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Abstract – With the use of tropical algebra operators and a d = 2 parameter vectors space, Bell’s
theorem does not forbid a, physics valid, reproduction of the quantum correlation.

Introduction. – In 1964, John Bell wrote a paper [1]1

on the possibility of hidden variables [2] causing the entan-2

glement correlation E(a, b) between two particles. In the3

present paper we continue our study of possible concrete4

physics theoretical incompleteness. Bell, based his hidden5

variable description on particle pairs with entangled spin,6

originally formulated by Bohm [3].7

A Bell type experiment is given when two observers,8

Alice and Bob, are at a (large) distance from each other.9

Both have a spin measuring instrument. The instruments10

are denoted with resp. A and B. The instruments have11

separate and independent setting parameter vectors of12

unit length. We have a for Alice’s parameter vector and13

b for Bob’s. The euclidean length of the parameter vec-14

tors a and b is unity. In the middle there is a source S.15

The source sends to Alice and Bob, particles that belong16

to entangled pairs cite3, [4]. In the sketchy figure below,17

wavy lines suggest particles, arrows show the direction of18

propagation, dots suggests the distance to be traveled and19

symmetry suggests entanglement. I.e. the source in the20

wavy symbol moving to the right corresponds to the sink21

of the wavy symbol moving to the left.22

[A(a)]←∼ . . . ∼←∼ [S] ∼→∼ . . . ∼→ [B(b)] (1)23

In two dimensional parameter space we have on Alice’s24

side (A instrument) of the experiment, a = (a1, a2). On25

Bob’s side we have the parameter vector b = (b1, b2). The26

parameter vectors are unitary, ||a|| = ||b|| = 1.27

Bell used hidden variables λ that are elements of a uni-28

versal set Λ and are distributed with a density ρ(λ) ≥ 0.29

Suppose, E(a, b) is the correlation between the parameter30

vectors of the measurement instruments A and B. Then31

with the use of the λ we can write down the classical prob-32

ability ”correlation” between the two simultaneously mea-33

sured particles. This is what we will call Bell’s correlation34

formula. 35

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (2) 36

We have A = ±1 and B = ±1 to mimic the spin up and 37

down discrete outcome of measurement. 38

Bell inequality. From (2) an inequality for four setting 39

combinations, a, b, c and d can be derived as follows 40

E(a, b)− E(a, c) = (3) 41∫
λ∈Λ

dλρ(λ)A(a, λ)B(c, λ)A(d, λ)B(c, λ)− 42∫
λ∈Λ

dλρ(λ)A(a, λ)B(b, λ)A(d, λ)B(b, λ) + 43∫
λ∈Λ

dλρ(λ)A(a, λ)B(b, λ)−
∫
λ∈Λ

dλρ(λ)A(a, λ)B(c, λ) 44

because, {B(c, λ)}2 = {B(b, λ)}2 = 1. From this it follows 45

E(a, b)− E(a, c) = (4) 46∫
λ∈Λ

dλρ(λ)A(a, λ)B(b, λ) {1−A(d, λ)B(b, λ)}+ 47∫
λ∈Λ

dλρ(λ) (−A(a, λ)B(c, λ)) {1−A(d, λ)B(c, λ)} 48

Hence, because 1 − A(x, λ)B(y, λ) ≥ 0 for all x, y with 49

||x|| = ||y|| = 1 and A(a, λ)B(b, λ) ≤ 1 together with 50

−A(a, λ)B(c, λ) ≤ 1, it can be derived that 51

E(a, b)− E(a, c) ≤ 2− E(d, b)− E(d, c) (5) 52

Or, 53

S(a, b, c, d) = E(a, b)+E(d, b)+E(d, c)−E(a, c) ≤ 2. (6) 54

Note, no physics assumptions were employed in the deriva- 55

tion of (5). It is pure mathematics. 56
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Our question here is, is (2) exhausting any possible57

physics behind the experiment. In other words, is the for-58

mula of Bell (2) sufficiently covering for the experiment of59

Bell in (1)? A proof of the inconsistency of Bell’s theorem60

can be found in [11].61

Counter proof. –62

Tropical algebra operator. Tropical algebra has been63

used in an attempt to tackle nonlinearity in physical prob-64

lems [9]. This can be the case in Bell physics as well. If65

one wants to contest this physics possibility in (1) then66

the challenge is to come with proof why this can not be67

the case in entanglement physics. It must be noted that68

the absence of hidden variables in experiment (1) is solely69

based on (2) and the inequalties derived thereof. It is70

based on mathematical considerations. There is no explicit71

physics theory behind the derivation of the inequality from72

(2). Nobody looked beyond (2) when considering an ex-73

periment (1). Hence, when someone contests the physical74

possibility of the tropical operator, it is legitimate to in-75

sist on proof of the impossibility of the tropic operator in76

physics reality. This debate is about what we consider77

reasonable for the description of (1).78

Therefore, to the integration of (2) we may add the79

tropical algebra operation ⊕. If there are no physical rea-80

sons to disallow it, then it is allowed. The use of tropical81

operation will provide new insights into the relation Bell82

formula and Bell experiment.83

Tropical sum. Let us define the tropical algebra sum84

on real, i.e. R ∩ [−1, 1], values for x and y. We define85

x⊕ y =

 x+ y, |x+ y| ≤ 1
+1, x+ y > 1
−1, x+ y < −1

(7)

Interestingly with, H1/2(x) = 1⇔ x > 0, with, H1/2(x) =86

0 ⇔ x < 0 and H1/2(0) = 1/2. This implies, x ⊕ y =87

(x+y)H1/2(1−|x+y|))+H1/2(x+y−1)−H1/2(−1−(x+y)).88

We note that the summation in (7) is allowed. If readers89

disagree they have to prove that this way of topped sum-90

ming cannot for sure occur in physics reality. Below we91

will introduce the other elements of the hidden variables92

theory and later return to use (7). The tropical semi-93

ring is based on the topped sum and normal multiplica-94

tion. This semi-ring applies to real numbers in the interval95

[−1, 1].96

Density. In the probability density function of (2)97

there are hidden variables λ. The first hidden variable98

we introduce here is n ∈ {ε, 1 − ε}. Here we have the99

0 < ε → 0. A second spin-like variable is x ∈ {0, 1}.100

An important part of the probability density from Bell’s101

correlation formula is therefore ρ(n, x) = f(x)g(n, x). The102

function g is defined by103

g(n, x) = nx(1− n)1−x (8)104

with, n ∈ {ε, 1 − ε}0<ε→0 ≡ n ∈ Eε and x ∈ {0, 1}.105

The function f is a selection from the set F(x) =106

{ρ1(x), ρ2(x)}. Here, ρ1(x) = x, x ∈ {0, 1}, while 107

ρ2(x) = 1− x, x ∈ {0, 1}. Hence, obviously, 108

1∑
x=0

ρ1(x) = 1 (9) 109

1∑
x=0

ρ2(x) = 1 110

Furthermore, let us introduce an indicator function 111

ι(f(x) ∈ F(x)) = 1 when f(x) ∈ F(x) and ι(f(x) ∈ 112

F(x)) = 0 when f(x) /∈ F(x). Hence, we may look at 113

1∑
x=0

f(x)ι(f(x) ∈ F(x)) =

{
1, f(x) ∈ F(x)
0, f(x) /∈ F(x)

(10) 114

The outcome 1 in (10), for f(x) ∈ F(x), is based on equa- 115

tion (9) and on ι(f(x) ∈ F(x)) = 1. The outcome 0 in 116

(10), for f(x) /∈ F(x), is based on ι(f(x) ∈ F(x)) = 0. So, 117

given a function h(x) and x ∈ {0, 1}, then we have from 118

equation (10) 119

1∑
x=0

f(x)ι(f(x) ∈ F(x))h(x) = 120
∑1
x=0 ρ1(x)h(x), f(x) ∈ F(x), f(x) = ρ1(x)∑1
x=0 ρ2(x)h(x), f(x) ∈ F(x), f(x) = ρ2(x)

0, f(x) /∈ F(x)

(11) 121

Let us suppose that h(x) =
∑
n∈Eε g(n, x) as defined in 122

(8). Then the first row of equation (11), with ρ1(x) = x, 123

reads, with 0 < ε→ 0, 124

1∑
x=0

ρ1(x)
∑
n∈Eε

g(n, x) =

1∑
x=0

x
∑
n∈Eε

nx(1− n)1−x = (12) 125

∑
n∈Eε

n1(1− n)0 =
∑
n∈Eε

n = ε+ (1− ε) = 1 126

The second row of equation (11), with ρ2(x) = 1−x, reads 127

1∑
x=0

ρ2(x)
∑
n∈Eε

g(n, x) =

1∑
x=0

(1− x)
∑
n∈Eε

nx(1− n)1−x = (13)128

∑
n∈Eε

n0(1− n)1 =
∑
n∈Eε

(1− n) = (1− ε) + ε = 1 129

Note that equations (12) and (13) remain true when 0 < 130

ε → 0. If our hidden variables are x ∈ {0, 1} and n ∈ Eε, 131

then from equation (11) we can derive 132

1∑
x=0

f(x)ι(f(x) ∈ F(x))
∑
n∈Eε

g(n, x) 133

=

{
1, f(x) ∈ F(x)
0, f(x) /∈ F(x)

(14) 134

If the attention is then directed only to f(x) ∈ F(x), the 135

first row of (14) warrants that the probability density func- 136

tion f(x)g(n, x) is correct and may be employed in a Bell 137

correlation formula. 138
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Measurement functions. Concerning the defintion of139

the measurement functions we already defined the two di-140

mensional measurement parameter vectors, a = (a1, a2)141

and b = (b1, b2). Let us, subsequently, define two auxil-142

iary function α and β. We have143

α = a1δx,1δf,ρ1 + a2δx,0δf,ρ2 (15)144

β = b1δx,1δf,ρ1 + b2δx,0δf,ρ2145

Here, the δ for discrete choice is, δp,q = 1 when, p = q and146

δp,q = 0 when p 6= q. The δf,ρm means that the function f147

selects ρm, with m = 1, 2. Moreover, from δx,0δx,1 = 0, it148

follows that the cross broducts in αβ, defined in (15), that149

contain a1b2 or a2b1 terms will not contribute. It also is150

easy to see that |α| ≤ 1 and |β| ≤ 1, because ||a|| = 1 and151

||b|| = 1.152

Evaluation I. If we also note that, in effect, δ2
p,q = δp,q,153

then the evaluation of154

e(a, b) =

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)α(a, x, f)β(b, x, f) (16)155

where f ∈ F , only will be concerned with two, not-zero-156

by-definition, terms. Note that we have157

αβ = a1b1δ
2
x,1δ

2
f,ρ1 +158

(a1b2 + a2b1) δx,1δx,0δf,ρ1δf,ρ2159

+a2b2δ
2
x,0δ

2
f,ρ2160

and δx,1δx,0 = 0. Moreover, δ2
x,1δ

2
f,ρ1

= δx,1δf,ρ1 and161

δ2
x,0δ

2
f,ρ2

= δx,0δf,ρ2 .162

Firstly, because of the δf,ρ1 , the a1b1 containing term in163

αβ from (16) is164

e1(a, b) =

1∑
x=0

x
∑
n∈Eε

nx(1− n)1−xa1b1δx,1 (17)165

This implies that166

e1(a, b) = a1b1
∑
n∈Eε

n1(1−n)0 = a1b1
∑
n∈Eε

n = a1b1 (18)167

Secondly, because of the δf,ρ2 , the a2b2 containing term168

in αβ gives169

e2(a, b) =

1∑
x=0

(1− x)
∑
n∈Eε

nx(1− n)1−xa2b2δx,0 (19)170

This, in turn, implies that171

e2(a, b) = a2b2
∑
n∈Eε

n0(1− n)1 = a2b2
∑
n∈Eε

(1− n) = a2b2

(20)172

Looking at (16) we can have e(a, b) = e1(a, b) + e2(a, b)173

when the f can be selected from F . It can be compared174

with the active pumping of f -containg blood through the175

veins of the formulae. So there must be active ongoing f - 176

selection ”above” the right hand terms given in (18) and 177

20). Hence, 178

e(a, b) =

{
a1b1, f = ρ1

a2b2, f = ρ2
(21) 179

Suppose, finally, the A and B functions are defined via 180

A = sign(α− λ), B = sign(β − µ) (22) 181

Here sign(y) = 2H1(y)− 1, with, H1(y) = 1⇔ y ≥ 0 and 182

H1(y) = 0 ⇔ y < 0, and y ∈ R. A closed form for H1(y) 183

is limn→∞ exp [−e−ny/n]. 184

If, e.g. in (15) we have x = 0, i.e. δx,0 = 1, and f = ρ1, 185

i.e. δf,ρ1 = 1, then we have α = 0 and β = 0. The 186

definition of H upon which the definition of sign rests, 187

warrants that there is ±1 for A and B in this case. The λ 188

and µ are both uniform density variables on the interval 189

[−1, 1]. We then have that both A = sign(0−λ) and B = 190

sign(0 − µ) project in {−1, 1} and can be meaningfully 191

integrated in a Bell type correlation formula. Hence, they 192

are allowed as measurement functions. 193

Evaluation II. Let us employ the tropical algebra op- 194

erator ⊕ in relation to f as a part of the integration in (2). 195

The ⊕f∈U operation is the hart that pumps the f -blood 196

through the veins. Note, F ⊂ U , with U a proper function 197

space. We note here that the integration over f is in fact 198

over the density function space. So this is most likely a 199

proper justification of the use of ⊕ related to f . We have 200

for the requirement
∫
dλ′ρ(λ′) = 1 201

⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)

∫ 1

−1

dλ

2

∫ 1

−1

dµ

2
= 1

(23) 202

Note that because of the ⊕f∈U operation, the outcome of 203

(23) using (14) and (7) is unity. 204

The steps to this result can be provided as follows. We 205

know that the µ and λ integrals in (23) are unity. I.e. 206∫ 1

−1
dµ
2 = 1. The sum 207

1∑
x=0

f(x)
∑
n∈Eε

g(n, x) = 1 (24)

such as was already demonstrated previously in (14), when 208

we look at it from the perspective ι(f ∈ F) = 1. This 209

leaves us with an ⊕ operation that looks like 210

. . . 0⊕ 1⊕ 1⊕ 0 . . . = 1⊕ 1 = 1 (25)

This evaluation is in accordance with the ⊕ definition in 211

(7). Hence, equation (23) is verified. There is a unity 212

outcome but the f are not hidden variables such as in 213

Bell’s formula. The f represents probability densities for 214

the variable x ∈ {0, 1}. We have two of them ρ1 = x and 215

ρ2 = 1− x. 216
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E(a, b) =
⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)

∫ 1

−1

dλ

2

∫ 1

−1

dµ

2
sign(α− λ)sign(β − µ) (26)

Correlation. Note,that |α| ≤ 1 and |β| ≤ 1. More-217

over, there is distributivity for a, b, c ∈ {0, 1}. This is true218

because as can be verified, (a⊕b)c = (ac⊕bc). This is rel-219

evant to the computation of the correlation because both220

ρ1 and ρ2 in {0, 1}. Because (a⊕b)c is a number in {0, 1},221

it can be employed in further ”normal” mathematics when222

selection of f , via the iota and Kronecker delta funtions223

has taken place. Kronecker delta also projects in {0, 1}.224

The computation of the E(a, b) is rather lengthy but it225

can be easily followed. Let us begin with looking at (26).226

We know that227 ∫ 1

−1

dλ

2

∫ 1

−1

dµ

2
sign(α− λ)sign(β − µ) = αβ (27)228

This reduces (26) to229

E(a, b) =
⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)αβ (28)230

From the definition of α and β in (15) and the discussion,231

we then arrive at two terms. The first is:232 ⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)a1b1δx,1δf,ρ1 = (29)233

a1b1

1∑
x=0

∑
n∈Eε

g(n, x)δx,1
⊕
f∈U

ι(f ∈ F)f(x)δf,ρ1234

Note that a1b1 ∈ [−1, 1] and falls under the spell of the235

semi-ring defined with the topped sum ⊕. This justi-236

fies the commutation of a1b1 with ⊕. Therefore, with237 ⊕
f∈U ι(f ∈ F)f(x)δf,ρ1 = . . . 0 ⊕ x ⊕ 0 ⊕ 0 . . . = x, with238

x ∈ {0, 1}, the first term in the E(a, b) is, looking at (29)239 ⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)a1b1δx,1δf,ρ1 = (30)240

a1b1

1∑
x=0

∑
n∈Eε

g(n, x)δx,1x =241

a1b1
∑
n∈Eε

n = a1b1 (ε+ 1− ε) = a1b1242

The f summation ⊕ on the one hand and the x and n243

summations on the other are independent of each other.244

That is why
⊕

f∈U ι(f ∈ F) and
∑1
x=0 f(x)

∑
n∈Eε can245

be interchanged. The second term from the product αβ is246 ⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)a2b2δx,0δf,ρ2 = (31)247

a2b2

1∑
x=0

∑
n∈Eε

g(n, x)δx,0
⊕
f∈U

ι(f ∈ F)f(x)δf,ρ2248

a2b2 ∈ [−1, 1], hence under the spell of the semi-ring 249

algebra of ⊕. We know,
⊕

f∈U ι(f ∈ F)f(x)δf,ρ2 = 250

. . . 0⊕0⊕ (1−x)⊕0 . . . = 1−x, with x ∈ {0, 1}, therefore 251

1−x ∈ {0, 1}, the second term in the E(a, b) evaluation is 252

⊕
f∈U

ι(f ∈ F)

1∑
x=0

f(x)
∑
n∈Eε

g(n, x)a2b2δx,0δf,ρ2 = (32) 253

a2b2

1∑
x=0

∑
n∈Eε

g(n, x)δx,0(1− x) = 254

a2b2
∑
n∈Eε

(1− n) = a2b2(1− ε+ (1− (1− ε)) = a2b2 255

Because αβ in (28) is given as a1b1δ
2
x,1δ

2
f,ρ1

+a2b2δ
2
x,0δ

2
f,ρ2

256

and squared Kronecker deltas are Kronecker deltas, we 257

find E(a, b) = a1b1 + a2b2. 258

Conclusion & discussion. – The presented local 259

model shows that in d = 2 euclidean unity parameter 260

vector space, Bell’s inequality can be violated. The lo- 261

cal model reproduces the d = 2 quantum correlation and 262

in a similar way like [11], it is a conflicting branch of the 263

physics behind Bell’s theorem. 264

A sceptical reader may want to hit the brakes here and 265

claim that this is not Bell’s formula. Agreed, but can the 266

sceptical reader give reasons why this refers not to the 267

Bell experiment? If the counting methodology of a Bell 268

experiment is used, that is, if in experiment 269

E(a, b) =
N=(a, b)−N 6=(a, b)

N=(a, b) +N 6=(a, b)
270

is used, with N=(a, b) the number of equal spin measure- 271

ments under settings pair (a, b) and N 6=(a, b) the number 272

of unequal spin measurements under setting pair (a, b), 273

then is there any real tested idea beyond theoretical as- 274

sumptions, about how N=(a, b) or N6=(a, b) are generated? 275

The model has the advantage that the model is rel- 276

atively simple. The question, ”show us where Bell is 277

wrong”, the reader is refered to [10], [11] and [12] for more 278

mathematical details. That question is not relevant here 279

because we are looking at Bell’s experiment and not Bell’s 280

formula per se. For a computational violation of the CHSH 281

the reader is referred to [5] which connects to [6] in its 282

method. 283

Of course one can ask questions about the Bell - validity 284

of a selection of functions f ∈ F . Note first that the total 285

probability density is written down as 286

ρBell =
1

4
H(1 + λ)H(1− λ)H(1 + µ)H(1− µ)f(x)g(n, x) 287
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Here, f ∈ F ≡ {ρ1, ρ2} with the functional forms, ρ1 = x288

and ρ2 = 1− x and the variable x ∈ {0, 1}. So, ρBell ≥ 0289

as required. Then, secondly, the integral of ρBell is unity290

for ⊕f∈U ι(f ∈ F).291

The only thing one can hold against this presented claim292

of Bell completeness rejection, is that f expressed as ρ1 =293

x is associated to the first slot of the measuring instrument294

parameter vector while the second slot has a different f295

with ρ2 = 1 − x and x ∈ {0, 1} associated to it. Nobody296

knows if the first slot of a measuring system, in an actual297

physical instrument, is associated to another probability298

density form, via δf,ρ1 , than the second slot, via δf,ρ2 .299

So, our claim represents a possible physics of a Bell300

experiment (1). In addition, the slot probability den-301

sity variation is not a form of contextuality [7], [8]. This302

is so because, for instance, the density does not change303

when a and/or b changes. The slots (i.e. dimensions)304

of the parameter vector in the measurement machine are305

fixed but the values attached to the slots, the ak and306

bk (k = 1, 2) can differ although the parameter vectors307

are of unit length. From the definitions of α and β we308

see that slot-1 (dimension 1) of both a and b parameter309

vector is associated to ρ1. Slot-2 (dimension 2) is for both310

measrement instruments associated to ρ2.311

Therefore, if one wants to reject slot dependent density,312

one first has to proof, that this physics possibility is for313

sure ruled out in (1). One has to show that both slots are314

under the spell of a single density function. The second315

point is the use of tropical algebra operators as a valid316

representation of possible physics. Perhaps reasons are to317

be found such that tropical algebra is ruled out in physics.318

The⊕ operator is distributive to common multiplication319

in the domain we are looking at. For a, b, c ∈ {0, 1}, we320

have (a ⊕ b)c = (ac ⊕ bc). This is relevant in our case321

because for x ∈ {0, 1} both ρ functions project in {0, 1}.322

The use of ⊕f∈U ι(f ∈ F) is an operation that is perhaps323

alien to Bell’s formalism. However, we ask if it is alien to324

the physics of an experiment such as represented in (1).325

We then note that f is not a random variable. The ρBell326

function also is not a variable subjected to the laws of327

classical probability. It is a probability density function328

and therefore plays a different role than the variables it329

governs.330

In the present paper we tried to argue that the conclu-331

sion is not justified that in actual experiment (1) the sys-332

tem does not entangle along the lines of hidden variables333

physics. This could increase our insight into the physics334

behind the theorem [13].335

Of course the sceptical reader will respond that this is336

all sheer speculation. However, that is a character trait of337

theory. The bias is that the speculative aspect of Bell’s for-338

mula is overlooked. We conclude that the descriptioon of339

the Bell experiment is not fully covered by Bell’s formula.340

The use of per-slot density cannot be ruled out before-341

hand. The use of topped summation cannot be ruled out342

beforehand. The use of tropical algebra tackling the possi-343

ble deep nonlinearity of the physics behind the experiment344

cannot be ruled out beforehand. 345
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