53, 57, 58 ; the result is 8.6859 +  
1

ln² (10)
 [ (-9d) ln(

d+1

d
) -

9 ln(d+1) - 10ln(10) + 9] 

60) The first digit distribution is: 

61)   (8.6859 +  
1

ln² (10)
 [(-9d) ln(

d+1

d
) -9 ln(d+1) – 10  ln(10) + 9])/15.2775 

         evaluated for d = 1, 2 ,3 ,4, 5, 6, 7, 8, 9 

 

The following figure illustrates the theoretical (as opposed to empirical) result 

of first digit summation test  

 

Figure #2 

The results, while not completely conforming to Benford’s law, are certainly 

neither uniform nor sum invariant.  

 

In order to obtain empirical results one can generate random numbers that 

conform to the aforementioned probability density function and then perform 
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the summation test i.e. add all the numbers generated that begin with a 

particular digit and compare the relative values.   

 

Generate numbers conforming to the aforementioned pdf: 

Pr refers to the probability distribution function as opposed to the probability 

density function  

59) Pr 1 to 10 =    = 
1

ln² (10)
 ∫

ln (x)

x

x

1
 dx = 

ln²(x)

2ln ²(10)
 

60) Pr 10 =  
ln²(10)

2 ln ²(10)
 = 

1

2
   

61) Pr ≤ 
1

2
;  

ln²(x)

2ln² (10)
 

62) ln(x) = (2Pr ∗ ln(10))
1

2⁄  

63)  x = 𝑒(2Pr∗ln2(10))
1

2⁄
 

If Pr ˃ 
1

2
  

64) Pr – 0.5 = 
1

ln (10)
∫

2

x

x

10
 dx - 

1

ln² (10)
∫

ln (x)

x

x

10
 dx   = 

65) ln(10) (Pr – 0.5) = 2ln(x) – 2ln(10) - 
1

2ln (10)
[ln²(x) - ln²(10)] 

66) 2ln²(10)(Pr- 0.5) = 4ln(10)ln(x) – 4ln²(10) + ln²(10) - ln²(x) 

67) 2ln²(10)(Pr- 0.5) – 4ln(10)ln(x) + 3ln²(10) + ln²(x) = 0 

68) solve for ln(x) 

69) ln(x) = (4ln(10) - √(4 ln(10))2 − 4((Pr −0.5) 2ln²(10) + 3ln²(10)) )/2 

70) x = 𝑒((4 ln(10)−√4ln (10))²−4((Pr−0.5)2ln2(10)+3ln²(10) )/2) 



 

Utilizing an Excel spread sheet one can generate these numbers and compute 

the various Benford’s tests.  

 

Figure #3 

The first digit test evaluating conformance to Benford’s law derived from the 

aforementioned randomly generated numbers indicates very close 

conformance.  
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Figure #4 

The results are almost identical to figure #2 

 

  

Figure #5     

The results of the empirically derived summation test are very close to the 

theoretically derived results as figure #5 illustrates. 
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                                                 Conclusion 

It has been clearly  proven mathematically and demonstrated 

empirically   that a data set that conforms exactly to 

Benford’s law is not necessarily sum invariant i.e. the sum of 

all numbers that begin with any particular first digit 

(1,2,3,4,5,6,7,8,9) is the same for all digits. The mathematical  

and the empirical results are virtually identical.  

 

                                         

                                               Appendix A 

Proof that if the probability density function of the logarithm of a data set is 

continuous and begins and ends on the x-axis and the number of integral power 

of ten (IPOT) values approaches infinity then the probability density function of 

the resulting mantissas will be uniform and; therefore, the data set will conform 

to Benford’s law 

 

1) The probability density function of a data set that conforms to Benford’s 

Law is k/x = 
1

ln(10)x
 

2) The probability density function of the log of the same function is a uniform 

distribution, 

a. pdf(y)dy = pdf(x)dx 

b. Y = log(x) = 
ln (𝑥)

ln (10)
 

c. pdf(y) = pdf(x) 
dx

dy
 

d. 
dy

dx
 = 

1

xln(10)
 



e. 
dy

dx 
 = xln(10) 

f. pdf(y) = 
xln(10)

xln(10)
 = 1 – Uniform Distribution 

3) Therefore, if it can be shown that the pdf of the log of a function is uniform 

then the data set follows Benford’s Law.  

 

4) Y = F(x) 

5)  Y’ = 
d(F(x))

dx
 

6)  ∫ 𝑌′𝑑𝑥
Xf

Xo
  =  ∫ 𝐹′(x)dx

Xo

Xo
 =  F(Xf) – F(Xo) = 0  

      7)  Avg Value of Y’ = 
1

Xf−Xo
 ∫ 𝑌′𝑑𝑥

𝑋𝑓

𝑋𝑜
 =  

0

Xf−Xo
  

      8)  F’ᵢ (x) = 
F(i+1)−F(i)

∆x
 ; ∆x → 0 



      9)  ∫ F′(x)dx
Xf

𝑋𝑜
 = 0 ; ∑

F(i+1)−F(i)

∆x

N−1
i=0  = 0  as ∆X → 0 

      10)  let m(i) = = 
F(i+1)−F(i)

∆x
   

       

           

      11)  ∑ m(i)N−1
i=0  ∆X = 0 ; ∆X → 0  

 

Let’s consider a simpler case. 

 

     

      12) Let ∆X = 1 



      13)  m₁+ m₂+ m₃+ m₄+m₅  =  0 

      14)  ∑ 𝑥ᵢ5
𝑖=1  = m₁x + m₁ + m₂x + m₁ + m₂ + m₃x  + m₁+ m₂ + m₃ + m₄x +  

              m₁ + m₂ + m₃ + m₄ + m₅x  =  K  

      15)  x( m₁+ m₂ + m₃ + m₄ +m₅) + m₁+ m₁ + m₁ + m₁+ m₂ + m₂ + m₂ + m₃ + m₃ 

               + m₄  =  K 

      16)  m₁+ m₂ + m₃ + m₄ +m₅  = 0  

      17)   ∑ xᵢ5
𝑖=1  =  4m₁+3m₂ + 2m₃ + m₄ = K ( constant)  

      18)  AREA UNDER PDF = 1 

      18) ∫ 𝑓(𝑥)
6

1
 dx = 1 

      20) 
𝑚₁

2
 + m₁+ 

𝑚₂

2
 + ( m₁+ m₂) + 

𝑚₃

2
 +( m₁ + m₂ + m₃) + 

𝑚₄

2
 + (m₁ + m₂ + m₃ +m₄) + 

𝑚₅

2
  

              = 1  

 

      21)   m₁+ m₂ + m₃ + m₄ +m₅  = 0  

      22) 4m₁ + 3m₂ + 2m₃ + m₄  = 1 

      Therefore K = 1 

 

The sum of all functions at IPOT + x = 1 for any x. 

The sum of all probability density functions of each mantissa value contained 

within all integral powers of ten respectively is equal to 1, which constitutes a 

uniform distribution  

Which is the definition of a Benford distribution. 

 



 

 

 

                

      23) For the more general case: 

      24) ∑ mᵢr−1
i=1  =     

      25) m₁x + m₂ + m₂x + m₁ + m₂ + m₃x + ….. m₁ + m₂ + m₃ + … mᵣ₋₁x  =     

             K 

      26)  x( m₁+ m₂ + …. + mᵣ₋₁   ) + (r-2)m₁ + (r-3)m₃ +..+ mᵣ₋₂ = K  

      27)  x(m₁ + m₂ + m₃ + mᵣ₋₁ ) = 0 

      28) (n-2)m₁ + (n-1)m₂ + ….+ mᵣ₋₂ = K 

      29) 
m₁ 

2
+ m₁ + 

m₂

2
 + m₁ + m₂ + 

m₃

2
 + m₁ + m₂ + m₃ + .. + mᵣ₋₂ + 

mᵣ₋₁

2
  

              = K 

      30) 
1

2
 ( m₁+ m₂+ m₃ + mᵣ₋₁ ) =0  

      31) (n-2)m₁ + (n-1)m₂ + ….. + mᵣ₋₂ = 1  

      32) K=1  

      33) The sum of mantissa values at IPOT + x = 1 for any x  

      34) The resultant probability density function of  the mantissas is a 

uniform distribution  whose amplitude is equal to 1 and, therefore a Benford 

distribution 

                

             

 



 

 

Proof that if the  probability density function of the Logarithm  a data set is 

continuous and begins and ends on the x-axis and the number of integral  

power of ten values approaches infinity then the sum of probability  

distributions of all fixed intervals from all IPOT (∆X) equals the interval 

Itself (∆X). 

 

 

 



 

1) ∑ ∫ 𝑝𝑑𝑓 𝑑𝑥
i+∆

i
4
1  = 

1

2
 m₁(∆x)² + m₁∆x  + 

1

2
m₂(∆x)² + (m₁ + m₂)∆x +  

1

2
 m₃(∆x)² + ( m₁ + m₂ + m₃)∆x  + 

1

2
 m₄(∆x)² = K 

2) 
1

2
 (∆x) ² (m₁ + m₂ + m₃ +m₄ ) + (3𝑚₁  + 2m₂ + m₃)∆x = K 

3) m₁ + m₂ + m₃ +m₄ = 0 

4) 3m₁ + 2m₂ + m₃ = 1  

5) (3𝑚₁  + 2m₂ + m₃)∆x =∆x 

6) ∑ ∫ pdf dx
i+∆x

i
4
1  = ∆x 

In General: 

7) ∑ ∫ pdf dx
i+∆x

i
 r−1
i=1  =  

1

2
(∆x)²( m₁+ m₂ + m₃ +… + mᵣ₋₁ )+ 

8) [(n − 2)m₁ + (𝑛 − 1)m₂ + … + mᵣ₋₂]∆x  = ∆x 

  

It can be easily shown that the fixed intervals don’t have to start and end on an 

interval power of ten such as 10,100,1000 or 1,2,3 on a LOG plot as long as the 

fixed intervals are all offset by a power of ten.  

For instance, the left most interval starting point, where the curve intersects the 

x-axis, could be 2 with each succeeding  interval 10 times the previous interval i.e. 

20,200,2000 etc. The data would still conform to Benford’s Law with digit 1 

contained in intervals 10-20, 100-200, 1000-2000; digit 2: 2-3,20-30,200-300;digit 

3: 3-4,30-40,300-400;digit 4: 4-5,40-50,400-500;digit 5:5-6,50-60,500-600;digit 

6:6-7,60-70,600-700;digit 7:7-8,70-80,700-800;digit 8:8-9,80-90,800-900;digit 9:9-

10,90-100,900-1000. The first digit starts in the tens and ends in the 1000s; all of 

the others start in the single digits and end in the 100s. It’s still the same result 

obtained by having the IPOT at each interval such as 1,10,100,1,000 etc. 

 

This would explain why data sets that span many orders of magnitude conform 

very closely to Benford’s law and data sets that span fewer orders of magnitude 

do not. This also explains why several other distributions such as gamma, beta, 



Weibull and exponential probability density functions conform fairly closely to 

Benford’s law and why Gaussian or Normal distributions do not ( the pdf of the 

logarithm of a Gaussian data span a very limited number of IPOTs. i.e.  

X* 
1

√2𝜋𝜎²
 𝑒−(x−u)2/2𝜎², the 𝑒−(x−u)2/2𝜎² term falls too rapidly.  

 

 

 

  

 

 

 

 


